1
|
Liu X, Mao B, Tang X, Zhang Q, Zhao J, Chen W, Cui S. Bacterial viability retention in probiotic foods: a review. Crit Rev Food Sci Nutr 2025:1-23. [PMID: 40215221 DOI: 10.1080/10408398.2025.2488228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2025]
Abstract
Probiotics offer substantial health benefits, leading to their increased consumption in various food products. The viability of probiotics is a critical factor that influences the nutritional and therapeutic efficacy of these foods. However, as probiotics often lose viability during production and oral administration, effective preservation and encapsulation technologies are needed to overcome this challenge. This review elucidates the diverse sources and incorporation strategies of probiotics, while systematically analyzing the effects of water transformation (ice front velocity, glass transition temperature, and collapse temperature), processing conditions (food matrix, temperature, and dissolved oxygen), and gastrointestinal challenges (gastric fluid, digestive enzymes, and bile salts) on probiotic viability. Effective strategies to strengthen probiotic viability encompass three primary domains: fermentation processes, production techniques, and encapsulation methods. Specifically, these include meticulous fermentation control (nitrogen sources, lipids, and carbon sources), pre-stress treatments (pre-cooling, heat shock, NaCl stress, and acid stress), optimized lyoprotectant selection (carbohydrates, proteins, and polyols), synergistic freeze-drying technologies (infrared technology, spray drying, and microwave), bulk encapsulation approaches (polysaccharide or protein-based microencapsulation), and single-cell encapsulation methods (self-assembly and surface functionalization). Despite these advancements, targeting specific probiotics and food matrices remains challenging, necessitating further research to enhance probiotic viability.
Collapse
Affiliation(s)
- Xuewu Liu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Bingyong Mao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Xin Tang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Qiuxiang Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- International Joint Research Laboratory for Maternal-Infant Microbiota and Health, Jiangnan University, Wuxi, China
| | - Wei Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| | - Shumao Cui
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- International Joint Research Laboratory for Maternal-Infant Microbiota and Health, Jiangnan University, Wuxi, China
| |
Collapse
|
2
|
Todorov SD, Tagg J, Algburi A, Tiwari SK, Popov I, Weeks R, Mitrokhin OV, Kudryashov IA, Kraskevich DA, Chikindas ML. The Hygienic Significance of Microbiota and Probiotics for Human Wellbeing. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10419-9. [PMID: 39688648 DOI: 10.1007/s12602-024-10419-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/01/2024] [Indexed: 12/18/2024]
Abstract
The human body can be viewed as a combination of ecological niches inhabited by trillions of bacteria, viruses, fungi, and parasites, all united by the microbiota concept. Human health largely depends on the nature of these relationships and how they are built and maintained. However, personal hygiene practices have historically been focused on the wholesale elimination of pathogens and "hygiene-challenging microorganisms" without considering the collateral damage to beneficial and commensal species. The microbiota can vary significantly in terms of the qualitative and quantitative composition both between different people and within one person during life, and the influence of various environmental factors, including age, nutrition, bad habits, genetic factors, physical activity, medication, and hygienic practices, facilitates these changes. Disturbance of the microbiota is a predisposing factor for the development of diseases and also greatly influences the course and severity of potential complications. Therefore, studying the composition of the microbiota of the different body systems and its appropriate correction is an urgent problem in the modern world. The application of personal hygiene products or probiotics must not compromise health through disruption of the healthy microbiota. Where changes in the composition or metabolic functions of the microbiome may occur, they must be carefully evaluated to ensure that essential biological functions are unaffected. As such, the purpose of this review is to consider the microbiota of each of the "ecological niches" of the human body and highlight the importance of the microbiota in maintaining a healthy body as well as the possibility of its modulation through the use of probiotics for the prevention and treatment of certain human diseases.
Collapse
Affiliation(s)
- Svetoslav D Todorov
- ProBacLab, Laboratório de Microbiologia de Alimentos, Departamento de Alimentos E Nutrição Experimental, Food Research Center, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, SP, 05508-000, Brazil.
- Instituto Politécnico de Viana Do Castelo, 4900-347, Viana Do Castelo, Portugal.
| | - John Tagg
- Blis Technologies, South Dunedin, 9012, New Zealand
| | - Ammar Algburi
- Department of Microbiology, College of Veterinary Medicine, University of Diyala, Baqubah, Iraq
| | - Santosh Kumar Tiwari
- Department of Genetics, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Igor Popov
- Center for Agrobiotechnology, Don State Technical University, Gagarina Sq., 1344002, Rostov-On-Don, Russia
- Division of Immunobiology and Biomedicine, Center of Genetics and Life Sciences, Sirius University of Science and Technology, Federal Territory Sirius, Olimpijskij Ave., 1, Federal Territory Sirius, Sirius, 354340, Russia
- Centre for Healthy Eating & Food Innovation (HEFI), Maastricht University-Campus Venlo, Villafloraweg, 1, 5928 SZ, Venlo, The Netherlands
| | - Richard Weeks
- Health Promoting Naturals Laboratory, School of Environmental and Biological Sciences, Rutgers, the State University of New Jersey, New Brunswick, NJ, 08901, USA
| | - Oleg V Mitrokhin
- Department of General Hygiene, I.M. Sechenov First Moscow State Medical University, Moscow, 119435, Russia
| | - Ilya A Kudryashov
- Department of General Hygiene, I.M. Sechenov First Moscow State Medical University, Moscow, 119435, Russia
| | - Denis A Kraskevich
- Department of General Hygiene, I.M. Sechenov First Moscow State Medical University, Moscow, 119435, Russia
| | - Michael L Chikindas
- Center for Agrobiotechnology, Don State Technical University, Gagarina Sq., 1344002, Rostov-On-Don, Russia.
- Health Promoting Naturals Laboratory, School of Environmental and Biological Sciences, Rutgers, the State University of New Jersey, New Brunswick, NJ, 08901, USA.
- Department of General Hygiene, I.M. Sechenov First Moscow State Medical University, Moscow, 119435, Russia.
| |
Collapse
|
3
|
Yan T, Shi L, Xu K, Bai J, Wen R, Liao X, Dai X, Wu Q, Zeng L, Peng W, Wang Y, Yan H, Dang S, Liu X. Habitual intakes of sugar-sweetened beverages associated with gut microbiota-related metabolites and metabolic health outcomes in young Chinese adults. Nutr Metab Cardiovasc Dis 2023; 33:359-368. [PMID: 36577637 DOI: 10.1016/j.numecd.2022.10.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 10/05/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND AND AIMS Reducing consumption of sugar-sweetened beverages (SSBs) is a global public health priority because of their limited nutritional value and associations with increased risk of obesity and metabolic diseases. Gut microbiota-related metabolites emerged as quintessential effectors that may mediate impacts of dietary exposures on the modulation of host commensal microbiome and physiological status. METHODS AND RESULTS This study assessed the associations among SSBs, circulating microbial metabolites, and gut microbiota-host co-metabolites, as well as metabolic health outcomes in young Chinese adults (n = 86), from the Carbohydrate Alternatives and Metabolic Phenotypes study in Shaanxi Province. Five principal component analysis-derived beverage drinking patterns were determined on self-reported SSB intakes, which were to a varying degree associated with 143 plasma levels of gut microbiota-related metabolites profiled by untargeted metabolomics. Moreover, carbonated beverages, fruit juice, energy drinks, and bubble tea exhibited positive associations with obesity-related markers and blood lipids, which were further validated in an independent cohort of 16,851 participants from the Regional Ethnic Cohort Study in Northwest China in Shaanxi Province. In contrast, presweetened coffee was negatively associated with the obesity-related traits. A total of 79 metabolites were associated with both SSBs and metabolic markers, particularly obesity markers. Pathway enrichment analysis identified the branched-chain amino acid catabolism and aminoacyl-tRNA biosynthesis as linking SSB intake with metabolic health outcomes. CONCLUSION Our findings demonstrate the associations between habitual intakes of SSBs and several metabolic markers relevant to noncommunicable diseases, and highlight the critical involvement of gut microbiota-related metabolites in mediating such associations.
Collapse
Affiliation(s)
- Tao Yan
- School of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi' an, Shaanxi, China
| | - Lin Shi
- School of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi' an, Shaanxi, China; Division of Food and Nutrition Science, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden.
| | - Kun Xu
- Global Health Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Jinyu Bai
- School of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi' an, Shaanxi, China
| | - Ruixue Wen
- School of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi' an, Shaanxi, China
| | - Xia Liao
- Department of Nutrition, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Xiaoshuang Dai
- BGI Institute of Applied Agriculture, BGI-Agro, Shenzhen, China
| | - Qian Wu
- Global Health Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Lingxia Zeng
- Global Health Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Wen Peng
- Nutrition and Health Promotion Center, Department of Public Health, Medical College, Qinghai University, Xining, Qinghai, China
| | - Youfa Wang
- Global Health Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China; School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Hong Yan
- Global Health Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Shaonong Dang
- Global Health Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China.
| | - Xin Liu
- Global Health Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China.
| |
Collapse
|
4
|
Wang P, Wu J, Wang T, Zhang Y, Yao X, Li J, Wang X, Lü X. Fermentation process optimization, chemical analysis, and storage stability evaluation of a probiotic barley malt kvass. Bioprocess Biosyst Eng 2022; 45:1175-1188. [PMID: 35616735 DOI: 10.1007/s00449-022-02734-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 05/02/2022] [Indexed: 11/26/2022]
Abstract
Kvass is a popular low-alcohol beverage produced by the natural fermentation of dark rye bread or malt with complex microbial flora. However, few pieces of research focus on the microflora of traditional bread kvass, and the industrial kvass based on malt concentrate has some disadvantages, including the lack of viable probiotics and containing multiple artificial additives. Therefore, in the present study, based on the different homemade traditional bread kvass, the predominant species including Lacticaseibacillus paracasei, Acetobacter pasteurianus, and Saccharomyces cerevisiae were screened and identified. In addition, barley malt was used instead of bread for kvass production, and the co-fermentation conditions with three different strains were optimized as wort concentration of 7.4°Brix, cell ratio of 2/2/1 (S. cerevisiae/L. paracasei/A. pasteurianus), inoculum amount of 8%, fermentation temperature of 29.5 °C and fermentation time of 24.6 h. Moreover, the physicochemical (pH, total soluble solids, color, and alcohol content) and probiotic (microorganisms counting and antioxidant activity) properties of the barley malt kvass prepared at optimal conditions were symmetrically evaluated. Besides, compared with the commercial kvass products, the produced barley malt kvass exhibited better taste and more desirable antioxidant activity, and also maintained around 6-7 log CFU/mL of viable probiotic microorganisms during a week of storage. The present study not only enriched the biological resource of the traditional kvass, but also promoted the development of the kvass as a live-bacteria beverage.
Collapse
Affiliation(s)
- Panpan Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, No. 22 Xinong Road, Yangling District, Xianyang, 712100, Shaanxi, China
| | - Jiaqi Wu
- College of Food Science and Engineering, Northwest A&F University, Yangling, No. 22 Xinong Road, Yangling District, Xianyang, 712100, Shaanxi, China
| | - Tao Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, No. 22 Xinong Road, Yangling District, Xianyang, 712100, Shaanxi, China
| | - Yunyong Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, No. 22 Xinong Road, Yangling District, Xianyang, 712100, Shaanxi, China
| | - Xinyue Yao
- College of Food Science and Engineering, Northwest A&F University, Yangling, No. 22 Xinong Road, Yangling District, Xianyang, 712100, Shaanxi, China
| | - Jiayao Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, No. 22 Xinong Road, Yangling District, Xianyang, 712100, Shaanxi, China
| | - Xin Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, No. 22 Xinong Road, Yangling District, Xianyang, 712100, Shaanxi, China.
| | - Xin Lü
- College of Food Science and Engineering, Northwest A&F University, Yangling, No. 22 Xinong Road, Yangling District, Xianyang, 712100, Shaanxi, China.
| |
Collapse
|
5
|
Nondairy Probiotic Products: Functional Foods That Require More Attention. Nutrients 2022; 14:nu14040753. [PMID: 35215403 PMCID: PMC8878000 DOI: 10.3390/nu14040753] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 02/07/2022] [Accepted: 02/09/2022] [Indexed: 01/27/2023] Open
Abstract
The potential health benefits of probiotics have been illustrated by many studies. However, most functional foods containing probiotics are from dairy sources. This review provides an overview of potential strains and raw materials for nondairy probiotic products together with the role of its in vitro assessment. Probiotic-containing products from raw nondairy materials are known both in terms of quality and nutritional values. The sensory properties of raw plant-based materials are generally improved as a result of fermentation with probiotics. Increased market shares for plant-based probiotic products may also help to curb environmental challenges. The sustainability of this food results from reductions in land use, greenhouse gas emissions, and water use during production. Consuming nondairy probiotic food can be a personal step to contribute to climate change mitigation. Since some people cannot or do not want to eat dairy products, this creates a market gap in the supply of nutritious food. Therefore, the promotion and broader development of these foods are needed. Expanding our knowledge on how to best produce these functional foods and increasing our understanding of their in vivo behaviours are crucial. The latter may be efficiently achieved by utilizing available in vitro digestion systems that reliably recapitulate the in vivo situation without introducing any ethical concerns.
Collapse
|
6
|
Quoc Le T, Le Nguyen TV, Nguyen Thi NT. Cider home-scale production from the local green apple (Ziziphus mauritiana): The effects of pasteurization conditions, soda and syrup addition on quality aspects. JOURNAL OF CULINARY SCIENCE & TECHNOLOGY 2022. [DOI: 10.1080/15428052.2022.2027310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Tuan Quoc Le
- Department of Food Technology, Institute of Applied Technology, Thu Dau Mot University, Binh Duong Province, Vietnam
- Department of Food Technology, Institute of Applied Technology, Thu Dau Mot University, Thu Dau Mot, Vietnam
| | - Tuong Vy Le Nguyen
- Department of Food Technology, Institute of Applied Technology, Thu Dau Mot University, Binh Duong Province, Vietnam
| | - Ngoc Tram Nguyen Thi
- Department of Food Technology, Faculty of Environmental & Food Engineering, Nguyen Tat Thanh University, Ho Chi Minh, Vietnam
| |
Collapse
|
7
|
Advancements in the Use of Fermented Fruit Juices by Lactic Acid Bacteria as Functional Foods: Prospects and Challenges of Lactiplantibacillus (Lpb.) plantarum subsp. plantarum Application. FERMENTATION 2021. [DOI: 10.3390/fermentation8010006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Lactic acid fermentation of fresh fruit juices is a low-cost and sustainable process, that aims to preserve and even enhance the organoleptic and nutritional features of the raw matrices and extend their shelf life. Selected Lactic Acid Bacteria (LAB) were evaluated in the fermentation of various fruit juices, leading in some cases to fruit beverages, with enhanced nutritional and sensorial characteristics. Among LAB, Lactiplantibacillus (Lpb.) plantarum subsp. plantarum strains are quite interesting, regarding their application in the fermentation of a broad range of plant-derived substrates, such as vegetables and fruit juices, since they have genome plasticity and high versatility and flexibility. L. plantarum exhibits a remarkable portfolio of enzymes that make it very important and multi-functional in fruit juice fermentations. Therefore, L. plantarum has the potential for the production of various bioactive compounds, which enhance the nutritional value and the shelf life of the final product. In addition, L. plantarum can positively modify the flavor of fruit juices, leading to higher content of desirable volatile compounds. All these features are sought in the frame of this review, aiming at the potential and challenges of L. plantarum applications in the fermentation of fruit juices.
Collapse
|
8
|
Iqbal R, Liaqat A, Jahangir Chughtai MF, Tanweer S, Tehseen S, Ahsan S, Nadeem M, Mehmood T, Ur Rehman SJ, Saeed K, Sameed N, Aziz S, Tahir AB, Khaliq A. Microencapsulation: a pragmatic approach towards delivery of probiotics in gut. J Microencapsul 2021; 38:437-458. [PMID: 34192983 DOI: 10.1080/02652048.2021.1949062] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Probiotics confer numerous health benefits and functional foods prepared with these microbes own largest markets. However, their viability during transit from gastrointestinal tract is a concerning issue. Microencapsulation of probiotics is a novel technique of major interest to increase their survivability in GIT and food matrices by providing a physical barrier to protect them under harsh conditions. This article contributes the knowledge regarding microencapsulation by discussing probiotic foods, different methods and approaches of microencapsulation, coating materials, their release mechanisms at the target site, and interaction with probiotics, efficiency of encapsulated probiotics, their viability assessment methods, applications in food industry, and their future perspective. In our opinion, encapsulation has significantly got importance in the field of innovative probiotic enriched functional foods development to preserve their viability and long-term survival rate until product expiration date and their passage through gastro-intestinal tract. Previous review work has targeted some aspects of microencapsulation, this article highlights different methods of probiotics encapsulation and coating materials in relation with food matrices as well as challenges faced during applications: Gut microbiota; Lactic acid bacteria; Micro-encapsulation; Stability enhancement; Cell's release, Health benefits.
Collapse
Affiliation(s)
- Rabia Iqbal
- Department of Food Science and Technology, Government College Women University, Faisalabad, Pakistan
| | - Atif Liaqat
- Department of Food Science and Technology, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| | - Muhammad Farhan Jahangir Chughtai
- Department of Food Science and Technology, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| | - Saira Tanweer
- University College of Agriculture and Environmental Sciences, Islamia University, Bahawalpur, Pakistan
| | - Saima Tehseen
- Department of Food Science and Technology, Government College Women University, Faisalabad, Pakistan
| | - Samreen Ahsan
- Department of Food Science and Technology, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| | - Muhammad Nadeem
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari, Pakistan
| | - Tariq Mehmood
- Department of Food Science and Technology, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| | - Syed Junaid Ur Rehman
- Department of Food Science and Technology, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| | - Kanza Saeed
- Department of Food Science and Technology, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| | - Nimra Sameed
- Department of Food Science and Technology, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| | - Shoaib Aziz
- Department of Food Science and Technology, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| | - Assam Bin Tahir
- Faculty of Allied Health Sciences, University Institute of Diet and Nutritional Sciences, The University of Lahore, Lahore, Pakistan
| | - Adnan Khaliq
- Department of Food Science and Technology, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| |
Collapse
|
9
|
Pandey P, Mettu S, Mishra HN, Ashokkumar M, Martin GJ. Multilayer co-encapsulation of probiotics and γ-amino butyric acid (GABA) using ultrasound for functional food applications. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111432] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
10
|
Gardnerella vaginalis and Neisseria gonorrhoeae Are Effectively Inhibited by Lactobacilli with Probiotic Properties Isolated from Brazilian Cupuaçu ( Theobroma grandiflorum) Fruit. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6626249. [PMID: 33997030 PMCID: PMC8102102 DOI: 10.1155/2021/6626249] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 03/04/2021] [Accepted: 04/23/2021] [Indexed: 02/01/2023]
Abstract
In recent years, certain Lactobacillus sp. have emerged in health care as an alternative therapy for various diseases. Based on this, this study is aimed at evaluating in vitro the potential probiotics of five lactobacilli strains isolated from pulp of cupuaçu fruit fermentation against Gardnerella vaginalis and Neisseria gonorrhoeae. Our lactobacilli strains were classified as safe for use in humans, and they were tolerant to heat and pH. Our strains were biofilm producers, while hydrophobicity and autoaggregation varied from 13% to 86% and 13% to 25%, respectively. The coaggregation of lactobacilli used in this study with G. vaginalis and N. gonorrhoeae ranged from 15% to 36% and 32% to 52%, respectively. Antimicrobial activity was present in all tested Lactobacillus strains against both pathogens, and the growth of pathogens in coculture was reduced by the presence of our lactobacilli. Also, all tested lactobacilli reduced the pH of the culture, even in incubation with pathogens after 24 hours. The cell-free culture supernatants (CFCS) of all five lactobacilli demonstrated activity against the two pathogens with a halo presence and CFCS characterization assay together with gas chromatography revealed that lactic acid was the most abundant organic acid in the samples (50% to 62%). Our results demonstrated that the organic acid production profile is strain-specific. This study revealed that cupuaçu is a promising source of microorganisms with probiotic properties against genital pathogens. We demonstrated by in vitro tests that our Lactobacillus strains have probiotic properties. However, the absence of in vivo tests is a limitation of our work due to the need to evaluate the interaction of our lactobacilli with pathogens in the vaginal mucosa. We believe that these findings may be useful in developing a product containing our lactobacilli and their supernatants in order to support with vaginal health.
Collapse
|
11
|
Ta LP, Bujna E, Antal O, Ladányi M, Juhász R, Szécsi A, Kun S, Sudheer S, Gupta VK, Nguyen QD. Effects of various polysaccharides (alginate, carrageenan, gums, chitosan) and their combination with prebiotic saccharides (resistant starch, lactosucrose, lactulose) on the encapsulation of probiotic bacteria Lactobacillus casei 01 strain. Int J Biol Macromol 2021; 183:1136-1144. [PMID: 33932423 DOI: 10.1016/j.ijbiomac.2021.04.170] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 04/23/2021] [Accepted: 04/26/2021] [Indexed: 11/26/2022]
Abstract
The probiotics are extremely sensitive to various environmental factors, which imposes limitation on their health and functional effectiveness. Thus, development of delivery system for protection of viable cells while passing through different stages of the human digestion system is key factor in application of probiotic products. In our study, the effects of several polysaccharides such as alginate, κ-carrageenan, locust bean gum, gellan gum, xanthan gum and their combination with various prebiotic components (resistant starch, lactulose, lactosucrose) on encapsulation of probiotic Lactobacillus casei 01 strain were studied. Both regular and unregular beads with size distributions from 2 mm up to 5 mm were obtained. The encapsulation efficiencies varied from 64.4% up to 79%. Based on the texture's profiles, the capsules can be grouped into 5 clusters with squared Euclidean distance 3.5. Meanwhile, the starch-alginate and the lactosucrose LS55L - alginate beads were found to be the most stable and to have massive textural properties, whereas the gellan gum - xanthan gum and the chitosan coated alginate beads emerged as the softest. Encapsulation significantly improved the degree of gastric tolerance of probiotic cells even in the presence of pepsin. The INFOGEST in vitro digestion protocol was adapted to investigate the protection effects of different capsules. The highest survival (with loss rate of lower than 1 log CFU/g) was observed in the case of the cells encapsulated in starch-alginate beads. Moreover, the alginate microcapsules combined with lactosucrose LS55L also provided very promising shield for probiotics from the low pH of gastric conditions. Our findings suggest that incorporation of prebiotics into alginate-base encapsulation would be good idea in development of micro delivery systems that helps the survival of probiotics and their delivery to the target sites of action in human body.
Collapse
Affiliation(s)
- Linh Phuong Ta
- Department of Bioengineering and Alcoholic Drink Technology, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, Ménesi út 45, H-1118 Budapest, Hungary
| | - Erika Bujna
- Department of Bioengineering and Alcoholic Drink Technology, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, Ménesi út 45, H-1118 Budapest, Hungary.
| | - Otilia Antal
- Food Science Research Group, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, Hermann Ottó út 15, H-1022 Budapest, Hungary
| | - Márta Ladányi
- Department of Applied Statistics, Institute of Mathematics and Basic Science, Hungarian University of Agriculture and Life Sciences, Villányi út 29-43., H-1118 Budapest, Hungary
| | - Réka Juhász
- Department of Fruit and Vegetable Processing Technology, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, Villányi út 29-43., H-1118 Budapest, Hungary
| | - Anett Szécsi
- Department of Bioengineering and Alcoholic Drink Technology, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, Ménesi út 45, H-1118 Budapest, Hungary.
| | - Szilárd Kun
- Department of Bioengineering and Alcoholic Drink Technology, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, Ménesi út 45, H-1118 Budapest, Hungary.
| | - Surya Sudheer
- Department of Botany, Institute of Ecology and Earth Sciences University of Tartu, Lai 40, Tartu, Estonia
| | - Vijai Kumar Gupta
- Biorefining and Advanced Materials Research Center, Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh EH9 3JG, UK; Center for Safe and Improved Food, Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh EH9 3JG, UK.
| | - Quang Duc Nguyen
- Department of Bioengineering and Alcoholic Drink Technology, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, Ménesi út 45, H-1118 Budapest, Hungary.
| |
Collapse
|
12
|
Mesquita MC, Leandro EDS, de Alencar ER, Botelho RBA. Fermentation of chickpea (Cicer arietinum L.) and coconut (Coccus nucifera L.) beverages by Lactobacillus paracasei subsp paracasei LBC 81: The influence of sugar content on growth and stability during storage. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109834] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
13
|
Kehinde BA, Panghal A, Garg MK, Sharma P, Chhikara N. Vegetable milk as probiotic and prebiotic foods. ADVANCES IN FOOD AND NUTRITION RESEARCH 2020; 94:115-160. [PMID: 32892832 DOI: 10.1016/bs.afnr.2020.06.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Vegetable milks are fast gaining attention on the global scale as the possible alternatives due to concerns associated with milk consumption. In particular, issues varying from allergenic constituents and lactose intolerance to social and religious beliefs among consumers have induced an increase in the market demand for vegetable milks. Their concomitant nutritional and bioactive components appraise them of the suitable profile for the food-based carriage and delivery of probiotics. More so, the presence of prebiotics in their natural configuration makes them serviceable for the assurance of the needed probiotic viability, subsequent to their exposure to digestive conditions. On another note, their availability, ease of processing, and cost-effectiveness have been established as other possible rationales behind their adoption. This chapter comprehensively delineates the probiotic and prebiotic food-usage of vegetable milks. Captions related with consumer concerns, processing operations, nutritional and prebiotic constitutions, metabolic interactions during probiotic fermentation, and associated health benefits of vegetable milks are discoursed.
Collapse
Affiliation(s)
- Bababode Adesegun Kehinde
- Department of Biosystems and Agricultural Engineering, University of Kentucky, Lexington, KY, United States
| | - Anil Panghal
- Department of Processing and Food Engineering, AICRP-PHET, Chaudhary Charan Singh Haryana Agricultural University, Hisar, India
| | - M K Garg
- Department of Processing and Food Engineering, AICRP-PHET, Chaudhary Charan Singh Haryana Agricultural University, Hisar, India
| | - Poorva Sharma
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara, Punjab, India
| | - Navnidhi Chhikara
- Department of Food Technology, Guru Jambheshwar University of Science and Technology, Hisar, India.
| |
Collapse
|
14
|
Lyophilized Probiotic Lactic Acid Bacteria Viability in Potato Chips and Its Impact on Oil Oxidation. Foods 2020; 9:foods9050586. [PMID: 32380678 PMCID: PMC7278590 DOI: 10.3390/foods9050586] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 04/15/2020] [Accepted: 04/17/2020] [Indexed: 12/17/2022] Open
Abstract
To produce a new probiotic-containing food product, potato chips, as the most preferred fast food, were chosen. Preferably, it should be preserved for a long period without oxidation. The presented study aimed to compare potato chips containing two lyophilized probiotic lactic acid bacteria (Bifidobacterium longum ATCC 15708 and Lactobacillus helveticus LH-B02) in order to retard lipid oxidation. Lyophilization of probiotics was carried out into two cryoprotective media-skim milk (SM) and gelatin/glycerol (GG) as lactose-free medium. Results revealed that GG and SM media were the most suitable for lyophilization of B. longum and L. helveticus, respectively. . The lyophilized live cells were incorporated in potato chips, packed and their effect on oil oxidation was assessed. . Results showed that the lyophilized B. longum in SM remained alive at 6.5 log CFU/g for 4 months at 30 °C. Interestingly, potato chip bags containing B. longum lyophilized in SM medium exhibited a decrease in peroxide value (PV) and acid value (AV) of the extracted oil by 40.13% and 25%, respectively, compared to the control bags. The created probiotic potato chips containing B. longum fulfill the criteria of the probiotic product besides the prime quality and sensory attributes.
Collapse
|
15
|
Ready to Use Therapeutical Beverages: Focus on Functional Beverages Containing Probiotics, Prebiotics and Synbiotics. BEVERAGES 2020. [DOI: 10.3390/beverages6020026] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The growing global interest in functional foods containing nutrients capable of adding possible beneficial health effects is rapidly increasing both interest and consumer demand. In particular, functionalized beverages for their potential positive effect on health e.g., decreasing cholesterol level, lowering sugar, high fiber content, ability to enhance the immune system, and help digestion, have recently received special attention. Among the different beverages available on the market, probiotic dairy and non-dairy products have attracted much attention because of their affordable cost and their numerous therapeutic activities. Fermented milk and yogurt are currently worth €46 billion, with 77% of the market reported in Europe, North America, and Asia. Consumption of dairy beverages has some limitations due for example to lactose intolerance and allergy to milk proteins, thereby leading consumers to use non-dairy beverages such as fruit, grains, and vegetable juices to add probiotics to diet as well as driving the manufacturers to food matrices-based beverages containing probiotic cultures. The purpose of this review article is to evaluate the therapeutic performance and properties of dairy and non-dairy beverages in terms of probiotic, prebiotic, and synbiotic activities.
Collapse
|
16
|
Cassani L, Gomez-Zavaglia A, Simal-Gandara J. Technological strategies ensuring the safe arrival of beneficial microorganisms to the gut: From food processing and storage to their passage through the gastrointestinal tract. Food Res Int 2020; 129:108852. [DOI: 10.1016/j.foodres.2019.108852] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 11/18/2019] [Accepted: 11/20/2019] [Indexed: 02/08/2023]
|
17
|
Rovinaru C, Pasarin D. Application of Microencapsulated Synbiotics in Fruit-Based Beverages. Probiotics Antimicrob Proteins 2019; 12:764-773. [DOI: 10.1007/s12602-019-09579-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
18
|
Nazir M, Arif S, Khan RS, Nazir W, Khalid N, Maqsood S. Opportunities and challenges for functional and medicinal beverages: Current and future trends. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.04.011] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
19
|
Guimarães GM, Soares LA, Silva TNL, de Carvalho ILQ, Valadares HMS, Sodré GA, Gonçalves DB, Neumann E, Da Fonseca FG, Vinderola G, Granjeiro PA, de Magalhães JT. Cocoa Pulp as Alternative Food Matrix for Probiotic Delivery. Recent Pat Food Nutr Agric 2019; 11:82-90. [PMID: 30961519 DOI: 10.2174/2212798410666190408151826] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 02/23/2019] [Accepted: 02/27/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND For screening probiotic strains with viability and stability in non-dairy foods for health benefits, we revised all patents relating to probiotics in food. OBJECTIVE Screening of potential probiotics from Brazilian Minas artisanal cheese and verify their survival in frozen Brazilian cocoa pulp. METHODS Isolation and identification of the strains. The potential probiotic characterization involved gastric juice and bile resistance, antibiotic and antimicrobial activity, hydrophobicity, autoaggregation, coaggregation and adhesion assay in HT-29 cells. Organoleptic, viability and stability of probiotic strain in frozen cocoa pulp were evaluated. RESULTS Fourteen strains of Lactobacillus plantarum (9), Weissella paramesenteroides (3), Lactobacillus fermentum (1), and Leuconostoc mesenteroides (1) were obtained. Most of the strains were resistant to simulated gastric acidity and bile salts. Almost all strains were sensitive to the antibiotics tested, except to ciprofloxacin and vancomycin. About 47% of the strains are potential producers of bacteriocins. High hydrophobicity was observed for four strains. Autoaggregation ranged from 8.3-72.6% and the coaggregation capacity from 5.2-60.2%. All of the assessed strains presented more than 90% of adhesion to HT-29 intestinal cells. The percentage of Salmonella inhibition in HT-29 cells ranged from 4.7-31.1%. No changes in color, aroma, and pH were observed in cocoa pulps after storage at -20 °C for 90 days. CONCLUSION Wild strains of acid lactic bacteria from cheese proved to be viable and stable in frozen Brazilian cocoa pulp. This work showed a promising application of L. plantarum isolated strains to be used with frozen cocoa pulp matrix in probiotics food industry.
Collapse
Affiliation(s)
- Gabriele M Guimarães
- Microbiology Department, Federal University of Minas Gerais. Av. Antônio Carlos, 6627, Pampulha, Belo Horizonte, MG, CEP: 31270-901, Brazil
| | - Letícia A Soares
- Federal University of Sao Joao Del-Rei, Campus Centro Oeste, Rua Sebastiao Goncalves Filho, 400, Chanadour, Divinopolis, MG, CEP: 35501-296, Brazil
| | - Tuânia N L Silva
- Federal University of Sao Joao Del-Rei, Campus Centro Oeste, Rua Sebastiao Goncalves Filho, 400, Chanadour, Divinopolis, MG, CEP: 35501-296, Brazil
| | - Iracema L Q de Carvalho
- Microbiology Department, Federal University of Minas Gerais. Av. Antônio Carlos, 6627, Pampulha, Belo Horizonte, MG, CEP: 31270-901, Brazil
| | - Helder M S Valadares
- Federal University of Sao Joao Del-Rei, Campus Centro Oeste, Rua Sebastiao Goncalves Filho, 400, Chanadour, Divinopolis, MG, CEP: 35501-296, Brazil
| | - George A Sodré
- Comissao Executiva do Plano da Lavoura Cacaueira, Rodovia Itabuna, S/N Km 10, Zona Rural, Itabuna - BA, 45604-811, Brazil
| | - Daniel B Gonçalves
- Federal University of Sao Joao Del-Rei, Campus Centro Oeste, Rua Sebastiao Goncalves Filho, 400, Chanadour, Divinopolis, MG, CEP: 35501-296, Brazil
| | - Elisabeth Neumann
- Microbiology Department, Federal University of Minas Gerais. Av. Antônio Carlos, 6627, Pampulha, Belo Horizonte, MG, CEP: 31270-901, Brazil
| | - Flávio G Da Fonseca
- Microbiology Department, Federal University of Minas Gerais. Av. Antônio Carlos, 6627, Pampulha, Belo Horizonte, MG, CEP: 31270-901, Brazil
| | - Gabriel Vinderola
- Instituto de Lactologia Industrial (UNL-CONICET), Facultad de Ingenieria Quimica, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Paulo A Granjeiro
- Federal University of Sao Joao Del-Rei, Campus Centro Oeste, Rua Sebastiao Goncalves Filho, 400, Chanadour, Divinopolis, MG, CEP: 35501-296, Brazil
| | - Juliana T de Magalhães
- Federal University of Sao Joao Del-Rei, Campus Centro Oeste, Rua Sebastiao Goncalves Filho, 400, Chanadour, Divinopolis, MG, CEP: 35501-296, Brazil
| |
Collapse
|
20
|
Baliza DDMDS, Silva JFMD, Pimenta RS. Avaliação da aplicabilidade de uma cepa probiótica de Saccharomyces cerevisiae em barras de cereais. BRAZILIAN JOURNAL OF FOOD TECHNOLOGY 2018. [DOI: 10.1590/1981-6723.14817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Resumo O objetivo deste estudo foi avaliar a utilização de uma levedura probiótica na produção de barra de cereais, contribuindo para a produção de um alimento funcional inovador. Uma mistura de chocolate inoculada com 8 log10 células/mL viáveis da levedura foi inserida sobre a superfície da barra de cereais. Foram verificados os parâmetros físicos, químicos e sensoriais, e quantificado o número de células durante o período de armazenamento, até a morte celular da levedura. Os resultados demonstraram que a presença da levedura não afetou negativamente as propriedades físicas e químicas da barra de cereais. Nos parâmetros avaliados sensorialmente, não foi observada preferência em relação às barras sem levedura probiótica. A levedura se manteve viva (104 células/g) por 45 dias.
Collapse
|
21
|
|
22
|
Cousin FJ, Le Guellec R, Schlusselhuber M, Dalmasso M, Laplace JM, Cretenet M. Microorganisms in Fermented Apple Beverages: Current Knowledge and Future Directions. Microorganisms 2017; 5:E39. [PMID: 28757560 PMCID: PMC5620630 DOI: 10.3390/microorganisms5030039] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 07/20/2017] [Accepted: 07/21/2017] [Indexed: 12/18/2022] Open
Abstract
Production of fermented apple beverages is spread all around the world with specificities in each country. 'French ciders' refer to fermented apple juice mainly produced in the northwest of France and often associated with short periods of consumption. Research articles on this kind of product are scarce compared to wine, especially on phenomena associated with microbial activities. The wine fermentation microbiome and its dynamics, organoleptic improvement for healthy and pleasant products and development of starters are now widely studied. Even if both beverages seem close in terms of microbiome and process (with both alcoholic and malolactic fermentations), the inherent properties of the raw materials and different production and environmental parameters make research on the specificities of apple fermentation beverages worthwhile. This review summarizes current knowledge on the cider microbial ecosystem, associated activities and the influence of process parameters. In addition, available data on cider quality and safety is reviewed. Finally, we focus on the future role of lactic acid bacteria and yeasts in the development of even better or new beverages made from apples.
Collapse
Affiliation(s)
- Fabien J Cousin
- Aliments Bioprocédés Toxicologie Environnements, Normandie Univ., UNICAEN, UNIROUEN, 14000 Caen, France.
| | - Rozenn Le Guellec
- Aliments Bioprocédés Toxicologie Environnements, Normandie Univ., UNICAEN, UNIROUEN, 14000 Caen, France.
| | - Margot Schlusselhuber
- Aliments Bioprocédés Toxicologie Environnements, Normandie Univ., UNICAEN, UNIROUEN, 14000 Caen, France.
| | - Marion Dalmasso
- Aliments Bioprocédés Toxicologie Environnements, Normandie Univ., UNICAEN, UNIROUEN, 14000 Caen, France.
| | - Jean-Marie Laplace
- Aliments Bioprocédés Toxicologie Environnements, Normandie Univ., UNICAEN, UNIROUEN, 14000 Caen, France.
| | - Marina Cretenet
- Aliments Bioprocédés Toxicologie Environnements, Normandie Univ., UNICAEN, UNIROUEN, 14000 Caen, France.
| |
Collapse
|
23
|
Vitorino LC, Bessa LA. Technological Microbiology: Development and Applications. Front Microbiol 2017; 8:827. [PMID: 28539920 PMCID: PMC5423913 DOI: 10.3389/fmicb.2017.00827] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 04/24/2017] [Indexed: 12/22/2022] Open
Abstract
Over thousands of years, modernization could be predicted for the use of microorganisms in the production of foods and beverages. However, the current accelerated pace of new food production is due to the rapid incorporation of biotechnological techniques that allow the rapid identification of new molecules and microorganisms or even the genetic improvement of known species. At no other time in history have microorganisms been so present in areas such as agriculture and medicine, except as recognized villains. Currently, however, beneficial microorganisms such as plant growth promoters and phytopathogen controllers are required by various agricultural crops, and many species are being used as biofactories of important pharmacological molecules. The use of biofactories does not end there: microorganisms have been explored for the synthesis of diverse chemicals, fuel molecules, and industrial polymers, and strains environmentally important due to their biodecomposing or biosorption capacity have gained interest in research laboratories and in industrial activities. We call this new microbiology Technological Microbiology, and we believe that complex techniques, such as heterologous expression and metabolic engineering, can be increasingly incorporated into this applied science, allowing the generation of new and improved products and services.
Collapse
Affiliation(s)
- Luciana C. Vitorino
- Laboratory of Agricultural Microbiology, Goiano Federal InstituteGoiás, Brazil
| | | |
Collapse
|
24
|
Zaets IY, Podolich OV, Reva ON, Kozyrovska NO. DNA metabarcoding of microbial communities for healthcare. ACTA ACUST UNITED AC 2016. [DOI: 10.7124/bc.000906] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- I. Ye. Zaets
- Institute of Molecular Biology and Genetics, NAS of Ukraine
| | - O. V. Podolich
- Institute of Molecular Biology and Genetics, NAS of Ukraine
| | | | | |
Collapse
|
25
|
Upadrasta A, Madempudi RS. Probiotics and blood pressure: current insights. Integr Blood Press Control 2016; 9:33-42. [PMID: 26955291 PMCID: PMC4772943 DOI: 10.2147/ibpc.s73246] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Gut microbiota play a significant role in host metabolic processes, and recent metagenomic surveys have revealed that they are involved in host immune modulation and influence host development and physiology (organ development). Initially, probiotics are identified as potential therapeutics to treat gastrointestinal disorders and to revitalize the disturbed gut ecosystem. Currently, studies are exploring the potential for expanded uses of probiotics for improving the health conditions in metabolic disorders that increase the risk of developing cardiovascular diseases such as hypertension. Further investigations are required to evaluate targeted and effective use of the wide variety of probiotic strains in various metabolic disorders to improve the overall health status of the host. This review addresses the causes of hypertension and the hypotensive effect of probiotics, with a focus on their mechanistic action.
Collapse
Affiliation(s)
- Aditya Upadrasta
- Centre for Research and Development, Unique Biotech Limited, Alexandria Knowledge Park, Shamirpet, Hyderabad, India
| | - Ratna Sudha Madempudi
- Centre for Research and Development, Unique Biotech Limited, Alexandria Knowledge Park, Shamirpet, Hyderabad, India
| |
Collapse
|
26
|
De Prisco A, Mauriello G. Probiotication of foods: A focus on microencapsulation tool. Trends Food Sci Technol 2016. [DOI: 10.1016/j.tifs.2015.11.009] [Citation(s) in RCA: 125] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
27
|
Vijaya Kumar B, Vijayendra SVN, Reddy OVS. Trends in dairy and non-dairy probiotic products - a review. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2015; 52:6112-24. [PMID: 26396359 PMCID: PMC4573104 DOI: 10.1007/s13197-015-1795-2] [Citation(s) in RCA: 181] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 02/18/2015] [Accepted: 03/02/2015] [Indexed: 02/07/2023]
Abstract
Health awareness has grown to a greater extent among consumers and they are looking for healthy probiotic counterparts. Keeping in this view, the present review focuses recent developments in dairy and non-dairy probiotic products. All over the world, dairy probiotics are being commercialized in many different forms. However, the allergy and lactose intolerance are the major set-backs to dairy probiotics. Whereas, flavor and refreshing nature are the major advantages of non-dairy drinks, especially fruit juices. Phenotypic and genotypic similarities between dairy and non-dairy probiotics along with the matrix dependency of cell viability and cell functionality are reviewed. The heterogeneous food matrices of non-dairy food carriers are the major constraints for the survival of the probiotics, while the probiotic strains from non-dairy sources are satisfactory. Technological and functional properties, besides the viability of the probiotics used in fermented products of non-dairy origin are extremely important to get a competitive advantage in the world market. The functional attributes of dairy and non-dairy probiotic products are further enhanced by adding prebiotics such as galacto-oligosaccharide, fructo-oligosaccharide and inulin.
Collapse
Affiliation(s)
- Bathal Vijaya Kumar
- />Department of Biotechnology, Sri Venkateswara University, Tirupati, 517 502 India
| | | | | |
Collapse
|
28
|
Kharina A, Podolich O, Faidiuk I, Zaika S, Haidak A, Kukharenko O, Zaets I, Tovkach F, Reva O, Kremenskoy M, Kozyrovska N. Temperate bacteriophages collected by outer membrane vesicles inKomagataeibacter intermedius. J Basic Microbiol 2015; 55:509-13. [DOI: 10.1002/jobm.201400711] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 12/07/2014] [Indexed: 11/08/2022]
Affiliation(s)
- Alla Kharina
- Institute of Biology of Taras Shevchenko National University of Kyiv; Kyiv Ukraine
| | - Olga Podolich
- Institute of Molecular Biology and Genetics of National Academy of Sciences of Ukraine; Kyiv Ukraine
| | - Iuliia Faidiuk
- Zabolotny Institute of Microbiology and Virology of National Academy of Sciences of Ukraine; Kyiv Ukraine
| | - Sergiy Zaika
- Institute of Biology of Taras Shevchenko National University of Kyiv; Kyiv Ukraine
| | - Andriy Haidak
- Institute of Molecular Biology and Genetics of National Academy of Sciences of Ukraine; Kyiv Ukraine
| | - Olga Kukharenko
- Institute of Molecular Biology and Genetics of National Academy of Sciences of Ukraine; Kyiv Ukraine
| | - Iryna Zaets
- Institute of Molecular Biology and Genetics of National Academy of Sciences of Ukraine; Kyiv Ukraine
| | - Fedor Tovkach
- Zabolotny Institute of Microbiology and Virology of National Academy of Sciences of Ukraine; Kyiv Ukraine
| | - Oleg Reva
- Department of Biochemistry; Bioinformatics and Computational Biology Unit; University of Pretoria; Pretoria South Africa
| | | | - Natalia Kozyrovska
- Institute of Molecular Biology and Genetics of National Academy of Sciences of Ukraine; Kyiv Ukraine
| |
Collapse
|
29
|
Franz CM, Huch M, Mathara JM, Abriouel H, Benomar N, Reid G, Galvez A, Holzapfel WH. African fermented foods and probiotics. Int J Food Microbiol 2014; 190:84-96. [DOI: 10.1016/j.ijfoodmicro.2014.08.033] [Citation(s) in RCA: 141] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 06/25/2014] [Accepted: 08/23/2014] [Indexed: 12/24/2022]
|
30
|
Mugambi MN, Young T, Blaauw R. Application of evidence on probiotics, prebiotics and synbiotics by food industry: a descriptive study. BMC Res Notes 2014; 7:754. [PMID: 25342591 PMCID: PMC4223833 DOI: 10.1186/1756-0500-7-754] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 10/14/2014] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND This study assessed how the food industry applies the knowledge and evidence gained from synbiotics, probiotics or prebiotics research in infants, on the general paediatric population. This study also explored: what happens after the clinical trials using infant formula are completed, data is published or remains unpublished; the effectiveness and type of medium the formula manufacturers use to educate consumers on probiotic, prebiotic or synbiotic infant formula. FINDINGS This was a descriptive study (a survey) that used a structured questionnaire. All listed companies that manufacture and / or market food products with added probiotics, prebiotics or synbiotics for infants were identified and invited to participate. People responsible for research and development were invited to participate in the survey. A letter of invitation was sent to selected participants and if they expressed willingness to take part in the study, a questionnaire with a written consent form was sent. Descriptive statistics and associations between categorical variables were to be tested using a Chi-square test, a p < 0.05 was statistically significant.A total of 25 major infant formulas, baby food manufacturers were identified, invited to participate in the survey. No company was willing to participate in the survey for different reasons: failure to take any action 5 (20%), decision to participate indefinitely delayed 2 (8%), sensitivity of requested information 3 (12%), company does not conduct clinical trials 1 (4%), company declined without further information 4 (16%), erroneous contact information 6 (24%), refusal by receptionists to forward telephone calls to appropriate staff 3 (12%), language barrier 3 (12%), company no longer agrees to market research 1 (4%). CONCLUSION Due to a poor response rate in this study, no conclusion could be drawn on how the food industry applies evidence gained through probiotics, prebiotics or synbiotics research on infants for the benefit of the general paediatric population. More information and greater transparency is needed from the infant formula manufacturers on how they apply the evidence gained from the research on probiotics, prebiotics and synbiotics on infants.
Collapse
Affiliation(s)
- Mary N Mugambi
- />Division of Human Nutrition, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Taryn Young
- />Centre for Evidence-Based Health Care, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Reneé Blaauw
- />Division of Human Nutrition, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
31
|
Corbo MR, Bevilacqua A, Petruzzi L, Casanova FP, Sinigaglia M. Functional Beverages: The Emerging Side of Functional Foods. Compr Rev Food Sci Food Saf 2014. [DOI: 10.1111/1541-4337.12109] [Citation(s) in RCA: 254] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Maria Rosaria Corbo
- Dept. of the Science of Agriculture; Food and Environment; Univ. of Foggia; Via Napoli 25 71122 Foggia Italy
| | - Antonio Bevilacqua
- Dept. of the Science of Agriculture; Food and Environment; Univ. of Foggia; Via Napoli 25 71122 Foggia Italy
| | - Leonardo Petruzzi
- Dept. of the Science of Agriculture; Food and Environment; Univ. of Foggia; Via Napoli 25 71122 Foggia Italy
| | - Francesco Pio Casanova
- Dept. of the Science of Agriculture; Food and Environment; Univ. of Foggia; Via Napoli 25 71122 Foggia Italy
| | - Milena Sinigaglia
- Dept. of the Science of Agriculture; Food and Environment; Univ. of Foggia; Via Napoli 25 71122 Foggia Italy
| |
Collapse
|
32
|
Endo A, Teräsjärvi J, Salminen S. Food matrices and cell conditions influence survival of Lactobacillus rhamnosus GG under heat stresses and during storage. Int J Food Microbiol 2014; 174:110-2. [DOI: 10.1016/j.ijfoodmicro.2014.01.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 11/12/2013] [Accepted: 01/11/2014] [Indexed: 12/01/2022]
|
33
|
Corona-Hernandez RI, Álvarez-Parrilla E, Lizardi-Mendoza J, Islas-Rubio AR, de la Rosa LA, Wall-Medrano A. Structural Stability and Viability of Microencapsulated Probiotic Bacteria: A Review. Compr Rev Food Sci Food Saf 2013; 12:614-628. [DOI: 10.1111/1541-4337.12030] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2013] [Accepted: 05/23/2013] [Indexed: 12/18/2022]
Affiliation(s)
- Rocío I. Corona-Hernandez
- Departamento de Ciencias Químico-Biológicas; Instituto de Ciencias Biomédicas; Universidad Autónoma de Ciudad Juárez. Anillo Envolvente del PRONAF y Estocolmo s/n; Ciudad Juárez 32310; Chihuahua; México
| | - Emilio Álvarez-Parrilla
- Departamento de Ciencias Químico-Biológicas; Instituto de Ciencias Biomédicas; Universidad Autónoma de Ciudad Juárez. Anillo Envolvente del PRONAF y Estocolmo s/n; Ciudad Juárez 32310; Chihuahua; México
| | - Jaime Lizardi-Mendoza
- Coordinación de Tecnología de Alimentos de Origen Animal; Centro de Investigación en Alimentación y Desarrollo, AC. Carretera a la Victoria km. 0.6, AP 1735; Hermosillo 83000; Sonora; México
| | - Alma R. Islas-Rubio
- Coordinación de Tecnología de Alimentos de Origen Vegetal; Centro de Investigación en Alimentación y Desarrollo, AC. Carretera a la Victoria km. 0.6, AP 1735; Hermosillo 83000; Sonora; México
| | - Laura. A. de la Rosa
- Departamento de Ciencias Químico-Biológicas; Instituto de Ciencias Biomédicas; Universidad Autónoma de Ciudad Juárez. Anillo Envolvente del PRONAF y Estocolmo s/n; Ciudad Juárez 32310; Chihuahua; México
| | - Abraham Wall-Medrano
- Departamento de Ciencias Químico-Biológicas; Instituto de Ciencias Biomédicas; Universidad Autónoma de Ciudad Juárez. Anillo Envolvente del PRONAF y Estocolmo s/n; Ciudad Juárez 32310; Chihuahua; México
| |
Collapse
|
34
|
Foligné B, Daniel C, Pot B. Probiotics from research to market: the possibilities, risks and challenges. Curr Opin Microbiol 2013; 16:284-92. [PMID: 23866974 DOI: 10.1016/j.mib.2013.06.008] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Revised: 06/20/2013] [Accepted: 06/25/2013] [Indexed: 12/13/2022]
Abstract
Probiotic foods can affect large parts of the population, while therapeutic applications have a less wide scope. While commercialization routes and regulatory requirements differ for both applications, both will need good scientific support. Today, probiotics are mainly used for gastrointestinal applications, their use can easily be extended to skin, oral and vaginal health. While most probiotics currently belong to food-grade species, the future may offer new functional microorganisms in food and pharma. This review discusses the crosstalk between probiotic producers, regulatory people, medical care and healthcare workers, and the scientific community.
Collapse
Affiliation(s)
- Benoit Foligné
- Institut Pasteur de Lille, Lactic acid Bacteria & Mucosal Immunity, Center for Infection and Immunity of Lille, 1, rue du Pr Calmette, BP 245, F-59019 Lille, France
| | | | | |
Collapse
|