1
|
Zhu S, Guo Z, Liu L, Gao Y, Bai L, Chen Y, Zha M. Complex Probiotics Relieve Constipation Through Regulation of the Intestinal Microbiota in Kittens. Microorganisms 2025; 13:563. [PMID: 40142456 PMCID: PMC11945230 DOI: 10.3390/microorganisms13030563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 02/24/2025] [Accepted: 02/27/2025] [Indexed: 03/28/2025] Open
Abstract
The early developmental phase is a critical window for feline growth, during which immature digestive systems are susceptible to microbiome imbalances caused by environmental stressors. Our research employed macrogenomic analysis to evaluate how complex probiotic formulations influence growth metrics and gastrointestinal flora in juvenile felines. Two dozen healthy kittens were equally divided into the control group and the probiotics group following a 5-day environmental adaptation phase. Fecal scores were recorded daily for all kittens. Fresh fecal samples were collected on days 1 and 14 for macrogenomic analysis. The results showed a significantly lower rate of constipation in the probiotics group compared to the control group (p < 0.05). However, no significant differences were observed in intestinal microbial diversity or structure between the two groups. Metagenomic analysis revealed a higher relative abundance of Bifidobacterium animalis in the probiotics group compared to the control group (p < 0.05). Additionally, the probiotics group exhibited lower relative abundances of Lachnospiraceae bacterium 2 1 58FAA, Lachnospiraceae bacterium 1 1 57FAA, and Acidaminococcus intestini compared to the control group (p < 0.05). These results suggest that complex probiotics can regulate the intestinal microbiota, improve constipation, and promote intestinal health in kittens.
Collapse
Affiliation(s)
- Shimin Zhu
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China; (S.Z.); (Z.G.); (L.L.); (Y.G.); (L.B.); (Y.C.)
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Zhengrong Guo
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China; (S.Z.); (Z.G.); (L.L.); (Y.G.); (L.B.); (Y.C.)
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Lin Liu
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China; (S.Z.); (Z.G.); (L.L.); (Y.G.); (L.B.); (Y.C.)
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Yuan Gao
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China; (S.Z.); (Z.G.); (L.L.); (Y.G.); (L.B.); (Y.C.)
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Lu Bai
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China; (S.Z.); (Z.G.); (L.L.); (Y.G.); (L.B.); (Y.C.)
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Yongfu Chen
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China; (S.Z.); (Z.G.); (L.L.); (Y.G.); (L.B.); (Y.C.)
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Musu Zha
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China; (S.Z.); (Z.G.); (L.L.); (Y.G.); (L.B.); (Y.C.)
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| |
Collapse
|
2
|
Wang J, Yang X, Peng Y, Zhang J, Huang Y, Zhong Z, Liu H, Fu H, Zhou Z, Peng G. Isolation and in vitro investigation on lactic acid bacteria for potential probiotic properties from cat feces. Front Vet Sci 2024; 11:1495745. [PMID: 39687847 PMCID: PMC11647957 DOI: 10.3389/fvets.2024.1495745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 11/19/2024] [Indexed: 12/18/2024] Open
Abstract
Background Probiotics, which are beneficial to the host, have been shown to benefit the health of cats. Lactic acid bacteria (LAB) are commonly used probiotics, but most strains used for cats are not derived from cats, leading to reduced efficacy and poor adaptation to cats. The objective was to identify LAB with promising probiotic potential specific to cats. Method LABs were isolated from fecal samples of 20 healthy cats. Gram staining and the survival rate in the simulated gastrointestinal tract were used for preliminary screening. Candidate strains were identified by 16S rDNA sequencing, and further evaluated for adhesion ability, growth characteristics, antibacterial activity, antioxidant capacity, and safety. Results 24 Gram-positive isolates were identified, with 10 (F1-F10) showing robust viability in the simulated gastroenteric fluid. These 10 strains exhibited excellent adhesion to Caco-2 cells and strong auto-agglutination properties. They also possessed the capacity to antagonize and aggregate pathogens (Staphylococcus aureus ATCC 25923, Salmonella Braenderup H9812, Escherichia coli ATCC 25922, and Pseudomonas aeruginosa PAO1), Moreover, all strains demonstrated tolerance to H2O2 concentrations ranging from 0.5-2 mmol/L and the ability to scavenge 1, 1-diphenyl-2-picrylhydrazyl (DPPH) free radicals, indicating a certain level of antioxidant activity. Safety tests showed no hemolytic activity, and all but F6 were highly sensitive to antibiotics, with over 62.5% sensitivity to 16 antibiotics. Remarkably, F4 (Lactobacillus reuteri) and F10 (Lactobacillus brevis) exhibited exceptional viability in the simulated gastrointestinal tract, coupled with robust growth potential, enhanced adhesion efficiency, significant antibacterial and antioxidant properties. Conclusion Our findings revealed that F4 (Lactobacillus reuteri) and F10 (Lactobacillus brevis) hold promising potential as probiotics. This research lays a solid scientific foundation for the selection and application of probiotics tailored specifically for cats.
Collapse
Affiliation(s)
- Jiali Wang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xue Yang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yi Peng
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| | - Jingyi Zhang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yixin Huang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhijun Zhong
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Haifeng Liu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Hualin Fu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ziyao Zhou
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Guangneng Peng
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
3
|
Liang S, Gu X, Sun J, Wang X, Tao H, Wang Z, Zhong Y, Wang J, Han B. Application of Lactobacillus plantarum and Pediococcus lactis on Lipid Metabolism, Anti-Inflammatory, and Fecal Microbiota in Cats. Microorganisms 2024; 12:2446. [PMID: 39770649 PMCID: PMC11677972 DOI: 10.3390/microorganisms12122446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/18/2024] [Accepted: 11/26/2024] [Indexed: 01/11/2025] Open
Abstract
Probiotics have been used in functional foods and dietary supplements, and in recent years, they have become more widely used in pets. In our previous experiment, Lactobacillus plantarum L-27-2 and Pediococcus lactis L-14-1 were isolated from cat feces and proved to have positive effects on lipid metabolism in mice. To further discuss their possible effects in cats, a total of 12 healthy cats (British Shorthair) were randomly divided into two groups. One group was fed Pediococcus lactis L-14-1 (1 × 109 CFU/kg/d, n = 6), and the other group was fed Lactobacillus plantarum L-27-2 (1 × 109 CFU/kg/d, n = 6), and the experiment was conducted for 28 days. Blood and feces were collected on days 0 and 28 separately. ELISA was used to detect blood biochemical indexes in cats. The results showed that L-27-2 and L-14-1 could reduce the content of TG (triglyceride, p < 0.05) and LDL-C (low-density lipoprotein cholesterol, p < 0.01) in the blood, increase the content of HDL-C (high-density lipoprotein, p < 0.01), and L-27-2 could significantly reduce the content of IL-6 (p < 0.01). The diversity of feces microbiota was also tested. On the phylum level, there was no significance in the phylum level of Firmicutes and Bacteroidetes (p > 0.05), but on the genus level, in the L-14-1 group, the abundance of Lantiplantibacillus and Cetobacterium was increased (p < 0.05), and the abundance of Ruminococcus, Olsenella, and Labanicoccus was decreased (p < 0.05), while in the L-27-2 group, the abundance of Libanicoccus was also decreased in L-14-1 (p < 0.05). Above all, L-27-2 and L-14-1 can be considered potential probiotics to improve cat gut health and lipid metabolism.
Collapse
Affiliation(s)
- Shukun Liang
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, No. 12 Zhong Guan Cun South Street, Haidian District, Beijing 100081, China; (S.L.); (X.G.); (J.S.); (X.W.); (H.T.); (Z.W.)
- School of Veterinary Medicine, China Agricultural University, Beijing 100193, China;
| | - Xinshu Gu
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, No. 12 Zhong Guan Cun South Street, Haidian District, Beijing 100081, China; (S.L.); (X.G.); (J.S.); (X.W.); (H.T.); (Z.W.)
- College of Animal Science and Technology, Jiangxi Agricultural University, No. 1225, Zhimin Avenue, Xinjian District, Nanchang 330045, China
| | - Jintao Sun
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, No. 12 Zhong Guan Cun South Street, Haidian District, Beijing 100081, China; (S.L.); (X.G.); (J.S.); (X.W.); (H.T.); (Z.W.)
| | - Xiumin Wang
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, No. 12 Zhong Guan Cun South Street, Haidian District, Beijing 100081, China; (S.L.); (X.G.); (J.S.); (X.W.); (H.T.); (Z.W.)
| | - Hui Tao
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, No. 12 Zhong Guan Cun South Street, Haidian District, Beijing 100081, China; (S.L.); (X.G.); (J.S.); (X.W.); (H.T.); (Z.W.)
| | - Zhenlong Wang
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, No. 12 Zhong Guan Cun South Street, Haidian District, Beijing 100081, China; (S.L.); (X.G.); (J.S.); (X.W.); (H.T.); (Z.W.)
| | - Yougang Zhong
- School of Veterinary Medicine, China Agricultural University, Beijing 100193, China;
| | - Jinquan Wang
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, No. 12 Zhong Guan Cun South Street, Haidian District, Beijing 100081, China; (S.L.); (X.G.); (J.S.); (X.W.); (H.T.); (Z.W.)
| | - Bing Han
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, No. 12 Zhong Guan Cun South Street, Haidian District, Beijing 100081, China; (S.L.); (X.G.); (J.S.); (X.W.); (H.T.); (Z.W.)
| |
Collapse
|
4
|
Schmitz SS. Evidence-based use of biotics in the management of gastrointestinal disorders in dogs and cats. Vet Rec 2024; 195:26-32. [PMID: 39545596 DOI: 10.1002/vetr.4916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
The gut microbiome plays a vital role in the overall health of dogs and cats, particularly their gastrointestinal (GI) health. Imbalances in the gut microbiome, termed dysbiosis, are associated with a range of GI disorders, including diarrhoea and chronic enteropathy. Emerging evidence tentatively supports the therapeutic use of pre-, pro- and postbiotics (collectively called biotics) to restore gut homeostasis and manage these conditions, especially due to their potential antibiotic-sparing effects. This article explores their evidence-based use in the treatment of GI disorders in dogs and cats.
Collapse
|
5
|
Wilson SM, Swanson KS. The influence of 'biotics' on the gut microbiome of dogs and cats. Vet Rec 2024; 195:2-12. [PMID: 39545542 DOI: 10.1002/vetr.4914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
A global rise in pet ownership and an increasing tendency towards the humanisation of pets have resulted in a greater focus on improving animal health and longevity. These developments coincide with the increased recognition of the role of the gut microbiome in animal health. The gut microbiome has been shown to play a prominent role in gastrointestinal health, and it is becoming increasingly clear that these health benefits extend beyond the gut and into different physiological systems, such as the immune system. Dietary supplementation with products known as 'biotics', which include probiotics, prebiotics, synbiotics and postbiotics, is a strategy used to modify the gut microbiome and promote host health. Although biotics have been successfully used in companion animals, questions remain regarding appropriate biotic selection, mechanisms of action, optimum inclusion levels and safety. This review aims to summarise the effects of biotics on the gut microbiome of dogs and cats and assess their potential role in supporting gastrointestinal health.
Collapse
Affiliation(s)
- Sofia M Wilson
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Kelly S Swanson
- Department of Animal Sciences, Department of Veterinary Medicine and Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
6
|
Schmid SM, Tolbert MK. Harnessing the microbiome: probiotics, antibiotics and their role in canine and feline gastrointestinal disease. Vet Rec 2024; 195:13-25. [PMID: 39545593 DOI: 10.1002/vetr.4915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
Unfavourable alterations of the host microbial environment, known as dysbiosis, have been identified in many canine and feline gastrointestinal (GI) diseases. As a result, normalisation of microbial composition and function has become an important therapeutic target. Given the complex and individualistic interplay between the resident microbiota, host and environment, a multimodal approach is often necessary when addressing dysbiosis in dogs and cats with GI disease. Systemic antibiotics are often empirically used to treat acute and chronic GI diseases. However, with modern genomic techniques demonstrating the profound negative effect antibiotics can have on the GI microbiota and the rapid emergence of resistant bacteria globally, there has been an increased focus on identifying antibiotic alternatives for use in small animal practice. Biotics, such as prebiotics, probiotics and synbiotics, are of growing interest due to their potential supportive effect on the microbiota. This article reviews the evidence for the use of biotics in canine and feline GI disease, highlighting how judicious use of antibiotics and targeted probiotic supplementation can enhance patient outcomes by promoting a balanced gut microbial environment.
Collapse
Affiliation(s)
- Sarah M Schmid
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, Tennessee, USA
| | - M Katherine Tolbert
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
7
|
Zha M, Zhu S, Chen Y. Probiotics and Cat Health: A Review of Progress and Prospects. Microorganisms 2024; 12:1080. [PMID: 38930462 PMCID: PMC11205573 DOI: 10.3390/microorganisms12061080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 05/21/2024] [Accepted: 05/24/2024] [Indexed: 06/28/2024] Open
Abstract
Cats are increasingly favored as companion animals; their health has drawn widespread attention. Given the continuous improvements in the required living standards of both humans and animals, inflammatory bowel disease, allergies, diarrhea, constipation, periodontal disease, obesity, diabetes, and other health issues have become recognized as valid pet problems. Antibiotics are commonly used to treat pet diseases, greatly improving animal health. However, antibiotic abuse is common, especially when seeking to treat bacterial infections. Probiotics are beneficial microorganisms that may be directly ingested in food or as feed additives; they improve the intestinal microflora balance, enhance immunity, and ensure healthy growth. However, cat data are usually inferred from reports on dogs or humans; cat research remains preliminary in nature. Therefore, we here describe the current understanding of how probiotics improve cat health, facilitating the further development and application of probiotics for cats.
Collapse
Affiliation(s)
- Musu Zha
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China;
| | | | - Yongfu Chen
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China;
| |
Collapse
|
8
|
Yang Q, Wu Z. Gut Probiotics and Health of Dogs and Cats: Benefits, Applications, and Underlying Mechanisms. Microorganisms 2023; 11:2452. [PMID: 37894110 PMCID: PMC10609632 DOI: 10.3390/microorganisms11102452] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/22/2023] [Accepted: 09/26/2023] [Indexed: 10/29/2023] Open
Abstract
Pets (mostly domestic dogs and cats) play an important role in the daily lives of humans and their health has attracted growing attention from pet owners. The intestinal microbiota, a complex microbial community with barrier-protective, nutritional, metabolic, and immunological functions, is integral to host health. Dysbiosis has been related to a variety of diseases in humans and animals. Probiotics have been used in functional foods and dietary supplements to modulate intestinal microbiota and promote host health, which has been introduced in pet dogs and cats in recent years. Various canine- and feline-derived probiotic strains have been isolated and characterized. The administration of probiotics has shown positive effects on the gut health and can alleviate some intestinal diseases and disorders in dogs and cats, although the underlying mechanisms are largely unresolved. In this review, we summarize the current knowledge on the benefits of probiotics and discuss their possible mechanisms in dogs and cats in order to provide new insights for the further development and application of probiotics in pets.
Collapse
Affiliation(s)
| | - Zhenlong Wu
- State Key Laboratory of Animal Nutrition, Department of Companion Animal Science, China Agricultural University, Beijing 100193, China;
| |
Collapse
|
9
|
Effect of a Multistrain Probiotic on Feline Gut Health through the Fecal Microbiota and Its Metabolite SCFAs. Metabolites 2023; 13:metabo13020228. [PMID: 36837847 PMCID: PMC9962843 DOI: 10.3390/metabo13020228] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 01/30/2023] [Accepted: 02/02/2023] [Indexed: 02/08/2023] Open
Abstract
With the increasing awareness of raising pets following scientific methods, people are becoming increasingly more interested in the nutrition and health of pets, especially their intestinal health, which has become a research hotspot. Both Saccharomyces boulardii and Pediococcus acidilactici are probiotics with strong probiotic properties that can maintain the balance of intestinal flora. However, the role of Saccharomyces boulardii and Pediococcus acidilactici in felines has not been comprehensively studied to date. The aim of this study is to investigate the effect of multistrain probiotics consisting of Saccharomyces boulardii and Pediococcus acidilactici on the gut health of felines by modulating gut microbes and the production of metabolite SCFAs. The results show that the multistrain probiotic did not alter the intestinal microbial diversity and structure of short-haired domestic cats, promoted the colonization of beneficial bacteria, increased the levels of microbiota-derived SCFAs and fecal antioxidants, and reduced the levels of fecal inflammatory markers. In conclusion, the use of a multistrain probiotic in healthy, short-haired domestic cats can promote gut health by modulating gut microbes, improving microbiota-derived SCFA production, reducing inflammatory conditions, and improving antioxidant status. These results provide new insights for further exploration of the role of probiotics in the gut microbiome of cats.
Collapse
|
10
|
Schramm A, Kook PH. Evaluation of dietary histories in cats presenting with chronic gastrointestinal clinical signs to a veterinary teaching hospital. J Feline Med Surg 2023; 25:1098612X231154466. [PMID: 36799862 PMCID: PMC10812072 DOI: 10.1177/1098612x231154466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
OBJECTIVES Although less frequently described than in dogs, it is also well recognised in cats that chronic gastrointestinal (GI) disease can fully respond to dietary changes only. So far, no study has assessed how much dietary information can be obtained during veterinary consultations. METHODS We retrospectively evaluated how much dietary information was available when owners presenting their cats to our gastroenterology (GE) and internal medicine (IM) service between October 2017 and January 2020 were questioned during consultations. Because of the larger IM caseload, for each week the first two cats presenting with chronic GI signs were selected for the IM group. Data from 80 cats presenting for first GE consultations were compared with data from 84 cats presenting with chronic GI signs for first IM consultations. RESULTS Referrals comprised 42/80 (53%) GE cats and 53/84 (63%) IM cats. Referral documents mentioned the previously fed diet in 12/42 (29%) GE and 4/53 (8%) IM cats, and response to that previous diet trial was recorded in the referral documents of 4/12 (33%) GE and 3/4 (75%) IM cats. No cat had received more than one previous diet trial. During consultations, owners of 61/80 (76%) GE and 53/84 (63%) IM cats were asked about diet. Irrespective of referral status, previous dietary trials had been performed in 27/61 (44%) GE and 19/53 (36%) IM cats. The specific diet fed at the time of consultation could be named by 37/61 (61%) GE and 11/53 (21%) IM cat owners. CONCLUSIONS AND RELEVANCE Overall dietary information gained from referring veterinarians and owners was often incomplete. Although more information could be gained from owners during GE consultations vs IM consultations, awareness of the importance of diet in cats with GI disease still appears to be low among veterinarians and cat owners. Future studies need to assess if more complete dietary information can be obtained at the time of consultations with a prospective study design.
Collapse
Affiliation(s)
- Andreina Schramm
- Clinic for Small Animal Internal Medicine, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Peter Hendrik Kook
- Clinic for Small Animal Internal Medicine, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| |
Collapse
|
11
|
Takáčová M, Bomba A, Tóthová C, Micháľová A, Turňa H. Any Future for Faecal Microbiota Transplantation as a Novel Strategy for Gut Microbiota Modulation in Human and Veterinary Medicine? Life (Basel) 2022; 12:723. [PMID: 35629390 PMCID: PMC9146664 DOI: 10.3390/life12050723] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 04/28/2022] [Accepted: 05/10/2022] [Indexed: 11/16/2022] Open
Abstract
Alterations in the composition of the intestinal microbiome, also known as dysbiosis, are the result of many factors such as diet, antibiotics, stress, diseases, etc. There are currently several ways to modulate intestinal microbiome such as dietary modulation, the use of antimicrobials, prebiotics, probiotics, postbiotics, and synbiotics. Faecal microbiota transplantation (FMT) represents one new method of gut microbiota modulation in humans with the aim of reconstructing the intestinal microbiome of the recipient. In human medicine, this form of bacteriotherapy is successfully used in cases of recurrent Clostridium difficile infection (CDI). FMT has been known in large animal medicine for several years. In small animal medicine, the use of FMT is not part of normal practice.
Collapse
Affiliation(s)
- Martina Takáčová
- Small Animal Clinic, University of Veterinary Medicine and Pharmacy, 041 81 Košice, Slovakia
| | - Alojz Bomba
- Prebiotix s.r.o., 024 01 Kysucké Nové Mesto, Slovakia
| | - Csilla Tóthová
- Clinic of Ruminants, University of Veterinary Medicine and Pharmacy, 041 81 Košice, Slovakia
| | - Alena Micháľová
- Small Animal Clinic, University of Veterinary Medicine and Pharmacy, 041 81 Košice, Slovakia
| | - Hana Turňa
- Small Animal Clinic, University of Veterinary Medicine and Pharmacy, 041 81 Košice, Slovakia
| |
Collapse
|
12
|
Mangiaterra S, Schmidt-Küntzel A, Marker L, Di Cerbo A, Piccinini R, Guadagnini D, Turba ME, Berardi S, Galosi L, Preziuso S, Cerquetella M, Rossi G. Effect of a Probiotic Mixture in Captive Cheetahs (Acinonyx Jubatus) with Gastrointestinal Symptoms—A Pilot Study. Animals (Basel) 2022; 12:ani12030395. [PMID: 35158716 PMCID: PMC8833592 DOI: 10.3390/ani12030395] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/26/2022] [Accepted: 02/02/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary In recent years, many studies have demonstrated the effectiveness of probiotics in acute and chronic gastrointestinal disorders in both humans and animals. The objective of this study is to evaluate the effect of a specific probiotic mixture in cheetahs. In the wild, cheetah populations have drastically reduced due to habitat destruction, human–wildlife conflict and illegal wildlife trade. In captivity, chronic gastrointestinal diseases have a high prevalence. Based on our results, it can be concluded that probiotics may be helpful as a dietary supplement in cheetahs suffering from gastrointestinal disease. Abstract Cheetahs (Acinonyx jubatus) are classified as “vulnerable” species due to the low numbers persisting in the wild. Gastrointestinal diseases are very common in this species when they are kept in captivity, in particular gastritis. Clinical signs are predominantly characterized by vomiting, diarrhea, weight loss and anorexia. In this study, we evaluated the efficacy of a multi-strain probiotic in two groups of cheetahs: Group A (n = 4)—rescued cheetahs housed at the Cheetah Conservation Fund (Otjiwarongo, Namibia); Group B (n = 9)—captive cheetahs housed in Italian zoos. Animals showed gastrointestinal signs of different severity, and were positive for Helicobacter spp., detected by PCR in stool samples. Two sachets of probiotic formulation were administered to all cheetahs once a day for 21 consecutive days. Clinical conditions (appetite loss, vomiting, stool consistency and Body Condition Score) before (T0) and after 21 days of probiotic administration (T1) were then compared using a simplified Feline Chronic Enteropathy Activity Index (FCEAI) score. A slight but not significant improvement in the scores was observed in Group A, which had mild intestinal symptoms, while a significant decrease in vomiting and stool consistency (**p < 0.01) scores was observed in Group B, which had more pronounced symptoms. Results suggest that high concentrations of live probiotics can be of help in managing gastrointestinal signs in cheetahs.
Collapse
Affiliation(s)
- Sara Mangiaterra
- School of Biosciences and Veterinary Medicine, University of Camerino, 62024 Matelica, MC, Italy; (A.D.C.); (L.G.); (S.P.); (M.C.); (G.R.)
- Correspondence:
| | | | - Laurie Marker
- Cheetah Conservation Fund, Otjiwarongo 9000, Namibia; (A.S.-K.); (L.M.)
| | - Alessandro Di Cerbo
- School of Biosciences and Veterinary Medicine, University of Camerino, 62024 Matelica, MC, Italy; (A.D.C.); (L.G.); (S.P.); (M.C.); (G.R.)
| | | | | | | | - Sara Berardi
- DVM Freelance Consultant, 62100 Macerata, MC, Italy;
| | - Livio Galosi
- School of Biosciences and Veterinary Medicine, University of Camerino, 62024 Matelica, MC, Italy; (A.D.C.); (L.G.); (S.P.); (M.C.); (G.R.)
| | - Silvia Preziuso
- School of Biosciences and Veterinary Medicine, University of Camerino, 62024 Matelica, MC, Italy; (A.D.C.); (L.G.); (S.P.); (M.C.); (G.R.)
| | - Matteo Cerquetella
- School of Biosciences and Veterinary Medicine, University of Camerino, 62024 Matelica, MC, Italy; (A.D.C.); (L.G.); (S.P.); (M.C.); (G.R.)
| | - Giacomo Rossi
- School of Biosciences and Veterinary Medicine, University of Camerino, 62024 Matelica, MC, Italy; (A.D.C.); (L.G.); (S.P.); (M.C.); (G.R.)
| |
Collapse
|
13
|
Galosi L, Desantis S, Roncarati A, Robino P, Bellato A, Nebbia P, Ferrocino I, Santamaria N, Biagini L, Filoni L, Attili AR, Rossi G. Positive Influence of a Probiotic Mixture on the Intestinal Morphology and Microbiota of Farmed Guinea Fowls ( Numida meleagris). Front Vet Sci 2021; 8:743899. [PMID: 34778432 PMCID: PMC8586554 DOI: 10.3389/fvets.2021.743899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 09/28/2021] [Indexed: 11/15/2022] Open
Abstract
To understand the effectiveness of a probiotic mixture on intestinal morphology, mucus layer composition, and cecal microbiota diversity, 40 10-day-old Guinea fowls (Numida meleagris) were assigned to two groups: the control group (C), receiving drinking water, and the treated group (P), receiving water plus a commercial multi-strain probiotic (Slab51®, 2 × 1011 CFU/L). Birds were slaughtered after 4 months, and the intestines were collected. Samples from the duodenum, ileum, and cecum were processed for morphological and morphometric studies, and conventional glycohistochemistry. Cecal samples were also used to assess the microbiota by 16S metataxonomic approach. Group P showed significant increase in the villus height (p < 0.001 in the duodenum and p < 0.05 in the ileum and cecum), villus width (p < 0.05 in all investigated tracts), depth of crypts (p < 0.001 in the duodenum and cecum; p < 0.05 in the ileum), and goblet cells per villus (p < 0.001 in all investigated tracts) compared with group C. Cecal microbiota of the birds varied considerably and comparing the relative abundance of the main observational taxonomic units (OTUs), a positive enrichment of several beneficial taxa, such as Oscillospira, Eubacterium, Prevotella, and members of the Ruminococcaceae, was observed. The enrichment of those taxa can improve microbiota stability and resilience facing environmental stresses, enhancing its resistance against invading pathogens. Ruminococcaceae, which represent the most important taxon in both groups, and Prevotella have a key role in the gut physiology due to the production of short-chain fatty acids (SCFAs), which are a vital energy source for enterocytes, improve glucose metabolism, and exert an overall anti-inflammatory effect. Probiotic administration enriches the presence of Coprococcus, Oscillospira, and Eubacterium taxa that produce butyrate, which exerts a beneficial effect on growth performance, structure of villi, and pathogen control and has anti-inflammatory properties too. This study indicates that Slab51® supplementation positively affects the morphology and microbiota diversity of the guinea fowl intestine.
Collapse
Affiliation(s)
- Livio Galosi
- School of Biosciences and Veterinary Medicine, University of Camerino, Matelica, Italy
| | - Salvatore Desantis
- Department of Emergency and Organ Trasplants (DETO), University of Bari Aldo Moro, Valenzano, Italy
| | - Alessandra Roncarati
- School of Biosciences and Veterinary Medicine, University of Camerino, Matelica, Italy
| | - Patrizia Robino
- Department of Veterinary Sciences, University of Torino, Grugliasco, Italy
| | - Alessandro Bellato
- Department of Veterinary Sciences, University of Torino, Grugliasco, Italy
| | - Patrizia Nebbia
- Department of Veterinary Sciences, University of Torino, Grugliasco, Italy
| | - Ilario Ferrocino
- Department of Agriculture, Forestry and Food Science, University of Torino, Grugliasco, Italy
| | - Nicoletta Santamaria
- Department of Emergency and Organ Trasplants (DETO), University of Bari Aldo Moro, Valenzano, Italy
| | - Lucia Biagini
- School of Biosciences and Veterinary Medicine, University of Camerino, Matelica, Italy
| | - Lorenzo Filoni
- School of Biosciences and Veterinary Medicine, University of Camerino, Matelica, Italy
| | - Anna Rita Attili
- School of Biosciences and Veterinary Medicine, University of Camerino, Matelica, Italy
| | - Giacomo Rossi
- School of Biosciences and Veterinary Medicine, University of Camerino, Matelica, Italy
| |
Collapse
|
14
|
Abstract
Probiotics/or synbiotics products for small animals do not fulfill the criteria required to qualify as a probiotic. Studies explaining modes of action are lacking. Outcome measures are inconsistent, with some trials assessing only nonspecific routine diagnostic parameters or fecal scores. Preliminary evidence shows that specific preparations are beneficial in parvovirus infections and acute hemorrhagic diarrhea syndrome in dogs and in Tritrichomonas fetus infection in cats. In dogs, inflammatory bowel disease specific probiotics can decrease clinical severity. More studies focusing on functional outcomes in dogs and cats with well-defined diseases to allow evidence-based clinical use of probiotics and synbiotics are needed.
Collapse
Affiliation(s)
- Silke Salavati Schmitz
- Hospital for Small Animals, Royal (Dick) School of Veterinary Studies, The Roslin Institute, College of Medicine and Veterinary Medicine, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK.
| |
Collapse
|
15
|
Pilla R, Suchodolski JS. The Gut Microbiome of Dogs and Cats, and the Influence of Diet. Vet Clin North Am Small Anim Pract 2021; 51:605-621. [PMID: 33653538 DOI: 10.1016/j.cvsm.2021.01.002] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The gut microbiome is a functional organ, and responds metabolically to the nutrient composition within the diet. Fiber, starch, and protein content have strong effects on the microbiome composition, and changes in these nutrient profiles can induce rapid shifts. Due to functional redundancy of bacteria within microbial communities, important metabolites for health can be produced by different bacteria. Microbiome alterations associated with disease are of greater magnitude than those seen in healthy dogs on different diets. Dietary changes, addition of prebiotics, and probiotics, can be beneficial to improve microbial diversity and to normalize metabolite production in diseased dogs.
Collapse
Affiliation(s)
- Rachel Pilla
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, Texas A&M University, Texas A&M College of Veterinary Medicine & Biomedical Sciences, 4474 TAMU, College Station, TX 77843-4474, USA.
| | - Jan S Suchodolski
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, Texas A&M University, Texas A&M College of Veterinary Medicine & Biomedical Sciences, 4474 TAMU, College Station, TX 77843-4474, USA
| |
Collapse
|
16
|
Thanaboonnipat C, Kumjumroon K, Boonkwang K, Tangsutthichai N, Sukserm W, Choisunirachon N. Radiographic lumbosacral vertebral abnormalities and constipation in cats. Vet World 2021; 14:492-498. [PMID: 33776316 PMCID: PMC7994129 DOI: 10.14202/vetworld.2021.492-498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 01/20/2021] [Indexed: 11/16/2022] Open
Abstract
Background and Aim: Lumbosacral intervertebral disk disease (IVDD) in cats usually develops concurrent with constipation, spondylosis deformans, and sacralization. However, the prevalence of lumbar IVDD in cats was considered low, and there was less information on the incidence of non-traumatic lumbosacral vertebral abnormalities that may affect large bowel dysfunction. This study aimed to retrospectively investigate the relationship between non-traumatic lumbosacral vertebral abnormalities, both congenital and acquired, and large bowel dysfunction in cats. Materials and Methods: Of 3108 cats that were presented to the Diagnostic Imaging Unit, the Small Animal Teaching Hospital, Faculty of Veterinary Science, Chulalongkorn University, between March 2016 and February 2018, 1365 cats met the inclusion criteria. All abdominal radiographs were reviewed, and all subsequent data were recorded, including the presence of congenital or acquired lumbosacral lesions, number of lumbar vertebrae, and length of the second, fifth, and last lumbar vertebrae, including the type of lumbar abnormalities. Moreover, radiographic information relating to constipation and megacolon was also collected. Results: Non-traumatic lumbosacral vertebral abnormalities were observed in 29.74% of cats. The most common congenital lumbosacral vertebral abnormalities were six lumbar vertebrae, sacralization, and lumbarization, whereas most common acquired lumbosacral abnormalities were bone spur, narrowing disk space, spondylosis deformans, and lumbosacral degeneration, respectively. Cats with abnormal lumbosacral vertebrae are prone to have more problems with the large bowel (p=0.0057; odds ratio=1.731). Moreover, congenital and acquired lumbosacral abnormalities were also at risk of large bowel abnormalities (p=0.0069; odds ratio=1.920 and p<0.0001; odds ratio=4.107, respectively). Conclusion: This study revealed the evidence and distribution of the variation in feline lumbar anatomy and also elucidated that cats with abnormal lumbar vertebral columns were more likely to have problems with distal gastrointestinal tracts than those without.
Collapse
Affiliation(s)
- Chutimon Thanaboonnipat
- Department of Surgery, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | | | - Kamonwan Boonkwang
- Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | | | - Wassapon Sukserm
- Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Nan Choisunirachon
- Department of Surgery, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
| |
Collapse
|
17
|
Sarhadi V, Mathew B, Kokkola A, Karla T, Tikkanen M, Rautelin H, Lahti L, Puolakkainen P, Knuutila S. Gut microbiota of patients with different subtypes of gastric cancer and gastrointestinal stromal tumors. Gut Pathog 2021; 13:11. [PMID: 33596997 PMCID: PMC7888145 DOI: 10.1186/s13099-021-00403-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/28/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Gastric adenocarcinoma is associated with H. pylori infection and inflammation that can result in the dysbiosis of gastric microbiota. The association of intestinal microbiota with gastric adenocarcinoma subtypes or with gastric gastrointestinal stromal tumors (GIST) is however not well known. Therefore, we performed 16S rRNA gene sequencing on DNA isolated from stool samples of Finnish patients and controls to study differences in microbiota among different histological subtypes of gastric adenocarcinoma, gastric GIST and healthy controls. RESULTS We found that gut microbiota alpha diversity was lowest in diffuse adenocarcinoma patients, followed by intestinal type and GIST patients, although the differences were not significant compared to controls. Beta-diversity analysis however showed significant differences in microbiota composition for all subtypes compared to controls. Significantly higher abundance of Enterobacteriaceae was observed in both adenocarcinoma subtypes, whereas lower abundance of Bifidobacteriaceae was seen only in diffuse adenocarcinoma and of Oscillibacter in intestinal adenocarcinoma. Both GIST and adenocarcinoma patients had higher abundance of Enterobacteriaceae and lower abundance of Lactobacillaceae and Oscillibacter while lower abundance of Lachnoclostridium, Bifidobacterium, Parabacteroides and Barnesiella was seen only in the adenocarcinoma patients. CONCLUSIONS Our analysis shows association of higher Enterobacteriaceae abundance with all types of gastric tumors. Therefore it could be potentially useful as a marker of gastric malignancies. Lower gut microbiota diversity might be indicative of poorly differentiated, invasive, advanced or aggressive tumors and could possibly be a prognostic marker for gastric tumors.
Collapse
Affiliation(s)
- Virinder Sarhadi
- Faculty of Medicine, Department of Pathology, University of Helsinki, 00014, Helsinki, Finland
| | - Binu Mathew
- Department of Computing, University of Turku, Turku, Finland
| | - Arto Kokkola
- The HUCH Gastrointestinal Clinic, University Central Hospital of Helsinki, Helsinki, Finland
| | | | | | - Hilpi Rautelin
- Department of Medical Sciences, Clinical Microbiology, Uppsala University, Uppsala, Sweden
| | - Leo Lahti
- Department of Computing, University of Turku, Turku, Finland
| | - Pauli Puolakkainen
- The HUCH Gastrointestinal Clinic, University Central Hospital of Helsinki, Helsinki, Finland
| | - Sakari Knuutila
- Faculty of Medicine, Department of Pathology, University of Helsinki, 00014, Helsinki, Finland.
| |
Collapse
|
18
|
Alessandri G, Argentini C, Milani C, Turroni F, Cristina Ossiprandi M, van Sinderen D, Ventura M. Catching a glimpse of the bacterial gut community of companion animals: a canine and feline perspective. Microb Biotechnol 2020; 13:1708-1732. [PMID: 32864871 PMCID: PMC7533323 DOI: 10.1111/1751-7915.13656] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 08/04/2020] [Accepted: 08/06/2020] [Indexed: 12/13/2022] Open
Abstract
Dogs and cats have gained a special position in human society by becoming our principal companion animals. In this context, efforts to ensure their health and welfare have increased exponentially, with in recent times a growing interest in assessing the impact of the gut microbiota on canine and feline health. Recent technological advances have generated new tools to not only examine the intestinal microbial composition of dogs and cats, but also to scrutinize the genetic repertoire and associated metabolic functions of this microbial community. The application of high-throughput sequencing techniques to canine and feline faecal samples revealed similarities in their bacterial composition, with Fusobacteria, Firmicutes and Bacteroidetes as the most prevalent and abundant phyla, followed by Proteobacteria and Actinobacteria. Although key bacterial members were consistently present in their gut microbiota, the taxonomic composition and the metabolic repertoire of the intestinal microbial population may be influenced by several factors, including diet, age and anthropogenic aspects, as well as intestinal dysbiosis. The current review aims to provide a comprehensive overview of the multitude of factors which play a role in the modulation of the canine and feline gut microbiota and that of their human owners with whom they share the same environment.
Collapse
Affiliation(s)
- Giulia Alessandri
- Department of Veterinary Medical ScienceUniversity of ParmaParmaItaly
| | - Chiara Argentini
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental SustainabilityUniversity of ParmaParmaItaly
| | - Christian Milani
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental SustainabilityUniversity of ParmaParmaItaly
- Microbiome Research HubUniversity of ParmaParmaItaly
| | - Francesca Turroni
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental SustainabilityUniversity of ParmaParmaItaly
- Microbiome Research HubUniversity of ParmaParmaItaly
| | - Maria Cristina Ossiprandi
- Department of Veterinary Medical ScienceUniversity of ParmaParmaItaly
- Microbiome Research HubUniversity of ParmaParmaItaly
| | - Douwe van Sinderen
- APC Microbiome Institute and School of Microbiology, Bioscience InstituteNational University of IrelandCorkIreland
| | - Marco Ventura
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental SustainabilityUniversity of ParmaParmaItaly
- Microbiome Research HubUniversity of ParmaParmaItaly
| |
Collapse
|
19
|
Lyu Y, Su C, Verbrugghe A, Van de Wiele T, Martos Martinez-Caja A, Hesta M. Past, Present, and Future of Gastrointestinal Microbiota Research in Cats. Front Microbiol 2020; 11:1661. [PMID: 32793152 PMCID: PMC7393142 DOI: 10.3389/fmicb.2020.01661] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 06/25/2020] [Indexed: 12/17/2022] Open
Abstract
The relationship between microbial community and host has profound effects on the health of animals. A balanced gastrointestinal (GI) microbial population provides nutritional and metabolic benefits to its host, regulates the immune system and various signaling molecules, protects the intestine from pathogen invasion, and promotes a healthy intestinal structure and an optimal intestinal function. With the fast development of next-generation sequencing, molecular techniques have become standard tools for microbiota research, having been used to demonstrate the complex intestinal ecosystem. Similarly to other mammals, the vast majority of GI microbiota in cats (over 99%) is composed of the predominant bacterial phyla Firmicutes, Bacteroidetes, Actinobacteria, and Proteobacteria. Many nutritional and clinical studies have shown that cats' microbiota can be affected by several different factors including body condition, age, diet, and inflammatory diseases. All these factors have different size effects, and some of these may be very minor, and it is currently unknown how important these are. Further research is needed to determine the functional variations in the microbiome in disease states and in response to environmental and/or dietary modulations. Additionally, further studies are also needed to explain the intricate relationship between GI microbiota and the genetics and immunity of its host. This review summarizes past and present knowledge of the feline GI microbiota and looks into the future possibilities and challenges of the field.
Collapse
Affiliation(s)
- Yang Lyu
- Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Chunxia Su
- Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Adronie Verbrugghe
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Tom Van de Wiele
- Center of Microbial Ecology and Technology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Ana Martos Martinez-Caja
- Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Myriam Hesta
- Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| |
Collapse
|
20
|
Wernimont SM, Radosevich J, Jackson MI, Ephraim E, Badri DV, MacLeay JM, Jewell DE, Suchodolski JS. The Effects of Nutrition on the Gastrointestinal Microbiome of Cats and Dogs: Impact on Health and Disease. Front Microbiol 2020; 11:1266. [PMID: 32670224 PMCID: PMC7329990 DOI: 10.3389/fmicb.2020.01266] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 05/18/2020] [Indexed: 12/12/2022] Open
Abstract
The gastrointestinal (GI) microbiome of cats and dogs is increasingly recognized as a metabolically active organ inextricably linked to pet health. Food serves as a substrate for the GI microbiome of cats and dogs and plays a significant role in defining the composition and metabolism of the GI microbiome. The microbiome, in turn, facilitates the host's nutrient digestion and the production of postbiotics, which are bacterially derived compounds that can influence pet health. Consequently, pet owners have a role in shaping the microbiome of cats and dogs through the food they choose to provide. Yet, a clear understanding of the impact these food choices have on the microbiome, and thus on the overall health of the pet, is lacking. Pet foods are formulated to contain the typical nutritional building blocks of carbohydrates, proteins, and fats, but increasingly include microbiome-targeted ingredients, such as prebiotics and probiotics. Each of these categories, as well as their relative proportions in food, can affect the composition and/or function of the microbiome. Accumulating evidence suggests that dietary components may impact not only GI disease, but also allergies, oral health, weight management, diabetes, and kidney disease through changes in the GI microbiome. Until recently, the focus of microbiome research was to characterize alterations in microbiome composition in disease states, while less research effort has been devoted to understanding how changes in nutrition can influence pet health by modifying the microbiome function. This review summarizes the impact of pet food nutritional components on the composition and function of the microbiome and examines evidence for the role of nutrition in impacting host health through the microbiome in a variety of disease states. Understanding how nutrition can modulate GI microbiome composition and function may reveal new avenues for enhancing the health and resilience of cats and dogs.
Collapse
Affiliation(s)
| | | | | | - Eden Ephraim
- Hill’s Pet Nutrition, Inc., Topeka, KS, United States
| | | | | | - Dennis E. Jewell
- Department of Grain Science and Industry, Kansas State University, Manhattan, KS, United States
| | - Jan S. Suchodolski
- Texas A&M College of Veterinary Medicine & Biomedical Sciences, College Station, TX, United States
| |
Collapse
|
21
|
Rossi G, Cerquetella M, Gavazza A, Galosi L, Berardi S, Mangiaterra S, Mari S, Suchodolski JS, Lidbury JA, Steiner JM, Pengo G. Rapid Resolution of Large Bowel Diarrhea after the Administration of a Combination of a High-Fiber Diet and a Probiotic Mixture in 30 Dogs. Vet Sci 2020; 7:vetsci7010021. [PMID: 32050688 PMCID: PMC7158687 DOI: 10.3390/vetsci7010021] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 02/06/2020] [Accepted: 02/07/2020] [Indexed: 12/13/2022] Open
Abstract
Canine fiber responsive diarrhea is a form of chronic colitis that improves clinically after adding fiber to the diet. In the present study, we investigated the effect of a combination of a high-fiber, highly digestible, hypoallergenic diet with a probiotic mixture in 30 dogs with chronic colitis that were unresponsive to various dietary and/or pharmacological interventions. Fecal scores, canine chronic enteropathy clinical activity index (CCECAI) scores, the dysbiosis index (DI), and histologic images of colonic biopsies were evaluated. At baseline (day 0; T0) and after 30 days of treatment (T1), all variables evaluated in our patients (i.e., fecal and CCECAI scores and histopathology) improved significantly at T1, with the exception of DI. However, there was a numerical shift from a state of dysbiosis to one of normobiosis. The combination of the diet and the probiotic used in the present study induced the resolution of clinical signs in a mean of 8.5 days (maximum 15 days) and did not necessitate any other treatments or the further addition of alimentary fiber.
Collapse
Affiliation(s)
- Giacomo Rossi
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Circonvallazione 93/95, 62024 Matelica (MC), Italy; (G.R.); (M.C.); (L.G.); (S.B.); (S.M.); (S.M.)
| | - Matteo Cerquetella
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Circonvallazione 93/95, 62024 Matelica (MC), Italy; (G.R.); (M.C.); (L.G.); (S.B.); (S.M.); (S.M.)
| | - Alessandra Gavazza
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Circonvallazione 93/95, 62024 Matelica (MC), Italy; (G.R.); (M.C.); (L.G.); (S.B.); (S.M.); (S.M.)
- Correspondence: ; Tel.: +39-0737-403-458
| | - Livio Galosi
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Circonvallazione 93/95, 62024 Matelica (MC), Italy; (G.R.); (M.C.); (L.G.); (S.B.); (S.M.); (S.M.)
| | - Sara Berardi
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Circonvallazione 93/95, 62024 Matelica (MC), Italy; (G.R.); (M.C.); (L.G.); (S.B.); (S.M.); (S.M.)
| | - Sara Mangiaterra
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Circonvallazione 93/95, 62024 Matelica (MC), Italy; (G.R.); (M.C.); (L.G.); (S.B.); (S.M.); (S.M.)
| | - Subeide Mari
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Circonvallazione 93/95, 62024 Matelica (MC), Italy; (G.R.); (M.C.); (L.G.); (S.B.); (S.M.); (S.M.)
| | - Jan S. Suchodolski
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, Texas A&M University, College Station, TX 77843, USA; (J.S.S.); (J.A.L.); (J.M.S.)
| | - Jonathan A. Lidbury
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, Texas A&M University, College Station, TX 77843, USA; (J.S.S.); (J.A.L.); (J.M.S.)
| | - Joerg M. Steiner
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, Texas A&M University, College Station, TX 77843, USA; (J.S.S.); (J.A.L.); (J.M.S.)
| | - Graziano Pengo
- St. Antonio Veterinary Clinic, S.S. 415 Paullese 6, 26020 Madignano (CR), Italy;
| |
Collapse
|
22
|
Abstract
After a steady increase over recent years, last year we experienced our first drop in Impact Factor (IF): from 3.301 to 2.923. Although last year I concluded that I was pretty awful at predicting the future (Venema, 2017; and I still haven’t found a probiotic to improve that …), this result was not entirely unexpected. As a young journal (we have yet to celebrate our 10th anniversary), the IF will inevitably fluctuate a little. I keep track of the IF development over the course of the year and we are well on our way to achieving an IF of above 2 again (with still another 6 months to go until the end of June, when the new impact factors will be provided by Clarivate Analytics), which isn’t bad at all for a young journal.
Collapse
|