1
|
Hashim NT, Babiker R, Rahman MM, Mohamed R, Priya SP, Chaitanya NCSK, Islam MS, Gobara B. Natural Bioactive Compounds in the Management of Periodontal Diseases: A Comprehensive Review. Molecules 2024; 29:3044. [PMID: 38998994 PMCID: PMC11242977 DOI: 10.3390/molecules29133044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 06/22/2024] [Accepted: 06/23/2024] [Indexed: 07/14/2024] Open
Abstract
Periodontal diseases, chronic inflammatory conditions affecting oral health, are primarily driven by microbial plaque biofilm and the body's inflammatory response, leading to tissue damage and potential tooth loss. These diseases have significant physical, psychological, social, and economic impacts, necessitating effective management strategies that include early diagnosis, comprehensive treatment, and innovative therapeutic approaches. Recent advancements in biomanufacturing have facilitated the development of natural bioactive compounds, such as polyphenols, terpenoids, alkaloids, saponins, and peptides, which exhibit antimicrobial, anti-inflammatory, and tissue regenerative properties. This review explores the biomanufacturing processes-microbial fermentation, plant cell cultures, and enzymatic synthesis-and their roles in producing these bioactive compounds for managing periodontal diseases. The integration of these natural compounds into periodontal therapy offers promising alternatives to traditional treatments, potentially overcoming issues like antibiotic resistance and the disruption of the natural microbiota, thereby improving patient outcomes.
Collapse
Affiliation(s)
- Nada Tawfig Hashim
- RAK-College of Dental Sciences, RAK Medical & Health Sciences University, Ras Al Khaimah P.O. Box 12973, United Arab Emirates; (M.M.R.); (R.M.); (S.P.P.); (N.C.C.); (M.S.I.)
| | - Rasha Babiker
- RAK-College of Medical Sciences, RAK Medical & Health Sciences University, Ras Al Khaimah P.O. Box 11172, United Arab Emirates;
| | - Muhammed Mustahsen Rahman
- RAK-College of Dental Sciences, RAK Medical & Health Sciences University, Ras Al Khaimah P.O. Box 12973, United Arab Emirates; (M.M.R.); (R.M.); (S.P.P.); (N.C.C.); (M.S.I.)
| | - Riham Mohamed
- RAK-College of Dental Sciences, RAK Medical & Health Sciences University, Ras Al Khaimah P.O. Box 12973, United Arab Emirates; (M.M.R.); (R.M.); (S.P.P.); (N.C.C.); (M.S.I.)
| | - Sivan Padma Priya
- RAK-College of Dental Sciences, RAK Medical & Health Sciences University, Ras Al Khaimah P.O. Box 12973, United Arab Emirates; (M.M.R.); (R.M.); (S.P.P.); (N.C.C.); (M.S.I.)
| | - Nallan CSK Chaitanya
- RAK-College of Dental Sciences, RAK Medical & Health Sciences University, Ras Al Khaimah P.O. Box 12973, United Arab Emirates; (M.M.R.); (R.M.); (S.P.P.); (N.C.C.); (M.S.I.)
| | - Md Sofiqul Islam
- RAK-College of Dental Sciences, RAK Medical & Health Sciences University, Ras Al Khaimah P.O. Box 12973, United Arab Emirates; (M.M.R.); (R.M.); (S.P.P.); (N.C.C.); (M.S.I.)
| | - Bakri Gobara
- Faculty of Dentistry, University of Khartoum, Khartoum 11115, Sudan;
| |
Collapse
|
2
|
Simsekli O, Bilinmis I, Celik S, Arık G, Baba AY, Karakucuk A. Advancing biofilm management through nanoformulation strategies: a review of dosage forms and administration routes. J Drug Target 2023; 31:931-949. [PMID: 37831630 DOI: 10.1080/1061186x.2023.2270619] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 10/06/2023] [Indexed: 10/15/2023]
Abstract
Biofilms are complex microbial communities formed by the attachment of bacteria or fungi to surfaces encased in a self-produced polymeric matrix. These biofilms are highly resistant to conventional antimicrobial therapies. The resistance mechanisms exhibited by biofilms include low antibiotic absorption, sluggish replication, adaptive stress response, and the formation of dormant-like phenotypes. The eradication of biofilms requires alternative strategies and approaches. Nanotechnological drug delivery systems allow excellent control over the drug chemistry, surface area, particle size, particle shape, and composition of nanostructures. Nanoformulations can enhance the efficacy of antimicrobial agents by improving their bioavailability, stability, and targeted delivery to the site of infection that helps biofilm eradication more effectively. In addition to nanoformulations, the route of administration and choice of dosage forms play a crucial role in treating biofilm infections. Systemic administration of antibiotics is effective in controlling systemic infection and sepsis associated with biofilms. Alternative routes of administration, such as inhalation, vaginal, ocular, or dermal, have been explored to target biofilm infections in specific organs. This review primarily examines the utilisation of nanoformulations in various administration routes for biofilm management. It also provides an overview of biofilms, current approaches, and the drawbacks associated with conventional methods.
Collapse
Affiliation(s)
- Oyku Simsekli
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Ankara Medipol University, Ankara, Turkey
| | - Irfan Bilinmis
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Ankara Medipol University, Ankara, Turkey
| | - Sumeyye Celik
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Ankara Medipol University, Ankara, Turkey
| | - Gizem Arık
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Ankara Medipol University, Ankara, Turkey
| | - Abdullah Yucel Baba
- Vocational School of Health Sciences, Ankara Medipol University, Ankara, Turkey
| | - Alptug Karakucuk
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Ankara Medipol University, Ankara, Turkey
| |
Collapse
|
3
|
Nie Q, Wan X, Tao H, Yang Q, Zhao X, Liu H, Hu J, Luo Y, Shu T, Geng R, Gu Z, Fan F, Liu Z. Multi-function screening of probiotics to improve oral health and evaluating their efficacy in a rat periodontitis model. Front Cell Infect Microbiol 2023; 13:1261189. [PMID: 38029238 PMCID: PMC10660970 DOI: 10.3389/fcimb.2023.1261189] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/20/2023] [Indexed: 12/01/2023] Open
Abstract
The oral cavity is the second most microbially rich region of the human body, and many studies have shown that there is a strong association between microorganisms and oral health. Some pathogenic bacteria produce biofilms and harmful metabolites in the mouth that may cause oral problems such as oral malodor, periodontitis, and dental caries. Altering the oral microbiota by using probiotics may alleviate oral health problems. Thus, using multi-function screening, we aimed to identify probiotics that can significantly improve oral health. The main parameters were the inhibition of pathogenic bacteria growth, inhibition of biofilm formation, reduction in the production of indole, H2S, and NH3 metabolites that cause halitosis, increase in the production of H2O2 to combat harmful bacteria, and co-aggregation with pathogens to prevent their adhesion and colonization in the oral cavity. Tolerance to cholic acid and choline was also assessed. Bifidobacterium animalis ZK-77, Lactobacillus salivarius ZK-88, and Streptococcus salivarius ZK-102 had antibacterial activity and inhibited biofilm production to prevent caries. They also improved the oral malodor parameter, H2S, NH3, and indole production. The selected probiotics (especially L. salivarius ZK-88) alleviated the inflammation in the oral cavity of rats with periodontitis. The analysis of the gingival crevicular fluid microbiome after probiotic intervention showed that B. animalis ZK-77 likely helped to restore the oral microbiota and maintain the oral microecology. Next, we determined the best prebiotics for each candidate probiotic in order to obtain a formulation with improved effects. We then verified that a probiotics/prebiotic combination (B. animalis ZK-77, L. salivarius ZK-88, and fructooligosaccharides) significantly improved halitosis and teeth color in cats. Using whole-genome sequencing and acute toxicity mouse experiments involving the two probiotics, we found that neither probiotic had virulence genes and they had no significant effects on the growth or development of mice, indicating their safety. Taking the results together, B. animalis ZK-77 and L. salivarius ZK-88 can improve oral health, as verified by in vivo and in vitro experiments. This study provides a reference for clinical research and also provides new evidence for the oral health benefits of probiotics.
Collapse
Affiliation(s)
- Qingqing Nie
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Xuchun Wan
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Hua Tao
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Qianqian Yang
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Xueyang Zhao
- College of Life Sciences, Henan Normal University, Xinxiang, Henan, China
| | - Haixia Liu
- Huayuan Biotechnology Institute, Beijing, China
| | - Jun Hu
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
- Hubei Jiangxia Laboratory, Wuhan, China
| | - Yanan Luo
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Ting Shu
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Ran Geng
- Huayuan Biotechnology Institute, Beijing, China
| | - Zhijing Gu
- Huayuan Biotechnology Institute, Beijing, China
| | - Fengkai Fan
- Hubei Key Laboratory of Purification and Application of Plant Anti-Cancer Ingredients, College of Chemistry and Life Science, Hubei University of Education, Wuhan, China
| | - Zhi Liu
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
4
|
Minervini G, Franco R, Marrapodi MM, Fiorillo L, Badnjević A, Cervino G, Cicciù M. Probiotics in the Treatment of Radiotherapy-Induced Oral Mucositis: Systematic Review with Meta-Analysis. Pharmaceuticals (Basel) 2023; 16:ph16050654. [PMID: 37242437 DOI: 10.3390/ph16050654] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/14/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023] Open
Abstract
The inflammatory injury of the mucous membranes lining the digestive tract, from the mouth to the anus, is called mucositis. One of the intriguing and compelling new therapeutic modalities that has emerged in recent decades due to advances in our understanding of this condition's pathophysiology is probiotics. The purpose of this meta-analysis is to evaluate the efficiency of probiotics in the treatment of chemotherapy-induced mucositis for head and neck malignancies; a literature search was performed on PubMed, Lilacs, and Web of Science, and articles published from 2000 to 31 January 2023 were considered, according to the keywords entered. The term "Probiotics" was combined with "oral mucositis" using the Boolean connector AND; at the end of the research, 189 studies were identified from the search on the three engines. Only three were used to draw up the present systematic study and metanalysis; this meta-analysis showed that the treatment of mucositis with probiotics is an effective method, and the analysis of the results of these studies showed that the use of probiotics promoted a decrease in the severity of mucositis symptoms.
Collapse
Affiliation(s)
- Giuseppe Minervini
- Multidisciplinary Department of Medical-Surgical and Odontostomatological Specialties, University of Campania "Luigi Vanvitelli", 80121 Naples, Italy
| | - Rocco Franco
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", 00100 Rome, Italy
| | - Maria Maddalena Marrapodi
- Department of Woman, Child and General and Specialist Surgery, University of Campania "Luigi Vanvitelli", 80121 Naples, Italy
| | - Luca Fiorillo
- School of Dentistry, Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, via Consolare Valeria, 1, 98125 Messina, Italy
| | - Almir Badnjević
- Verlab Research Institute for Biomedical Engineering, Medical Devices and Artificial Intelligence, 71000 Sarajevo, Bosnia and Herzegovina
| | - Gabriele Cervino
- School of Dentistry, Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, via Consolare Valeria, 1, 98125 Messina, Italy
| | - Marco Cicciù
- Department of Biomedical and Surgical and Biomedical Sciences, Catania University, 95123 Catania, Italy
| |
Collapse
|
5
|
Huang N, Li J, Qiao X, Wu Y, Liu Y, Wu C, Li L. Efficacy of probiotics in the management of halitosis: a systematic review and meta-analysis. BMJ Open 2022; 12:e060753. [PMID: 36600415 PMCID: PMC9809225 DOI: 10.1136/bmjopen-2022-060753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Halitosis is defined as a foul odour emitted from the oral cavity. Many interventions have been used to control halitosis from mouthwashes to chewing gums. Probiotics have been reported as an alternative method to alleviate halitosis. OBJECTIVE The present study aimed to investigate the effect of probiotics on halitosis from a time perspective. DESIGN AND METHODS This is a meta-analysis study performed in indexed databases up to February 2021. Randomised controlled trials that compared the effects of probiotics and placebo on primary outcomes (organoleptic (OLP) scores and volatile sulfur compound (VSC) levels) and secondary outcomes (tongue coating scores (TCS) and plaque index (PI)) were included. Data extraction and quality assessment were conducted independently by two reviewers. Publication bias and leave-one-out analyses were performed. RESULTS The standardised mean difference (SMD) and 95% CI were calculated to synthesise data. The data were subgrouped and analysed in the short term (≤4 weeks) and long term (>4 weeks) based on the follow-up time. Seven articles were included in this meta-analysis. The primary outcomes, OLP scores (SMD=-0.58; 95% CI -0.87 to -0.30, p<0.0001) and VSC levels (SMD=-0.26; 95% CI -0.51 to -0.01, p=0.04), both decreased significantly in the probiotics group compared with the placebo group in the short term. However, a significant reduction was observed only in OLP scores (SMD=-0.45; 95% CI -0.85 to -0.04, p=0.03) in the long term. No significant differences were observed in secondary outcomes. There was no evidence of publication bias. The leave-one-out analysis confirmed that the pooled estimate was stable. CONCLUSIONS According to the results of this work, it seems that probiotics (eg, Lactobacillus salivarius, Lactobacillus reuteri, Streptococcus salivarius and Weissella cibaria) may relieve halitosis in the short term (≤4 weeks). The results of the biased assessment, limited data and heterogeneity of the clinical trials included might reduce the reliability of the conclusions.
Collapse
Affiliation(s)
- Nengwen Huang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jinjin Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xianghe Qiao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yongzhi Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yunkun Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Chenzhou Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Longjiang Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
6
|
Dou W, Abdalla HB, Chen X, Sun C, Chen X, Tian Q, Wang J, Zhou W, Chi W, Zhou X, Ye H, Bi C, Tian X, Yang Y, Wong A. ProbResist: a database for drug-resistant probiotic bacteria. Database (Oxford) 2022; 2022:6665407. [PMID: 35962763 PMCID: PMC9375527 DOI: 10.1093/database/baac064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 07/04/2022] [Accepted: 08/06/2022] [Indexed: 11/13/2022]
Abstract
Drug resistance remains a global threat, and the rising trend of consuming probiotic-containing foods, many of which harbor antibiotic resistant determinants, has raised serious health concerns. Currently, the lack of accessibility to location-, drug- and species-specific information of drug-resistant probiotics has hampered efforts to combat the global spread of drug resistance. Here, we describe the development of ProbResist, which is a manually curated online database that catalogs reports of probiotic bacteria that have been experimentally proven to be resistant to antibiotics. ProbResist allows users to search for information of drug resistance in probiotics by querying with the names of the bacteria, antibiotic or location. Retrieved results are presented in a downloadable table format containing the names of the antibiotic, probiotic species, resistant determinants, region where the study was conducted and digital article identifiers (PubMed Identifier and Digital Object Identifier) hyperlinked to the original sources. The webserver also presents a simple analysis of information stored in the database. Given the increasing reports of drug-resistant probiotics, an exclusive database is necessary to catalog them in one platform. It will enable medical practitioners and experts involved in policy making to access this information quickly and conveniently, thus contributing toward the broader goal of combating drug resistance.
Collapse
Affiliation(s)
- Wanying Dou
- Department of Computer Science, College of Science and Technology, Wenzhou-Kean University , 88 Daxue Road, Ouhai, Wenzhou, Zhejiang 325060, China
| | - Hemn Barzan Abdalla
- Department of Computer Science, College of Science and Technology, Wenzhou-Kean University , 88 Daxue Road, Ouhai, Wenzhou, Zhejiang 325060, China
| | - Xu Chen
- Department of Computer Science, College of Science and Technology, Wenzhou-Kean University , 88 Daxue Road, Ouhai, Wenzhou, Zhejiang 325060, China
| | - Changyi Sun
- Department of Biology, College of Science and Technology, Wenzhou-Kean University , 88 Daxue Road, Ouhai, Wenzhou, Zhejiang 325060, China
| | - Xuefei Chen
- Department of Biology, College of Science and Technology, Wenzhou-Kean University , 88 Daxue Road, Ouhai, Wenzhou, Zhejiang 325060, China
| | - Qiwen Tian
- Department of Biology, College of Science and Technology, Wenzhou-Kean University , 88 Daxue Road, Ouhai, Wenzhou, Zhejiang 325060, China
| | - Junyi Wang
- Department of Biology, College of Science and Technology, Wenzhou-Kean University , 88 Daxue Road, Ouhai, Wenzhou, Zhejiang 325060, China
| | - Wei Zhou
- Department of Biology, College of Science and Technology, Wenzhou-Kean University , 88 Daxue Road, Ouhai, Wenzhou, Zhejiang 325060, China
| | - Wei Chi
- Department of Biology, College of Science and Technology, Wenzhou-Kean University , 88 Daxue Road, Ouhai, Wenzhou, Zhejiang 325060, China
| | - Xuan Zhou
- Department of Biology, College of Science and Technology, Wenzhou-Kean University , 88 Daxue Road, Ouhai, Wenzhou, Zhejiang 325060, China
| | - Hailv Ye
- Department of Biology, College of Science and Technology, Wenzhou-Kean University , 88 Daxue Road, Ouhai, Wenzhou, Zhejiang 325060, China
| | - Chuyun Bi
- Department of Biology, College of Science and Technology, Wenzhou-Kean University , 88 Daxue Road, Ouhai, Wenzhou, Zhejiang 325060, China
- Wenzhou Municipal Key Lab for Applied Biomedical and Biopharmaceutical Informatics , Ouhai, Wenzhou, Zhejiang 325060, China
- Zhejiang Bioinformatics International Science and Technology Cooperation Center , Ouhai, Wenzhou, Zhejiang 325060, China
| | - Xuechen Tian
- Wenzhou Municipal Key Lab for Applied Biomedical and Biopharmaceutical Informatics , Ouhai, Wenzhou, Zhejiang 325060, China
- Zhejiang Bioinformatics International Science and Technology Cooperation Center , Ouhai, Wenzhou, Zhejiang 325060, China
| | - Yixin Yang
- Wenzhou Municipal Key Lab for Applied Biomedical and Biopharmaceutical Informatics , Ouhai, Wenzhou, Zhejiang 325060, China
- Zhejiang Bioinformatics International Science and Technology Cooperation Center , Ouhai, Wenzhou, Zhejiang 325060, China
| | - Aloysius Wong
- Department of Biology, College of Science and Technology, Wenzhou-Kean University , 88 Daxue Road, Ouhai, Wenzhou, Zhejiang 325060, China
- Wenzhou Municipal Key Lab for Applied Biomedical and Biopharmaceutical Informatics , Ouhai, Wenzhou, Zhejiang 325060, China
- Zhejiang Bioinformatics International Science and Technology Cooperation Center , Ouhai, Wenzhou, Zhejiang 325060, China
- Department of Computer Science, College of Science and Technology, Wenzhou-Kean University , 88 Daxue Road, Ouhai, Wenzhou, Zhejiang 325060, China
| |
Collapse
|
7
|
Skowron K, Budzyńska A, Grudlewska-Buda K, Wiktorczyk-Kapischke N, Andrzejewska M, Wałecka-Zacharska E, Gospodarek-Komkowska E. Two Faces of Fermented Foods-The Benefits and Threats of Its Consumption. Front Microbiol 2022; 13:845166. [PMID: 35330774 PMCID: PMC8940296 DOI: 10.3389/fmicb.2022.845166] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 02/15/2022] [Indexed: 12/17/2022] Open
Abstract
In underdeveloped and developing countries, due to poverty, fermentation is one of the most widely used preservation methods. It not only allows extending the shelf life of food, but also brings other benefits, including inhibiting the growth of pathogenic microorganisms, improving the organoleptic properties and product digestibility, and can be a valuable source of functional microorganisms. Today, there is a great interest in functional strains, which, in addition to typical probiotic strains, can participate in the treatment of numerous diseases, disorders of the digestive system, but also mental diseases, or stimulate our immune system. Hence, fermented foods and beverages are not only a part of the traditional diet, e.g., in Africa but also play a role in the nutrition of people around the world. The fermentation process for some products occurs spontaneously, without the use of well-defined starter cultures, under poorly controlled or uncontrolled conditions. Therefore, while this affordable technology has many advantages, it can also pose a potential health risk. The use of poor-quality ingredients, inadequate hygiene conditions in the manufacturing processes, the lack of standards for safety and hygiene controls lead to the failure food safety systems implementation, especially in low- and middle-income countries or for small-scale products (at household level, in villages and scale cottage industries). This can result in the presence of pathogenic microorganisms or their toxins in the food contributing to cases of illness or even outbreaks. Also, improper processing and storage, as by well as the conditions of sale affect the food safety. Foodborne diseases through the consumption of traditional fermented foods are not reported frequently, but this may be related, among other things, to a low percentage of people entering healthcare care or weaknesses in foodborne disease surveillance systems. In many parts of the world, especially in Africa and Asia, pathogens such as enterotoxigenic and enterohemorrhagic Escherichia coli, Shigella spp., Salmonella spp., enterotoxigenic Staphylococcus aureus, Listeria monocytogenes, and Bacillus cereus have been detected in fermented foods. Therefore, this review, in addition to the positive aspects, presents the potential risk associated with the consumption of this type of products.
Collapse
Affiliation(s)
- Krzysztof Skowron
- Department of Microbiology, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Bydgoszcz, Poland
| | - Anna Budzyńska
- Department of Microbiology, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Bydgoszcz, Poland
| | - Katarzyna Grudlewska-Buda
- Department of Microbiology, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Bydgoszcz, Poland
| | - Natalia Wiktorczyk-Kapischke
- Department of Microbiology, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Bydgoszcz, Poland
| | - Małgorzata Andrzejewska
- Department of Hygiene, Epidemiology, Ergonomy and Postgraduate Education, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Bydgoszcz, Poland
| | - Ewa Wałecka-Zacharska
- Department of Food Hygiene and Consumer Health, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Eugenia Gospodarek-Komkowska
- Department of Microbiology, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Bydgoszcz, Poland
| |
Collapse
|
8
|
Li Y, Jia D, Wang J, Li H, Yin X, Liu J, Wang J, Guan G, Luo J, Yin H, Xiao S, Li Y. Probiotics Isolated From Animals in Northwest China Improve the Intestinal Performance of Mice. Front Vet Sci 2021; 8:750895. [PMID: 34646877 PMCID: PMC8503272 DOI: 10.3389/fvets.2021.750895] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 08/24/2021] [Indexed: 12/20/2022] Open
Abstract
Antibiotic resistance is an increasingly prevalent problem worldwide. Probiotics are live microorganisms that provide health benefits to human beings and animals and also antimicrobial activity against pathogens and might be an antibiotic alternative. The gastrointestinal tract of animals can be a suitable source of finding novel antimicrobial agents, where the vast majority of gut microbes inhabit and a plurality of antimicrobial producers exhibit either a wide or narrow spectrum. Animals that live in Northwest China might possess a special commensal community in the gut. Therefore, the purpose of this study was to assess the effects of three probiotic strains (including Lactobacillus salivarius ZLP-4b from swine, Lactobacillus plantarum FBL-3a from beef cattle, and Bacillus velezensis JT3-1 from yak), which were isolated from livestock in this area, on the overall growth performance, immune function, and gut microbiota of mice. The results showed that the L. salivarius ZLP-4b group not only improved the growth performance but also amended the intestinal mucosa morphology of mice. Furthermore, the supplementation of L. plantarum FBL-3a and L. salivarius ZLP-4b strains significantly increased the content of anti-inflammatory cytokines IL-4 and IL-10 but decreased the pro-inflammatory factor IL-17A. The levels of pro-inflammatory factors IL-6, IL-17A, and TNF-α were also decreased by the B. velezensis JT3-1 group pretreatment. The 16S rDNA sequence results showed that the probiotic administration could increase the proportion of Firmicutes/Bacteroidetes intestinal microbes in mice. Furthermore, the relative abundance of Lactobacillus was boosted in the JT3-1- and ZLP-4b-treated groups, and that of opportunistic pathogens (including Proteobacteria and Spirochaetes) was diminished in all treated groups compared with the control group. In conclusion, B. velezensis JT3-1 and L. salivarius ZLP-4b supplementation enhanced the overall performance, intestinal epithelial mucosal integrity, and immune-related cytokines and regulated the intestinal microbiota in mice.
Collapse
Affiliation(s)
- Yingying Li
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.,College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| | - Dan Jia
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Jiahui Wang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Hehai Li
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xijuan Yin
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Junlong Liu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Jinming Wang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Guiquan Guan
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Jianxun Luo
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Hong Yin
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Sa Xiao
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| | - Youquan Li
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| |
Collapse
|
9
|
Ng E, Tay JRH, Ong MMA, Bostanci N, Belibasakis GN, Seneviratne CJ. Probiotic therapy for periodontal and peri-implant health - silver bullet or sham? Benef Microbes 2021; 12:215-230. [PMID: 34057054 DOI: 10.3920/bm2020.0182] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Probiotics are thought to be beneficial microbes that influence health-related outcomes through host immunomodulation and modulation of the bacteriome. Its reported success in the treatment of gastrointestinal disorders has led to further research on its potential applicability within the dental field due to similarities such as a polymicrobial aetiology and disease associated microbial-shifts. Although the literature is replete with studies demonstrating its efficacy, the use of probiotics in dentistry continues to polarise opinion. Here, we explore the evidence for probiotics and its effect on periodontal and peri-implant health. MEDLINE, EMBASE, and CENTRAL were systemically searched from June 2010 to June 2020 based on a formulated search strategy. Of 1,956 potentially relevant articles, we selected 27 double-blinded randomised clinical trials in the areas of gingivitis, periodontitis, residual pockets during supportive periodontal therapy, and peri-implant diseases, and reviewed their efficacy in these clinical situations. We observed substantial variation in treatment results and protocols between studies. Overall, the evidence for probiotic therapy for periodontal and peri-implant health appears unconvincing. The scarcity of trials with adequate power and follow-up precludes any meaningful clinical recommendations. Thus, the routine use of probiotics for these purposes are currently unsubstantiated. Further multi-centre trials encompassing a standardised investigation on the most promising strains and administration methods, with longer observation times are required to confirm the benefits of probiotic therapy for these applications.
Collapse
Affiliation(s)
- E Ng
- Department of Restorative Dentistry, National Dental Centre Singapore, 5 Second Hospital Ave, 168938, Singapore
| | - J R H Tay
- Department of Restorative Dentistry, National Dental Centre Singapore, 5 Second Hospital Ave, 168938, Singapore
| | - M M A Ong
- Department of Restorative Dentistry, National Dental Centre Singapore, 5 Second Hospital Ave, 168938, Singapore.,Oral Health Academic Clinical Programme, Duke-NUS Medical School, 8 College Road, 169857, Singapore
| | - N Bostanci
- Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, P.O. Box 4064, 14104 Huddinge, Sweden
| | - G N Belibasakis
- Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, P.O. Box 4064, 14104 Huddinge, Sweden
| | - C J Seneviratne
- Oral Health Academic Clinical Programme, Duke-NUS Medical School, 8 College Road, 169857, Singapore.,Singapore Oral Microbiomics Initiative, National Dental Research Institute Singapore, National Dental Centre Singapore, Second Hospital Ave, 168938, Singapore
| |
Collapse
|
10
|
Dos Santos AN, de L Nascimento TR, Gondim BLC, Velo MMAC, de A Rêgo RI, do C Neto JR, Machado JR, da Silva MV, de Araújo HWC, Fonseca MG, Castellano LRC. Catechins as Model Bioactive Compounds for Biomedical Applications. Curr Pharm Des 2021; 26:4032-4047. [PMID: 32493187 DOI: 10.2174/1381612826666200603124418] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 03/12/2020] [Indexed: 12/28/2022]
Abstract
Research regarding polyphenols has gained prominence over the years because of their potential as pharmacological nutrients. Most polyphenols are flavanols, commonly known as catechins, which are present in high amounts in green tea. Catechins are promising candidates in the field of biomedicine. The health benefits of catechins, notably their antioxidant effects, are related to their chemical structure and the total number of hydroxyl groups. In addition, catechins possess strong activities against several pathogens, including bacteria, viruses, parasites, and fungi. One major limitation of these compounds is low bioavailability. Catechins are poorly absorbed by intestinal barriers. Some protective mechanisms may be required to maintain or even increase the stability and bioavailability of these molecules within living organisms. Moreover, novel delivery systems, such as scaffolds, fibers, sponges, and capsules, have been proposed. This review focuses on the unique structures and bioactive properties of catechins and their role in inflammatory responses as well as provides a perspective on their use in future human health applications.
Collapse
Affiliation(s)
- Adriana N Dos Santos
- Human Immunology Research and Education Group (GEPIH), Technical School of Health, Federal University of Paraiba, Joao Pessoa, PB, Brazil
| | - Tatiana R de L Nascimento
- Human Immunology Research and Education Group (GEPIH), Technical School of Health, Federal University of Paraiba, Joao Pessoa, PB, Brazil
| | - Brenna L C Gondim
- Post-Graduation Program in Dentistry, Department of Dentistry, State University of Paraiba, Campina Grande, PB, Brazil
| | - Marilia M A C Velo
- Department of Operative Dentistry, Endodontics and Dental Materials, Bauru School of Dentistry, University of São Paulo, SP, Brazil
| | - Renaly I de A Rêgo
- Post-Graduation Program in Pharmaceutical Sciences, Department of Pharmaceutical Sciences, State University of Paraiba, Campina Grande, PB, Brazil
| | - José R do C Neto
- Post-Graduation Program in Tropical Medicine and Public Health, Institute of Tropical Pathology and Public Health, Federal University of Goias, Goiania, GO, Brazil
| | - Juliana R Machado
- Post-Graduation Program in Tropical Medicine and Public Health, Institute of Tropical Pathology and Public Health, Federal University of Goias, Goiania, GO, Brazil
| | - Marcos V da Silva
- Department of Microbiology, Immunology and Parasitology, Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Helvia W C de Araújo
- Department of Chemistry, State University of Paraíba, Campina Grande, PB, Brazil
| | - Maria G Fonseca
- Research Center for Fuels and Materials (NPE - LACOM), Department of Chemistry, Federal University of Paraiba, Joao Pessoa, PB, Brazil
| | - Lúcio R C Castellano
- Human Immunology Research and Education Group (GEPIH), Technical School of Health, Federal University of Paraiba, Joao Pessoa, PB, Brazil
| |
Collapse
|
11
|
Voidarou C, Antoniadou M, Rozos G, Tzora A, Skoufos I, Varzakas T, Lagiou A, Bezirtzoglou E. Fermentative Foods: Microbiology, Biochemistry, Potential Human Health Benefits and Public Health Issues. Foods 2020; 10:E69. [PMID: 33396397 PMCID: PMC7823516 DOI: 10.3390/foods10010069] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 12/26/2020] [Accepted: 12/27/2020] [Indexed: 02/06/2023] Open
Abstract
Fermented foods identify cultures and civilizations. History, climate and the particulars of local production of raw materials have urged humanity to exploit various pathways of fermentation to produce a wide variety of traditional edible products which represent adaptations to specific conditions. Nowadays, industrial-scale production has flooded the markets with ferments. According to recent estimates, the current size of the global market of fermented foods is in the vicinity of USD 30 billion, with increasing trends. Modern challenges include tailor-made fermented foods for people with special dietary needs, such as patients suffering from Crohn's disease or other ailments. Another major challenge concerns the safety of artisan fermented products, an issue that could be tackled with the aid of molecular biology and concerns not only the presence of pathogens but also the foodborne microbial resistance. The basis of all these is, of course, the microbiome, an aggregation of different species of bacteria and yeasts that thrives on the carbohydrates of the raw materials. In this review, the microbiology of fermented foods is discussed with a special reference to groups of products and to specific products indicative of the diversity that a fermentation process can take. Their impact is also discussed with emphasis on health and oral health status. From Hippocrates until modern approaches to disease therapy, diet was thought to be of the most important factors for health stability of the human natural microbiome. After all, to quote Pasteur, "Gentlemen, the microbes will have the last word for human health." In that sense, it is the microbiomes of fermented foods that will acquire a leading role in future nutrition and therapeutics.
Collapse
Affiliation(s)
- Chrysa Voidarou
- Laboratory of Animal Health, Food Hygiene and Quality, Department of Agriculture, School of Agriculture, University of Ioannina, 47132 Arta, Greece; (C.V.); (A.T.); (I.S.)
| | - Maria Antoniadou
- School of Dentistry, National and Kapodistrian University of Athens, 11521 Athens, Greece;
| | - Georgios Rozos
- Laboratory of Microbiology, Biotechnology & Hygiene, Department of Agricultural Development, Democritus University of Thrace, 68200 Orestiada, Greece;
| | - Athina Tzora
- Laboratory of Animal Health, Food Hygiene and Quality, Department of Agriculture, School of Agriculture, University of Ioannina, 47132 Arta, Greece; (C.V.); (A.T.); (I.S.)
| | - Ioannis Skoufos
- Laboratory of Animal Health, Food Hygiene and Quality, Department of Agriculture, School of Agriculture, University of Ioannina, 47132 Arta, Greece; (C.V.); (A.T.); (I.S.)
| | - Theodoros Varzakas
- Department of Food Science and Technology, University of the Peloponnese, 24100 Kalamata, Greece
| | - Areti Lagiou
- Department of Public and Community Health, University of West Attika, 11521 Athens, Greece;
| | - Eugenia Bezirtzoglou
- Laboratory of Hygiene and Environmental Protection, Medical School, Democritus University of Thrace, 68100 Alexandroupolis, Greece;
| |
Collapse
|
12
|
Hodjat M, Khan F, Saadat KA. Epigenetic alterations in aging tooth and the reprogramming potential. Ageing Res Rev 2020; 63:101140. [PMID: 32795505 DOI: 10.1016/j.arr.2020.101140] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 07/27/2020] [Accepted: 08/04/2020] [Indexed: 02/07/2023]
Abstract
Tooth compartments and associated supportive tissues exhibit significant alterations during aging, leading to their impaired functioning. Aging not only affects the structure and function of dental tissue but also reduces its capacity to maintain physiological homeostasis and the healing process. Decreased cementocyte viability; diminished regenerative potential of stem cells residing in the pulp, alveolar bone and periodontal ligament; and impaired osteogenic and odontogenic differentiation capacity of progenitor cells are among the cellular impacts associated with oral aging. Various physiological and pathological phenomena are regulated by the epigenome, and hence, changes in epigenetic markers due to external stimuli have been reported in aging oral tissues and are considered a possible molecular mechanism underlying dental aging. The role of nutri-epigenetics in aging has emerged as an attractive research area. Thus far, various nutrients and bioactive compounds have been identified to have a modulatory effect on the epigenetic machinery, showing a promising response in dental aging. The human microbiota is another key player in aging and can be a target for anti-aging interventions in dental tissue. Considering the reversible characteristics of epigenetic markers and the potential for environmental factors to manipulate the epigenome, to minimize the deteriorative effects of aging, it is important to evaluate the linkage between external stimuli and their effects in terms of age-related epigenetic modifications.
Collapse
|
13
|
Effects of Lactobacillus salivarius WB21 combined with green tea catechins on dental caries, periodontitis, and oral malodor. Arch Oral Biol 2019; 98:243-247. [DOI: 10.1016/j.archoralbio.2018.11.027] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 11/27/2018] [Accepted: 11/27/2018] [Indexed: 01/16/2023]
|
14
|
Georgiou AC, Laine ML, Deng DM, Brandt BW, van Loveren C, Dereka X. Efficacy of probiotics: clinical and microbial parameters of halitosis. J Breath Res 2018; 12:046010. [PMID: 29947332 DOI: 10.1088/1752-7163/aacf49] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
BACKGROUND & AIM Halitosis is defined as an offensive breath odour of whatever source and therefore may affect a person's social interactions. Intra-oral halitosis is a result of bacterial activity. Therefore, probiotics may offer an appropriate and biological solution as a part of the therapy of intra-oral halitosis. The aim of this systematic review was to study the effect of the administration of probiotics alone or as an adjunct to other treatments on the level of halitosis as measured by volatile sulphur compound (VSC) levels, organoleptic scores (ORG) or hydrogen sulphide, methyl mercaptan and dimethyl sulphide levels. In addition, the effect of probiotic usage on oral microbial composition was summarised. METHODS The MEDLINE-PubMed and Embase databases were searched up to September 2017 with language restricted to English. Eligible papers were selected according to pre-set criteria; the data was extracted and analysed descriptively. RESULTS The search resulted in 1104 original research articles and a final six were selected as being eligible including 129 subjects. These studies used different detection methods and combinations thereof to measure halitosis. Five studies were randomised placebo-controlled clinical trials of which two studies reported a significant reduction in ORG between probiotic and placebo groups, and two studies on the basis of total VSC levels. The two studies reporting a significant improvement in ORG did not find an improvement in total VSC levels. Three studies included a microbiological assessment. In these three studies, the probiotic strain was detected at the end of the treatment period, but no detailed data was reported on the abundance of the strain before and after the treatment period. CONCLUSIONS Probiotics may be beneficial in treating intra-oral halitosis. However, due to limited data and the heterogeneity of the studies, the efficacy of probiotics remains unclear. Studies with more subjects and standardised protocols need to be designed.
Collapse
Affiliation(s)
- Athina C Georgiou
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
15
|
Alanzi A, Honkala S, Honkala E, Varghese A, Tolvanen M, Söderling E. Effect of Lactobacillus rhamnosus and Bifidobacterium lactis on gingival health, dental plaque, and periodontopathogens in adolescents: a randomised placebo-controlled clinical trial. Benef Microbes 2018; 9:593-602. [PMID: 29633646 DOI: 10.3920/bm2017.0139] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
To determine the effect of a probiotic combination of Lactobacillus rhamnosus GG (LGG) and Bifidobacterium lactis BB-12 on the gingival health, dental plaque accumulation, and the oral carriage of four putative periodontal pathogens in healthy adolescents. 108 schoolboys, aged 13-15 years, participated in this study. They were divided into two groups: probiotics (n=54) and placebo (n=54). Both groups received two probiotic-laced or placebo lozenges twice a day during a four-week period. Plaque Index (PI) and Gingival Index (GI) were recorded at baseline and after four weeks. Salivary and plaque carriage of Aggregatibacter actinomycetemcomitans, Porphyromonas gingivalis, Prevotella intermedia, Fusobacterium nucleatum were also monitored likewise. 101 subjects completed the study. A statistically significant reduction in GI was seen in the probiotic group as compared to the placebo group (P=0.012). A reduction in PI was found for both groups, with no difference observed between the groups after intervention (P=0.819). Probiotic lozenges significantly reduced levels of A. actinomycetemcomitans and F. nucleatum in saliva and plaque (P<0.05) and levels of P. gingivalis in plaque (P<0.05), while no significant changes were found in the control group. A significant reduction (P<0.001) was also noted in the total salivary bacterial counts of the test group. The short-term daily consumption of LGG and BB-12 probiotic lozenges improved the gingival health in adolescents and decreased the microbial counts of A. actinomycetemcomitans, and P. gingivalis. Hence probiotic supplements may serve as a simple adjunct to standard oral care for promoting the oral health in adolescents.
Collapse
Affiliation(s)
- A Alanzi
- 1 Department of Developmental and Preventive Sciences, Faculty of Dentistry, Kuwait University, P.O. Box 24923, Safat 13110, Jabriyah, Kuwait
| | - S Honkala
- 2 Institute of Clinical Dentistry, UiT The Arctic University of Norway, 9037 Tromsø, Norway
| | - E Honkala
- 2 Institute of Clinical Dentistry, UiT The Arctic University of Norway, 9037 Tromsø, Norway
| | - A Varghese
- 1 Department of Developmental and Preventive Sciences, Faculty of Dentistry, Kuwait University, P.O. Box 24923, Safat 13110, Jabriyah, Kuwait
| | - M Tolvanen
- 3 Institute of Dentistry, University of Turku, 20014 Turku, Finland
| | - E Söderling
- 3 Institute of Dentistry, University of Turku, 20014 Turku, Finland
| |
Collapse
|
16
|
O'Brien S, Fothergill JL. The role of multispecies social interactions in shaping Pseudomonas aeruginosa pathogenicity in the cystic fibrosis lung. FEMS Microbiol Lett 2018; 364:3958795. [PMID: 28859314 PMCID: PMC5812498 DOI: 10.1093/femsle/fnx128] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 07/11/2017] [Indexed: 02/07/2023] Open
Abstract
Pseudomonas aeruginosa is a major pathogen in the lungs of cystic fibrosis (CF) patients. However, it is now recognised that a diverse microbial community exists in the airways comprising aerobic and anaerobic bacteria as well as fungi and viruses. This rich soup of microorganisms provides ample opportunity for interspecies interactions, particularly when considering secreted compounds. Here, we discuss how P. aeruginosa-secreted products can have community-wide effects, with the potential to ultimately shape microbial community dynamics within the lung. We focus on three well-studied traits associated with worsening clinical outcome in CF: phenazines, siderophores and biofilm formation, and discuss how secretions can shape interactions between P. aeruginosa and other commonly encountered members of the lung microbiome: Staphylococcus aureus, the Burkholderia cepacia complex, Candida albicans and Aspergillus fumigatus. These interactions may shape the evolutionary trajectory of P. aeruginosa while providing new opportunities for therapeutic exploitation of the CF lung microbiome.
Collapse
Affiliation(s)
- Siobhán O'Brien
- Center for Adaptation to a Changing Environment (ACE), ETH Zürich, 8092 Zürich, Switzerland.,Department of Biology, University of York, Wentworth Way, York YO10 5DD, UK
| | - Joanne L Fothergill
- Institute of Infection and Global Health, University of Liverpool, 8 West Derby Street, Liverpool L69 7B3, UK
| |
Collapse
|
17
|
Mahasneh SA, Mahasneh AM. Probiotics: A Promising Role in Dental Health. Dent J (Basel) 2017; 5:E26. [PMID: 29563432 PMCID: PMC5806962 DOI: 10.3390/dj5040026] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 08/21/2017] [Accepted: 08/24/2017] [Indexed: 12/15/2022] Open
Abstract
Probiotics have a role in maintaining oral health through interaction with oral microbiome, thus contributing to healthy microbial equilibrium. The nature and composition of any individual microbiome impacts the general health, being a major contributor to oral health. The emergence of drug resistance and the side effects of available antimicrobials have restricted their use in an array of prophylactic options. Indeed, some new strategies to prevent oral diseases are based on manipulating oral microbiota, which is provided by probiotics. Currently, no sufficient substantial evidence exists to support the use of probiotics to prevent, treat or manage oral cavity diseases. At present, probiotic use did not cause adverse effects or increased risks of caries or periodontal diseases. This implicates no strong evidence against treatment using probiotics. In this review, we try to explore the use of probiotics in prevention, treatment and management of some oral cavity diseases and the possibilities of developing designer probiotics for the next generation of oral and throat complimentary healthcare.
Collapse
Affiliation(s)
- Sari A Mahasneh
- School of Dental Medicine, The University of Manchester, Manchester, M13 9PL, UK.
| | - Adel M Mahasneh
- Department of Biological Sciences, The University of Jordan, Amman 11942, Jordan.
| |
Collapse
|
18
|
Fernandez-Gutierrez MM, Roosjen PPJ, Ultee E, Agelink M, Vervoort JJM, Keijser B, Wells JM, Kleerebezem M. Streptococcus salivarius MS-oral-D6 promotes gingival re-epithelialization in vitro through a secreted serine protease. Sci Rep 2017; 7:11100. [PMID: 28894194 PMCID: PMC5593969 DOI: 10.1038/s41598-017-11446-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 08/23/2017] [Indexed: 12/24/2022] Open
Abstract
Gingival re-epithelialization represents an essential phase of oral wound healing in which epithelial integrity is re-establish. We developed an automated high-throughput re-epithelialization kinetic model, using the gingival epithelial cell line Ca9–22. The model was employed to screen 39 lactic acid bacteria, predominantly including oral isolates, for their capacity to accelerate gingival re-epithelialization. This screen identified several strains of Streptococcus salivarius that stimulated re-epithelialization. Further analysis revealed that S. salivarius strain MS-oral-D6 significantly promoted re-epithelialization through a secreted proteinaceous compound and subsequent experiments identified a secreted serine protease as the most likely candidate to be involved in re-epithelialization stimulation. The identification of bacteria or their products that stimulate gingival wound repair may inspire novel strategies for the maintenance of oral health.
Collapse
Affiliation(s)
- Marcela M Fernandez-Gutierrez
- TI Food and Nutrition, Nieuwe Kanaal 9-A, 6709 PA, Wageningen, The Netherlands.,Host-Microbe Interactomics Group, Department of Animal Sciences, Wageningen University & Research, De Elst 1, 6708 WD, Wageningen, The Netherlands
| | - Peter P J Roosjen
- Laboratory of Geo-Information Science and Remote Sensing, Wageningen University & Research, Droevendaalsesteeg 3, 6708 PB, Wageningen, The Netherlands
| | - Eveline Ultee
- Host-Microbe Interactomics Group, Department of Animal Sciences, Wageningen University & Research, De Elst 1, 6708 WD, Wageningen, The Netherlands
| | - Maarten Agelink
- Host-Microbe Interactomics Group, Department of Animal Sciences, Wageningen University & Research, De Elst 1, 6708 WD, Wageningen, The Netherlands
| | - Jacques J M Vervoort
- Biochemistry Group, Department of Agrotechnology and Food Sciences, Wageningen University & Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Bart Keijser
- TI Food and Nutrition, Nieuwe Kanaal 9-A, 6709 PA, Wageningen, The Netherlands.,TNO Microbiology and Systems Biology, Utrechtseweg 48, 3704 HE, Zeist, The Netherlands.,Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and Vrije Universiteit Amsterdam, Gustav Mahlerlaan 3004, 1081 LA, Amsterdam, The Netherlands
| | - Jerry M Wells
- Host-Microbe Interactomics Group, Department of Animal Sciences, Wageningen University & Research, De Elst 1, 6708 WD, Wageningen, The Netherlands
| | - Michiel Kleerebezem
- TI Food and Nutrition, Nieuwe Kanaal 9-A, 6709 PA, Wageningen, The Netherlands. .,Host-Microbe Interactomics Group, Department of Animal Sciences, Wageningen University & Research, De Elst 1, 6708 WD, Wageningen, The Netherlands.
| |
Collapse
|
19
|
Bohora A, Kokate S. Evaluation of the Role of Probiotics in Endodontic Treatment: A Preliminary Study. J Int Soc Prev Community Dent 2017; 7:46-51. [PMID: 28316949 PMCID: PMC5343683 DOI: 10.4103/2231-0762.200710] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 01/12/2017] [Indexed: 11/29/2022] Open
Abstract
Aims and Objectives: The principal goal of endodontics is the prevention of periapical infection. Acute and chronic apical periodontitis occur due to the persistence of pathogenic microorganisms such as Enterococcus faecalis and Candida albicans harboring the root canal systems of the teeth. The concept of the use of probiotics in addressing endodontic disease is new and has not been studied adequately. On the basis of the success of probiotics in periodontal treatment, this preliminary work was performed (a) to evaluate the antibacterial efficacy of probiotics against common endodontic pathogens, i.e. E. faecalis and C. albicans, and (b) to evaluate the potential use of probiotic therapy as an additive in endodontic treatment procedures. Materials and Methods: Two commercial probiotics were selected and evaluated based upon the numbers and concentration of organisms. Pathogenic test organisms were C. albicans (ATCC 10231) and E. faecalis (ATCC 29212). Phase 1 of the study was conducted by agar cup method test to evaluate the antibacterial activity of the selected probiotics against E. faecalis and C. albicans by measuring zones of inhibition (ZOI) in mm. Microorganisms from probiotic samples were isolated following manufacturer's instructions. Pathogenic organisms were set to a 0.1 McFarland standard challenge. Circular wells of 8 mm diameter were punched in each of the poured plates. Appropriately diluted test samples were added to the above-punched wells. The volume of the solution added to each well was 100 μl. The plates were incubated in an upright position at 37°C for 24 hours under aerobic conditions. Post incubation, ZOI was measured (mm). Phase 2 was conducted by mixing 9 ml of 30% poloxamer 407 and de Man, Rogosa and Sharpe (MRS) broth in a test tube with 500 μl of either E. faecalis or C. albicans set at an optical density (OD) of 0.252, together with 500 μl of test probiotic strain, set at a respective OD. Samples were then incubated at 37°C for 48 hours, followed by serial dilutions by 1 ml till 108. This was done to calculate colony forming units (CFU)/ml counts. Controls used were endodontic pathogens in 30% poloxamer with MRS broth without any probiotic group. Results: Probiotic groups showed inhibitory activity against E. faecalis by the agar cup method, whereas there was no effect on C. albicans. In the biofilm stage, both the test groups had an antibacterial effect on pathogenic organisms. Conclusion: This study suggests that probiotic organisms of the species Lactobacillus and Bifidobacterium are effective for preventing the growth of E. faecalis and C. albicansin vitro. Because probiotics are available in varied compositions and concentrations, further evaluation for their role in treating endodontic infection is suggested and warranted. In addition, the study suggested that poloxamer 407 could be utilized as an ideal delivery vehicle for probiotics for use as a potential endodontic intracanal medicament.
Collapse
Affiliation(s)
- Aarti Bohora
- Department of Conservative Dentistry and Endodontics, Siddhpur Dental College and Hospital, Siddhpur, Gujarat, India
| | - Sharad Kokate
- Department of Conservative Dentistry and Endodontics, YMT Dental College and Hospital, Navi Mumbai, Maharashtra, India
| |
Collapse
|
20
|
Ushkalova EA, Gushchina YS. Linex forte in the prevention and treatment of gastrointestinal diseases. TERAPEVT ARKH 2015; 87:138-144. [DOI: 10.17116/terarkh20158712138-144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|