1
|
Chen Y, Fan X, Zhu X, Xiao J, Mu Y, Wang W, Wang C, Peng M, Zhou M. Effects of luxS gene on biofilm formation and fermentation property in Lactobacillus plantarum R. Food Res Int 2025; 203:115862. [PMID: 40022384 DOI: 10.1016/j.foodres.2025.115862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 01/16/2025] [Accepted: 01/29/2025] [Indexed: 03/03/2025]
Abstract
The biofilm formation of Lactobacilli is regulated by the LuxS/AI-2 quorum sensing (QS) system, but the mechanism of QS regulating the formation of Lactobacilli biofilm is not clear. This study aimed to investigate the mechanism of producing biofilm in L. plantarum R and its effect on the quality of fermented pickles based on LuxS/AI-2 QS system. Compared with L. plantarum R, the AI-2 activity of L. plantarum RΔluxS was significantly reduced, but the biofilm, extracellular protein, and eDNA were significantly increased. Moreover, expression of oppA, livJ, livH and comD genes was up-regulated and luxS, peg.3090 and peg.3093 was down-regulated. Results showed that peg.3093 was most significantly down-regulated in L. plantarum RΔluxS, and extremely significant negatively correlated with biofilm. The biofilm, eDNA, and extracellular protein of L. plantarum RΔpeg.3093 was higher than those of L. plantarum R. Moreover, metabolomics showed that deletion of luxS gene could decrease AI-2 level, promote anthocyanin and flavonol biosynthesis, lead to improving the antioxidant properties and quality of pickles. Thus, luxS gene knockout may increase biofilm by down-regulating the expression of peg.3093 to increase extracellular protein and eDNA. This study provides a theoretical basis for the enhancement of Lactobacillus biofilm and its application.
Collapse
Affiliation(s)
- Yang Chen
- Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Xin Fan
- Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Xiaoqing Zhu
- Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Junfeng Xiao
- Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Yang Mu
- Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Wenyue Wang
- Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Chao Wang
- Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Mingye Peng
- Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Mengzhou Zhou
- Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, Hubei 430068, China.
| |
Collapse
|
2
|
Lanh PT, Duong BT, Thu HT, Hoa NT, Quyen DV. Comprehensive analysis of the microbiome in Apis cerana honey highlights honey as a potential source for the isolation of beneficial bacterial strains. PeerJ 2024; 12:e17157. [PMID: 38560453 PMCID: PMC10981410 DOI: 10.7717/peerj.17157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 03/04/2024] [Indexed: 04/04/2024] Open
Abstract
Background Honey is a nutritious food made by bees from nectar and sweet deposits of flowering plants and has been used for centuries as a natural remedy for wound healing and other bacterial infections due to its antibacterial properties. Honey contains a diverse community of bacteria, especially probiotic bacteria, that greatly affect the health of bees and their consumers. Therefore, understanding the microorganisms in honey can help to ensure the quality of honey and lead to the identification of potential probiotic bacteria. Methods Herein, the bacteria community in honey produced by Apis cerana was investigated by applying the next-generation sequencing (NGS) method for the V3-V4 hypervariable regions of the bacterial 16S rRNA gene. In addition, lactic acid bacteria (LAB) in the honey sample were also isolated and screened for in vitro antimicrobial activity. Results The results showed that the microbiota of A. cerana honey consisted of two major bacterial phyla, Firmicutes (50%; Clostridia, 48.2%) and Proteobacteria (49%; Gammaproteobacteria, 47.7%). Among the 67 identified bacterial genera, the three most predominant genera were beneficial obligate anaerobic bacteria, Lachnospiraceae (48.14%), followed by Gilliamella (26.80%), and Enterobacter (10.16%). Remarkably, among the identified LAB, Lactobacillus kunkeei was found to be the most abundant species. Interestingly, the isolated L. kunkeei strains exhibited antimicrobial activity against some pathogenic bacteria in honeybees, including Klebsiella spp., Escherichia coli, Enterococcus faecalis, Pseudomonas aeruginosa and Staphylococcus aureus. This underscores the potential candidacy of L. kunkeei for developing probiotics for medical use. Taken together, our results provided new insights into the microbiota community in the A. cerana honey in Hanoi, Vietnam, highlighting evidence that honey can be an unexplored source for isolating bacterial strains with potential probiotic applications in honeybees and humans.
Collapse
Affiliation(s)
- Pham T. Lanh
- Laboratory of Molecular Microbiology, Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
- University of Science and Technology of Hanoi, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Bui T.T. Duong
- Laboratory of Molecular Microbiology, Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Ha T. Thu
- Laboratory of Molecular Microbiology, Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Nguyen T. Hoa
- Laboratory of Molecular Microbiology, Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Dong Van Quyen
- Laboratory of Molecular Microbiology, Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
- University of Science and Technology of Hanoi, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| |
Collapse
|
3
|
Khataybeh B, Jaradat Z, Ababneh Q. Anti-bacterial, anti-biofilm and anti-quorum sensing activities of honey: A review. JOURNAL OF ETHNOPHARMACOLOGY 2023; 317:116830. [PMID: 37400003 DOI: 10.1016/j.jep.2023.116830] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/31/2023] [Accepted: 06/20/2023] [Indexed: 07/05/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Man has used honey to treat diseases since ancient times, perhaps even before the history of medicine itself. Several civilizations have utilized natural honey as a functional and therapeutic food to ward off infections. Recently, researchers worldwide have been focusing on the antibacterial effects of natural honey against antibiotic-resistant bacteria. AIM OF THE STUDY This review aims to summarize research on the use of honey properties and constituents with their anti-bacterial, anti-biofilm, and anti-quorum sensing mechanisms of action. Further, honey's bacterial products, including probiotic organisms and antibacterial agents which are produced to curb the growth of other competitor microorganisms is addressed. MATERIALS AND METHODS In this review, we have provided a comprehensive overview of the antibacterial, anti-biofilm, and anti-quorum sensing activities of honey and their mechanisms of action. Furthermore, the review addressed the effects of antibacterial agents of honey from bacterial origin. Relevant information on the antibacterial activity of honey was obtained from scientific online databases such as Web of Science, Google Scholar, ScienceDirect, and PubMed. RESULTS Honey's antibacterial, anti-biofilm, and anti-quorum sensing activities are mostly attributed to four key components: hydrogen peroxide, methylglyoxal, bee defensin-1, and phenolic compounds. The performance of bacteria can be altered by honey components, which impact their cell cycle and cell morphology. To the best of our knowledge, this is the first review that specifically summarizes every phenolic compound identified in honey along with their potential antibacterial mechanisms of action. Furthermore, certain strains of beneficial lactic acid bacteria such as Bifidobacterium, Fructobacillus, and Lactobacillaceae, as well as Bacillus species can survive and even grow in honey, making it a potential delivery system for these agents. CONCLUSION Honey could be regarded as one of the best complementary and alternative medicines. The data presented in this review will enhance our knowledge of some of honey's therapeutic properties as well as its antibacterial activities.
Collapse
Affiliation(s)
- Batool Khataybeh
- Department of Nutrition and Food Technology, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Ziad Jaradat
- Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, Irbid, 22110, Jordan.
| | - Qutaiba Ababneh
- Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, Irbid, 22110, Jordan
| |
Collapse
|
4
|
Karaca B. Exopolysaccharides of lactic acid bacteria isolated from honeybee gut and effects of their antibiofilm activity against Streptococcus mutans. AN ACAD BRAS CIENC 2023; 95:e20220979. [PMID: 37878910 DOI: 10.1590/0001-3765202320220979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 01/19/2023] [Indexed: 10/27/2023] Open
Abstract
Streptococcus mutans is one of the main factors in formation of cariogenic biofilms. New strategies need to be developed to reduce the formation of cariogenic biofilms. For this purpose, bacterial exopolysaccharides (EPS) could be considered as new agents against biofilms. Therefore, cell-bound (b-EPS) and released exopolysaccharides (r-EPS) were extracted from the strains Apilactobacillus kunkeei K1.10 and Latilactobacillus curvatus Kar.9b isolated from the microbiota of honeybees, and their antibiofilm effects on S. mutans biofilm formation were determined. The highest reduction in biofilm formation was achieved by r-EPS of L. curvatus Kar.9b and A. kunkeei K1.10. Scanning electron micrographs (SEM) showed that r-EPS inhibited biofilm formation by reducing adhesion of S. mutans. To increase the production of r-EPS from A. kunkeei K1.10, the effects of different incubation conditions were also analyzed. The highest EPS production was obtained during 48 h-incubation at 37ºC in a medium containing 1% fructose. r-EPS can be used as a raw material to inhibit cariogenic biofilms. Further studies revealing the detailed structural analysis of r-EPS and the mechanism of action of its antibiofilm effect could be beneficial. Finally, b-EPS and r-EPS from lactic acid bacteria were found to have very different properties in terms of their antibiofilm properties.
Collapse
Affiliation(s)
- Basar Karaca
- Ankara University, Faculty of Science, Department of Biology, 06100, Ankara, Turkey
| |
Collapse
|
5
|
Thakur M, Khushboo, Kumar Y, Yadav V, Pramanik A, Dubey KK. Understanding resistance acquisition by Pseudomonas aeruginosa and possible pharmacological approaches in palliating its pathogenesis. Biochem Pharmacol 2023; 215:115689. [PMID: 37481132 DOI: 10.1016/j.bcp.2023.115689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 07/03/2023] [Accepted: 07/12/2023] [Indexed: 07/24/2023]
Abstract
Pseudomonas aeruginosa can utilize various virulence factors necessary for host infection and persistence. These virulence factors include pyocyanin, proteases, exotoxins, 2-heptyl-4-hydroxyquinoline N-oxide (HQNO), phospholipases, and siderophores that enable the bacteria to cause severe infections in immunocompromised individuals. P. aeruginosa falls into the category of nosocomial pathogens that are typically resistant to available antibiotics and therapeutic approaches. P. aeruginosa bio-film formation is a major concern in hospitals because it can cause chronic infection and increase the risk of mortality. Therefore, the development of new strategies to disrupt biofilm formation and improve antibiotic efficacy for the treatment of P. aeruginosa infections is crucial. Anti-biofilm and anti-quorum sensing (QS) activity can be viewed as an anti-virulence approach to control the infectious nature of P. aeruginosa. Inhibition of QS and biofilm formation can be achieved through pharmacological approaches such as phytochemicals and essential oils, which have shown promising results in laboratory studies. A regulatory protein called LasR plays a key role in QS signaling to coordinate gene expression. Designing an antagonist molecule that mimics the natural autoinducer might be the best approach for LasR inhibition. Here we reviewed the mechanism behind antibiotic resistance and alternative approaches to combat the pathogenicity of P. aeruginosa.
Collapse
Affiliation(s)
- Mony Thakur
- Department of Microbiology, Central University of Haryana, Mahendergarh, Haryana 123031, India
| | - Khushboo
- Department of Biotechnology, Central University of Haryana, Mahendergarh, Haryana 123031, India
| | - Yatin Kumar
- Department of Microbiology, Central University of Haryana, Mahendergarh, Haryana 123031, India
| | - Vinod Yadav
- Department of Microbiology, Central University of Haryana, Mahendergarh, Haryana 123031, India
| | - Avijit Pramanik
- Department of Microbiology, Central University of Haryana, Mahendergarh, Haryana 123031, India
| | - Kashyap Kumar Dubey
- Biomanufacturing and Process Development Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi-67, India.
| |
Collapse
|
6
|
Schindler Y, Rahav G, Nissan I, Valenci G, Ravins M, Hanski E, Ment D, Tekes-Manova D, Maor Y. Type VII secretion system and its effect on group B Streptococcus virulence in isolates obtained from newborns with early onset disease and colonized pregnant women. Front Cell Infect Microbiol 2023; 13:1168530. [PMID: 37545859 PMCID: PMC10400891 DOI: 10.3389/fcimb.2023.1168530] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 07/03/2023] [Indexed: 08/08/2023] Open
Abstract
Introduction GBS may cause a devastating disease in newborns. In early onset disease of the newborn the bacteria are acquired from the colonized mother during delivery. We characterized type VII secretion system (T7SS), exporting small proteins of the WXG100 superfamily, in group B Streptococci (GBS) isolates from pregnant colonized women and newborns with early onset disease (EOD) to better understand T7SS contribution to virulence in these different clinical scenarios. Methods GBS genomes [N=33, 17 EOD isolates (serotype III/ST17) and 16 colonizing isolates (12 serotype VI/ST1, one serotype VI/ST19, one serotype VI/ST6, and two serotype 3/ST19)] were analyzed for presence of T7SS genes and genes encoding WXG100 proteins. We also perform bioinformatic analysis. Galleria mellonella larvae were used to compare virulence between colonizing, EOD, and mutant EOD isolates. The EOD isolate number 118659 (III/ST17) was used for knocking out the essC gene encoding a membrane-bound ATPase, considered the driver of T7SS. Results Most GBS T7SS loci encoded core component genes: essC, membrane-embedded proteins (essA; essB), modulators of T7SS activity (esaA; esaB; esaC) and effectors: [esxA (SAG1039); esxB (SAG1030)].Bioinformatic analysis indicated that based on sequence type (ST) the clinicalGBS isolates encode at least three distinct subtypes of T7SS machinery. In all ST1isolates we identified two copies of esxA gene (encoding putative WXG100proteins), when only 23.5% of the ST17 isolates harbored the esxA gene. Five ST17isolates encoded two copies of the essC gene. Orphaned WXG100 molecule(SAG0230), distinct from T7SS locus, were found in all tested strains, except inST17 strains where the locus was found in only 23.5% of the isolates. In ST6 andST19 isolates most of the structure T7SS genes were missing. EOD isolates demonstrated enhanced virulence in G. mellonella modelcompared to colonizing isolates. The 118659DessC strain was attenuated in itskilling ability, and the larvae were more effective in eradicating 118659DessC. Conclusions We demonstrated that T7SS plays a role during infection. Knocking out the essC gene, considered the driver of T7SS, decreased the virulence of ST17 responsible for EOD, causing them to be less virulent comparable to the virulence observed in colonizing isolates.
Collapse
Affiliation(s)
- Yulia Schindler
- Microbiology Laboratory, Mayanei Hayeshua Medical Center, Bney Brak, Israel
- The Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Galia Rahav
- The Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
- Infectious Disease Unit, Sheba Medical Center, Ramat-Gan, Israel
| | - Israel Nissan
- Infectious Disease Unit, Sheba Medical Center, Ramat-Gan, Israel
- National Public Health Laboratory, Ministry of Health (Israel), Tel-Aviv, Israel
| | - Gal Valenci
- National Public Health Laboratory, Ministry of Health (Israel), Tel-Aviv, Israel
| | - Miriam Ravins
- Department of Microbiology and Molecular Genetics, The Institute for Medical Research, Israel-Canada (IMRIC), Faculty of Medicine, Jerusalem, Israel
| | - Emanuel Hanski
- Department of Microbiology and Molecular Genetics, The Institute for Medical Research, Israel-Canada (IMRIC), Faculty of Medicine, Jerusalem, Israel
| | - Dana Ment
- Department of Plant Pathology and Weed Research, Plant Protection Institute, Agricultural Research Organization, Volcani Institute, Rishon LeZion, Israel
| | - Dorit Tekes-Manova
- Microbiology Laboratory, Mayanei Hayeshua Medical Center, Bney Brak, Israel
| | - Yasmin Maor
- The Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
- Infectious Disease Unit, Wolfson Medical Center, Holon, Israel
| |
Collapse
|
7
|
Meradji M, Bachtarzi N, Mora D, Kharroub K. Characterization of Lactic Acid Bacteria Strains Isolated from Algerian Honeybee and Honey and Exploration of Their Potential Probiotic and Functional Features for Human Use. Foods 2023; 12:2312. [PMID: 37372522 DOI: 10.3390/foods12122312] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/27/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Using culture enrichment methods, 100 strains of bacilli of lactic acid bacteria (LAB) were isolated from honeybee Apis mellifera intermissa and fresh honey, collected from apiaries located in the north-east of Algeria. Amongst all of the isolated LAB, 19 selected strains were closely affiliated to four species-Fructobacillus fructosus (10), Apilactobacillus kunkeei (5), Lactobacillus kimbladii and/or Lactobacillus kullabergensis (4)-using phylogenetic and phenotypic approaches. The in vitro probiotic characteristics (simulated gastrointestinal fluids tolerance, autoaggregation and hydrophobicity abilities, antimicrobial activity and cholesterol reduction) and safety properties (hemolytic activity, antibiotic resistance and absence of biogenic amines) were evaluated. The results indicated that some strains showed promising potential probiotic properties. In addition, neither hemolytic activity nor biogenic amines were produced. The carbohydrate fermentation test (API 50 CHL) revealed that the strains could efficiently use a broad range of carbohydrates; additionally, four strains belonging to Apilactobacillus kunkeei and Fructobacillus fructosus were found to be exopolysaccharides (EPS) producers. This study demonstrates the honeybee Apis mellifera intermissa and one of her products as a reservoir for novel LAB with potential probiotic features, suggesting suitability for promoting host health.
Collapse
Affiliation(s)
- Meriem Meradji
- Laboratoire de Recherche Biotechnologie et Qualité des Aliments (BIOQUAL), Institut de la Nutrition, de l'Alimentation et des Technologies Agro-Alimentaires (INATAA), Université Frères Mentouri Constantine 1 (UFMC1), Route de Ain El Bey, Constantine 25000, Algeria
| | - Nadia Bachtarzi
- Laboratoire de Recherche Biotechnologie et Qualité des Aliments (BIOQUAL), Institut de la Nutrition, de l'Alimentation et des Technologies Agro-Alimentaires (INATAA), Université Frères Mentouri Constantine 1 (UFMC1), Route de Ain El Bey, Constantine 25000, Algeria
| | - Diego Mora
- Department of Food Environmental and Nutritional Sciences (DeFENS), University of Milan, 20122 Milan, Italy
| | - Karima Kharroub
- Laboratoire de Recherche Biotechnologie et Qualité des Aliments (BIOQUAL), Institut de la Nutrition, de l'Alimentation et des Technologies Agro-Alimentaires (INATAA), Université Frères Mentouri Constantine 1 (UFMC1), Route de Ain El Bey, Constantine 25000, Algeria
| |
Collapse
|
8
|
Neidhöfer C, Rathore K, Parčina M, Sieber MA. ESKAPEE Pathogen Biofilm Control on Surfaces with Probiotic Lactobacillaceae and Bacillus species. Antibiotics (Basel) 2023; 12:871. [PMID: 37237774 PMCID: PMC10215598 DOI: 10.3390/antibiotics12050871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/21/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
Combatting the rapidly growing threat of antimicrobial resistance and reducing prevalence and transmission of ESKAPEE pathogens in healthcare settings requires innovative strategies, one of which is displacing these pathogens using beneficial microorganisms. Our review comprehensively examines the evidence of probiotic bacteria displacing ESKAPEE pathogens, with a focus on inanimate surfaces. A systematic search was conducted using the PubMed and Web of Science databases on 21 December 2021, and 143 studies were identified examining the effects of Lactobacillaceae and Bacillus spp. cells and products on the growth, colonization, and survival of ESKAPEE pathogens. While the diversity of study methods limits evidence analysis, results presented by narrative synthesis demonstrate that several species have the potential as cells or their products or supernatants to displace nosocomial infection-causing organisms in a variety of in vitro and in vivo settings. Our review aims to aid the development of new promising approaches to control pathogen biofilms in medical settings by informing researchers and policymakers about the potential of probiotics to combat nosocomial infections. More targeted studies are needed to assess safety and efficacy of different probiotic formulations, followed by large-scale studies to assess utility in infection control and medical practice.
Collapse
Affiliation(s)
- Claudio Neidhöfer
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Kamni Rathore
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
- Institute for Functional Gene Analytics, Bonn-Rhein-Sieg University of Applied Sciences, 53757 Sankt Augustin, Germany
| | - Marijo Parčina
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Martin A. Sieber
- Institute for Functional Gene Analytics, Bonn-Rhein-Sieg University of Applied Sciences, 53757 Sankt Augustin, Germany
| |
Collapse
|
9
|
Adhesion and Anti-Adhesion Abilities of Potentially Probiotic Lactic Acid Bacteria and Biofilm Eradication of Honeybee ( Apis mellifera L.) Pathogens. Molecules 2022; 27:molecules27248945. [PMID: 36558073 PMCID: PMC9786635 DOI: 10.3390/molecules27248945] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/11/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Lactic acid bacteria (LAB) naturally inhabits the organisms of honeybees and can exhibit adhesive properties that protect these insects against various pathogenic microorganisms. Thus, cell surface (auto-aggregation, co-aggregation, hydrophobicity) and adhesive properties of LAB to two abiotic (polystyrene and glass) and four biotic (collagen, gelatin, mucus, and intestinal Caco-2 cells) surfaces were investigated. Additionally, anti-adhesion activity and the eradication of honeybee pathogen biofilms by LAB metabolites (culture supernatants) were determined. The highest hydrophobicity was demonstrated by Pediococcus pentosaceus 19/1 (63.16%) and auto-aggregation by Lactiplantibacillus plantarum 18/1 (71.91%). All LAB showed a broad spectrum of adhesion to the tested surfaces. The strongest adhesion was noted for glass. The ability to co-aggregate with pathogens was tested for the three most potently adherent LAB strains. All showed various levels of co-aggregation depending on the pathogen. The eradication of mature pathogen biofilms by LAB metabolites appeared to be weaker than their anti-adhesive properties against pathogens. The most potent anti-adhesion activity was observed for L. plantarum 18/1 (98.80%) against Paenibacillus apiarius DSM 5582, while the strongest biofilm eradication was demonstrated by the same LAB strain against Melissococcus plutonius DSM 29964 (19.87%). The adhesive and anti-adhesive activity demonstrated by LAB can contribute to increasing the viability of honeybee colonies and improving the conditions in apiaries.
Collapse
|
10
|
Lactobacilli, a Weapon to Counteract Pathogens through the Inhibition of Their Virulence Factors. J Bacteriol 2022; 204:e0027222. [PMID: 36286515 PMCID: PMC9664955 DOI: 10.1128/jb.00272-22] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To date, several studies have reported an alarming increase in pathogen resistance to current antibiotic therapies and treatments. Therefore, the search for effective alternatives to counter their spread and the onset of infections is becoming increasingly important.
Collapse
|
11
|
Hu MX, He F, Guo YX, Mo LZ, Zhu X. Lactobacillus reuteri Biofilms Inhibit Pathogens and Regulate Microbiota in In Vitro Fecal Fermentation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:11935-11943. [PMID: 36111836 DOI: 10.1021/acs.jafc.2c02372] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Bacteria colonizing the gastrointestinal tract generally grow well in biofilms. In recent years, probiotic biofilms have been considered the most promising fourth-generation probiotics. However, the research into the functions of probiotic biofilms is just starting. In this study, Lactobacillus reuteri DSM 17938 biofilms formed on electrospun cellulose acetate nanofibrous scaffolds were contrasted with planktonic cells. Pathogen inhibition analysis of Escherichia coli, Staphylococcus aureus, and Listeria monocytogenes suggested a significant distinction between the planktonic and biofilm groups. In human fecal fermentation, L. reuteri remodeled the microbiota by decreasing the relative abundances of Proteobacteria, Escherichia-Shigella, and Desulfovibrio and increasing the relative abundances of Phascolarctobacterium, Bacteroides, and Lactobacillus. Moreover, L. reuteri biofilms played more positive roles in microbiota modulation and short-chain fatty acid production than planktonic L. reuteri. These findings provide an understanding of the beneficial effects of probiotic biofilms, laying a foundation for the application of probiotic biofilms as a health promoter.
Collapse
Affiliation(s)
- Meng-Xin Hu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Fei He
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Ya-Xin Guo
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Li-Zhen Mo
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Xuan Zhu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| |
Collapse
|
12
|
Larval gut microbiome of Pelidnota luridipes (Coleoptera: Scarabaeidae): high bacterial diversity, different metabolic profiles on gut chambers and species with probiotic potential. World J Microbiol Biotechnol 2022; 38:210. [PMID: 36050590 DOI: 10.1007/s11274-022-03387-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 08/11/2022] [Indexed: 10/14/2022]
Abstract
Pelidnota luridipes Blanchard (1850) is a tropical beetle of the family Scarabaeidae, whose larvae live on wood without parental care. Microbiota of mid- and hindgut of larvae was evaluated by culture-dependent and independent methods, and the results show a diverse microbiota, with most species of bacteria and fungi shared between midgut and hindgut. We isolated 272 bacterial and 29 yeast isolates, identified in 57 and 7 species, respectively, while using metabarcoding, we accessed 1,481 and 267 OTUs of bacteria and fungi, respectively. The composition and abundance of bacteria and fungi differed between mid- and hindgut, with a tendency for higher richness and diversity of yeasts in the midgut, and bacteria on the hindgut. Some taxa are abundant in the intestine of P. luridipes larvae, such as Firmicutes, Bacteroidetes, Proteobacteria, and Actinobacteria; as well as Saccharomycetales and Trichosporonales yeasts. Mid- and hindgut metabolic profiles differ (e.g. biosynthesis of amino acids, cofactors, and lipopolysaccharides) with higher functional diversity in the hindgut. Isolates have different functional traits such as secretion of hydrolytic enzymes and antibiosis against pathogens. Apiotrichum siamense L29A and Bacillus sp. BL17B protected larvae of the moth Galleria mellonella, against infection by the pathogens Listeria monocytogenes ATCC19111 and Pseudomonas aeruginosa ATCC 9027. This is the first work with the larval microbiome of a Rutelini beetle, demonstrating its diversity and potential in prospecting microbial products as probiotics. The functional role of microbiota for the nutrition and adaptability of P. luridipes larvae needs to be evaluated in the future.
Collapse
|
13
|
Tlais AZA, Polo A, Filannino P, Cantatore V, Gobbetti M, Di Cagno R. Biofilm formation as an extra gear for Apilactobacillus kunkeei to counter the threat of agrochemicals in honeybee crop. Microb Biotechnol 2022; 15:2160-2175. [PMID: 35417624 PMCID: PMC9328740 DOI: 10.1111/1751-7915.14051] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/08/2022] [Accepted: 03/09/2022] [Indexed: 01/04/2023] Open
Abstract
The alteration of a eubiosis status in honeybees' gut microbiota is directly linked to the occurrence of diseases, and likely to the honeybees decline. Since fructophilic lactobacilli were suggested as symbionts for honeybees, we mechanistically investigated their behaviour under the exposure to agrochemicals (Roundup, Mediator and Reldan containing glyphosate, imidacloprid and chlorpyrifos-methyl as active ingredients respectively) and plant secondary metabolites (nicotine and p-coumaric acid) ingested by honeybees as part of their diet. The effects of exposure to agrochemicals and plant secondary metabolites were assessed both on planktonic cells and sessile communities of three biofilm-forming strains of Apilactobacillus kunkeei. We identified the high sensitivity of A. kunkeei planktonic cells to Roundup and Reldan, while cells embedded in mature biofilms had increased resistance to the same agrochemicals. However, agrochemicals still exerted a substantial inhibitory/control effect if the exposure was during the preliminary steps of biofilm formation. The level of susceptibility resulted to be strain-specific. Exopolysaccharides resulted in the main component of extracellular polymeric matrix (ECM) in biofilm, but the exposure to Roundup caused a change in ECM production and composition. Nicotine and p-coumaric acid had a growth-promoting effect in sessile communities, although no effect was found on planktonic growth.
Collapse
Affiliation(s)
| | - Andrea Polo
- Faculty of Sciences and TechnologyLibera Università di BolzanoBolzanoItaly
| | - Pasquale Filannino
- Department of Soil, Plant and Food ScienceUniversity of Bari Aldo MoroBariItaly
| | - Vincenzo Cantatore
- Department of Soil, Plant and Food ScienceUniversity of Bari Aldo MoroBariItaly
| | - Marco Gobbetti
- Faculty of Sciences and TechnologyLibera Università di BolzanoBolzanoItaly
| | - Raffaella Di Cagno
- Faculty of Sciences and TechnologyLibera Università di BolzanoBolzanoItaly
| |
Collapse
|
14
|
Investigation of the probiotic and metabolic potential of Fructobacillus tropaeoli and Apilactobacillus kunkeei from apiaries. Arch Microbiol 2022; 204:432. [PMID: 35759032 DOI: 10.1007/s00203-022-03000-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 05/13/2022] [Accepted: 05/15/2022] [Indexed: 12/28/2022]
Abstract
Honeybee products have been among important consumer products throughout history. Microbiota has attracted attention in recent years due to both their probiotic value and industrial potential. Fructophilic lactic acid bacteria (FLAB), whose field of study has been expanding rapidly in the last 20 years, are among the groups that can be isolated from the bee gut. This study aimed to isolate FLAB from the honeybees of two different geographic regions in Turkey and investigate their probiotic, metabolic and anti-quorum sensing (anti-QS) potential. Metabolic properties were investigated based on fructose toleration and acid and diacetyl production while the probiotic properties of the isolates were determined by examining pH, pepsin, pancreatin resistance, antimicrobial susceptibility, and antimicrobial activity. Anti-QS activities were also evaluated with the Chromobacterium violaceum biosensor strain. Two FLAB members were isolated and identified by the 16S rRNA analysis as Fructobacillus tropaeoli and Apilactobacillus kunkeei, which were found to be tolerant to high fructose, low pH, pepsin, pancreatin, and bile salt environments. Both isolates showed anti-QS activity against the C. violaceum biosensor strain and no diacetyl production. The daily supernatants of the isolates inhibited the growth of Enterococcus faecalis ATCC 29212 among the selected pathogens. The isolates were found resistant to kanamycin, streptomycin, erythromycin, and clindamycin. In the evaluation of the probiotic potential of these species, the negative effect of antibiotics and other chemicals to which honeybees are directly or indirectly exposed draws attention within the scope of the "One Health" approach.
Collapse
|
15
|
Yun BR, Truong AT, Choi YS, Lee MY, Kim BY, Seo M, Yoon SS, Yoo MS, Van Quyen D, Cho YS. Comparison of the gut microbiome of sacbrood virus-resistant and -susceptible Apis cerana from South Korea. Sci Rep 2022; 12:10010. [PMID: 35705585 PMCID: PMC9200864 DOI: 10.1038/s41598-022-13535-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 05/25/2022] [Indexed: 11/12/2022] Open
Abstract
Honey bees are important pollinators for the conservation of the ecosystem and agricultural products and provide a variety of products important for human use, such as honey, pollen, and royal jelly. Sacbrood disease (SD) is a devastating viral disease in Apis cerana; an effective preventive measure for SD is urgently needed. In this study, the relationship between the gut microbiome of honey bees and SD was investigated by pyrosequencing. Results revealed that sacbrood virus (SBV)-resistant A. cerana strains harbour a unique acetic acid bacterium, Bombella intestini, and the lactic acid bacteria (LAB) Lactobacillus (unclassified)_uc, Bifidobacterium longum, B. catenulatum, Lactococcus lactis, and Leuconostoc mesenteroides in larvae and Hafnia alvei, B. indicum, and the LAB L. mellifer and Lactobacillus HM215046_s in adult bees. Changes in the gut microbiome due to SBV infection resulted in loss of bacteria that could affect host nutrients and inhibit honey bee pathogens, such as Gilliamella JFON_s, Gilliamella_uc, Pseudomonas putida, and L. kunkeei in A. cerana larvae and Frischella_uc, Pantoea agglomerans, Snodgrassella_uc, and B. asteroides in adult bees. These findings provide important information for the selection of probiotics for A. cerana larvae and adults to prevent pathogenic infections and keep honey bees healthy.
Collapse
Affiliation(s)
- Bo-Ram Yun
- Parasitic and Insect Disease Laboratory, Bacterial Disease Division, Department of Animal and Plant Health Research, Animal and Plant Quarantine Agency, Gimcheon, 39660, Republic of Korea.,Division of Vectors and Parasitic Diseases, Korea Disease Control and Prevention Agency, 187 Osongsaengmyeong 2-ro, Heungdeok-gu, Cheongju, Chungbuk, 28159, Republic of Korea.,Department of Veterinary Medicine, College of Veterinary Medicine, Kyungpook National University, Buk-gu, Daegu, 41566, Republic of Korea
| | - A-Tai Truong
- Parasitic and Insect Disease Laboratory, Bacterial Disease Division, Department of Animal and Plant Health Research, Animal and Plant Quarantine Agency, Gimcheon, 39660, Republic of Korea.,Faculty of Biotechnology, Thai Nguyen University of Sciences, Thai Nguyen, 250000, Vietnam
| | - Yong Soo Choi
- Department of Agricultural Biology, National Institute of Agricultural Science, Wanju, 55365, Republic of Korea
| | - Man Young Lee
- Department of Agricultural Biology, National Institute of Agricultural Science, Wanju, 55365, Republic of Korea
| | | | - Minjung Seo
- ChunLab Inc., Seoul, 06194, Republic of Korea
| | - Soon-Seek Yoon
- Parasitic and Insect Disease Laboratory, Bacterial Disease Division, Department of Animal and Plant Health Research, Animal and Plant Quarantine Agency, Gimcheon, 39660, Republic of Korea
| | - Mi-Sun Yoo
- Parasitic and Insect Disease Laboratory, Bacterial Disease Division, Department of Animal and Plant Health Research, Animal and Plant Quarantine Agency, Gimcheon, 39660, Republic of Korea.
| | - Dong Van Quyen
- University of Science and Technology of Ha Noi, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam.
| | - Yun Sang Cho
- Parasitic and Insect Disease Laboratory, Bacterial Disease Division, Department of Animal and Plant Health Research, Animal and Plant Quarantine Agency, Gimcheon, 39660, Republic of Korea.
| |
Collapse
|
16
|
Savio C, Mugo-Kamiri L, Upfold JK. Bugs in Bugs: The Role of Probiotics and Prebiotics in Maintenance of Health in Mass-Reared Insects. INSECTS 2022; 13:376. [PMID: 35447818 PMCID: PMC9025317 DOI: 10.3390/insects13040376] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/07/2022] [Accepted: 04/08/2022] [Indexed: 02/07/2023]
Abstract
Interactions between insects and their microbiota affect insect behaviour and evolution. When specific microorganisms are provided as a dietary supplement, insect reproduction, food conversion and growth are enhanced and health is improved in cases of nutritional deficiency or pathogen infection. The purpose of this review is to provide an overview of insect-microbiota interactions, to review the role of probiotics, their general use in insects reared for food and feed, and their interactions with the host microbiota. We review how bacterial strains have been selected for insect species reared for food and feed and discuss methods used to isolate and measure the effectiveness of a probiotic. We outline future perspectives on probiotic applications in mass-reared insects.
Collapse
Affiliation(s)
- Carlotta Savio
- University of Paris Saclay, INRAE, Micalis, GME, 78350 Jouy en Josas, France;
- Laboratory of Entomology, Wageningen University, 6708 PB Wageningen, The Netherlands
| | - Loretta Mugo-Kamiri
- Institut de Recherche sur la Biologie de l’Insecte, UMR 7261, CNRS-University of Tours, 37200 Tours, France;
- Centre for Ecology and Conservation, Penryn Campus, College of Life and Environmental Science, University of Exeter, Cornwall TR10 9FE, UK
| | - Jennifer K. Upfold
- University of Paris Saclay, INRAE, Micalis, GME, 78350 Jouy en Josas, France;
- Department of Plant and Environmental Science, University of Copenhagen, Thorvaildsensvej 40, 1871 Frederiksberg, Denmark
| |
Collapse
|
17
|
Abstract
Fructophilic lactic acid bacteria (FLAB) are heterofermentative and related to the genera Fructilactobacillus, Convivina, Leuconostoc, Oenococcus and Weissella. Although they generally prefer fructose above glucose, obligate heterofermentative species will ferment glucose in the presence of external electron acceptors such as pyruvate and fructose. Little is known about the presence of FLAB in the human gut, let alone probiotic properties. In this review we discuss the possible role FLAB may have in the human gastro-intestinal tract (GIT) and highlight the advantages and disadvantages these bacteria may have in individuals with a diet high in fructose.
Collapse
Affiliation(s)
- L M T Dicks
- Department of Microbiology, University of Stellenbosch, Matieland, Stellenbosch, 7602, South Africa
| | - A Endo
- Department of Food, Aroma and Cosmetic Chemistry, Tokyo University of Agriculture, Hokkaido 099-2493, Japan
| |
Collapse
|
18
|
Dominance of Fructose-Associated Fructobacillus in the Gut Microbiome of Bumblebees (Bombus terrestris) Inhabiting Natural Forest Meadows. INSECTS 2022; 13:insects13010098. [PMID: 35055941 PMCID: PMC8779478 DOI: 10.3390/insects13010098] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 12/27/2021] [Accepted: 01/10/2022] [Indexed: 02/01/2023]
Abstract
Simple Summary A vast array of microorganisms colonize invertebrates and vertebrates. Most of these microbes reside in the digestive tract, where they constitute the intestinal (gut) microbiome. Some microbes are commensal, coexisting with their host without causing harm, while others can be mutualistic or pathogenic. Mutualistic microorganisms perform many health-related functions such as promoting digestion and acquisition of nutrients; hormone regulation; maintenance and control of the immune system; regulation of homeostasis and stress physiology of the body; insecticide resistance; production of certain vitamins; and providing protection against pathogenic microorganisms, parasites, and diseases. Bee-specific bacterial genera such as Lactobacillus, Snodgrassella, and Gilliamella dominate the gut communities of many bumblebees. This study confirmed Lactobacillus, Snodgrassella, and Gilliamella as dominant gut bacteria of the buff-tailed bumblebee Bombus terrestris in the agricultural landscape. However, we show that the guts of B. terrestris from natural forest habitats can be dominated by fructose-associated Fructobacillus spp. Our findings may have important implications for understanding the ecological role of bumblebees and the reasons for the decline of key pollinators. Abstract Bumblebees are key pollinators in agricultural landscapes. However, little is known about how gut microbial communities respond to anthropogenic changes. We used commercially produced colonies of buff-tailed bumblebees (Bombus terrestris) placed in three habitats. Whole guts (midgut, hindgut, and rectum) of B. terrestris specimens were dissected from the body and analyzed using 16S phylogenetic community analysis. We observed significantly different bacterial community composition between the agricultural landscapes (apple orchards and oilseed rape (Brassica napus) fields) and forest meadows, whereas differences in gut communities between the orchards and oilseed rape fields were nonsignificant. Bee-specific bacterial genera such as Lactobacillus, Snodgrassella, and Gilliamella dominated gut communities of B. terrestris specimens. In contrast, the guts of B. terrestris from forest meadows were dominated by fructose-associated Fructobacillus spp. Bacterial communities of workers were the most diverse. At the same time, those of males and young queens were less diverse, possibly reflecting greater exposure to the colony’s inner environment compared to the environment outside the colony, as well as bumblebee age. Our results suggest that habitat quality, exposure to environmental microbes, nectar quality and accessibility, and land use significantly affect gut bacterial composition in B. terrestris.
Collapse
|
19
|
El Khoury S, Gauthier J, Bouslama S, Cheaib B, Giovenazzo P, Derome N. Dietary Contamination with a Neonicotinoid (Clothianidin) Gradient Triggers Specific Dysbiosis Signatures of Microbiota Activity along the Honeybee ( Apis mellifera) Digestive Tract. Microorganisms 2021; 9:microorganisms9112283. [PMID: 34835409 PMCID: PMC8619528 DOI: 10.3390/microorganisms9112283] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/25/2021] [Accepted: 10/27/2021] [Indexed: 12/14/2022] Open
Abstract
Pesticides are increasing honeybee (Apis mellifera) death rates globally. Clothianidin neonicotinoid appears to impair the microbe–immunity axis. We conducted cage experiments on newly emerged bees that were 4–6 days old and used a 16S rRNA metataxonomic approach to measure the impact of three sublethal clothianidin concentrations (0.1, 1 and 10 ppb) on survival, sucrose syrup consumption and gut microbiota community structure. Exposure to clothianidin significantly increased mortality in the three concentrations compared to controls. Interestingly, the lowest clothianidin concentration was associated with the highest mortality, and the medium concentration with the highest food intake. Exposure to clothianidin induced significant variation in the taxonomic distribution of gut microbiota activity. Co-abundance network analysis revealed local dysbiosis signatures specific to each gut section (midgut, ileum and rectum) were driven by specific taxa. Our findings confirm that exposure to clothianidin triggers a reshuffling of beneficial strains and/or potentially pathogenic taxa within the gut, suggesting a honeybee’s symbiotic defense systems’ disruption, such as resistance to microbial colonization. This study highlights the role of weak transcriptional activity taxa in maintaining a stable honeybee gut microbiota. Finally, the early detection of gut dysbiosis in honeybees is a promising biomarker in hive management for assessing the impact exposure to sublethal xenobiotics.
Collapse
Affiliation(s)
- Sarah El Khoury
- Department of Biology, Laval University, Québec, QC G1V 0A6, Canada; (S.E.K.); (J.G.); (S.B.); (P.G.)
- Institut de Biologie Intégrative et des Systèmes (IBIS), Laval University, Québec, QC G1V 0A6, Canada
| | - Jeff Gauthier
- Department of Biology, Laval University, Québec, QC G1V 0A6, Canada; (S.E.K.); (J.G.); (S.B.); (P.G.)
- Institut de Biologie Intégrative et des Systèmes (IBIS), Laval University, Québec, QC G1V 0A6, Canada
| | - Sidki Bouslama
- Department of Biology, Laval University, Québec, QC G1V 0A6, Canada; (S.E.K.); (J.G.); (S.B.); (P.G.)
- Institut de Biologie Intégrative et des Systèmes (IBIS), Laval University, Québec, QC G1V 0A6, Canada
| | - Bachar Cheaib
- Institute of Biodiversity, Animal Health & Comparative Medicine, University of Glasgow, Glasgow G12 8QQ, UK;
| | - Pierre Giovenazzo
- Department of Biology, Laval University, Québec, QC G1V 0A6, Canada; (S.E.K.); (J.G.); (S.B.); (P.G.)
| | - Nicolas Derome
- Department of Biology, Laval University, Québec, QC G1V 0A6, Canada; (S.E.K.); (J.G.); (S.B.); (P.G.)
- Institut de Biologie Intégrative et des Systèmes (IBIS), Laval University, Québec, QC G1V 0A6, Canada
- Correspondence:
| |
Collapse
|
20
|
Bivolarski V, Iliev I, Ivanova I, Nikolova M, Salim A, Mihaylova G, Vasileva T. Characterization of structure/prebiotic potential correlation of glucans and oligosaccharides synthetized by glucansucrases from fructophilic lactic acid bacteria from honey bee Apis mellifera. BIOTECHNOL BIOTEC EQ 2021. [DOI: 10.1080/13102818.2021.1911683] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Affiliation(s)
- Veselin Bivolarski
- Department of Biochemistry and Microbiology, Faculty of Biology, Plovdiv University “Paisii Hilendarski”, Plovdiv, Bulgaria
| | - Ilia Iliev
- Department of Biochemistry and Microbiology, Faculty of Biology, Plovdiv University “Paisii Hilendarski”, Plovdiv, Bulgaria
| | - Iskra Ivanova
- Department of General and Industrial Microbiology, Faculty of Biology, Sofia University “St. Kliment Ohridski”, Sofia, Bulgaria
| | - Mariana Nikolova
- Department of Biochemistry and Microbiology, Faculty of Biology, Plovdiv University “Paisii Hilendarski”, Plovdiv, Bulgaria
| | - Ayshe Salim
- Department of Biochemistry, Molecular Medicine and Nutrigenomics, Faculty of Pharmacy, Medical University of Varna, Varna, Bulgaria
| | - Galya Mihaylova
- Department of Biochemistry, Molecular Medicine and Nutrigenomics, Faculty of Pharmacy, Medical University of Varna, Varna, Bulgaria
| | - Tonka Vasileva
- Department of Biochemistry and Microbiology, Faculty of Biology, Plovdiv University “Paisii Hilendarski”, Plovdiv, Bulgaria
| |
Collapse
|
21
|
Probiotic Properties and Potentiality of Lactiplantibacillus plantarum Strains for the Biological Control of Chalkbrood Disease. J Fungi (Basel) 2021; 7:jof7050379. [PMID: 34066127 PMCID: PMC8151994 DOI: 10.3390/jof7050379] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 05/08/2021] [Accepted: 05/09/2021] [Indexed: 01/22/2023] Open
Abstract
Ascosphaera apis is an entomopathogenic fungus that affects honeybees. In stressful conditions, this fungus (due not only to its presence, but also to the combination of other biotic and abiotic stressors) can cause chalkbrood disease. In recent years, there has been increasing attention paid towards the use of lactic acid bacteria (LAB) in the honeybees' diets to improve their health, productivity and ability to resist infections by pathogenic microorganisms. The screening of 22 strains of Lactiplantibacillus plantarum, isolated from the gastrointestinal tracts of honeybees and beebread, led to the selection of five strains possessing high antagonistic activity against A. apis. This study focused on the antifungal activity of these five strains against A. apis DSM 3116 and DSM 3117 using different matrices: cell lysate, broth culture, cell-free supernatant and cell pellet. In addition, some functional properties and the antioxidant activity of the five L. plantarum strains were evaluated. All five strains exhibited high antagonistic activity against A. apis, good surface cellular properties (extracellular polysaccharide (EPS) production and biofilm formation) and antioxidant activity. Although preliminary, these results are encouraging, and in future investigations, the effectiveness of these bacteria as probiotics in honeybee nutrition will be tested in vivo in the context of an eco-friendly strategy for the biological control of chalkbrood disease.
Collapse
|
22
|
Brudzynski K. Honey as an Ecological Reservoir of Antibacterial Compounds Produced by Antagonistic Microbial Interactions in Plant Nectars, Honey and Honey Bee. Antibiotics (Basel) 2021; 10:551. [PMID: 34065141 PMCID: PMC8151657 DOI: 10.3390/antibiotics10050551] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 05/07/2021] [Accepted: 05/07/2021] [Indexed: 04/08/2023] Open
Abstract
The fundamental feature of "active honeys" is the presence and concentration of antibacterial compounds. Currently identified compounds and factors have been described in several review papers without broader interpretation or links to the processes for their formation. In this review, we indicate that the dynamic, antagonistic/competitive microbe-microbe and microbe-host interactions are the main source of antibacterial compounds in honey. The microbial colonization of nectar, bees and honey is at the center of these interactions that in consequence produce a range of defence molecules in each of these niches. The products of the microbial interference and exploitive competitions include antimicrobial peptides, antibiotics, surfactants, inhibitors of biofilm formation and quorum sensing. Their accumulation in honey by horizontal transfer might explain honey broad-spectrum, pleiotropic, antibacterial activity. We conclude that honey is an ecological reservoir of antibacterial compounds produced by antagonistic microbial interactions in plant nectars, honey and honey bee. Thus, refocusing research on secondary metabolites resulting from these microbial interactions might lead to discovery of new antibacterial compounds in honey that are target-specific, i.e., acting on specific cellular components or inhibiting the essential cellular function.
Collapse
Affiliation(s)
- Katrina Brudzynski
- Department of Drug Discovery, Bee-Biomedicals Inc., St. Catharines, ON L2T 3T4, Canada;
- Formerly Department of Biological Sciences, Brock University, St. Catharines, ON L2T 3T4, Canada
| |
Collapse
|
23
|
Carreño A, Gacitúa M, Solis-Céspedes E, Páez-Hernández D, Swords WB, Meyer GJ, Preite MD, Chávez I, Vega A, Fuentes JA. New Cationic fac-[Re(CO) 3(deeb)B2] + Complex, Where B2 Is a Benzimidazole Derivative, as a Potential New Luminescent Dye for Proteins Separated by SDS-PAGE. Front Chem 2021; 9:647816. [PMID: 33842435 PMCID: PMC8027506 DOI: 10.3389/fchem.2021.647816] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 01/29/2021] [Indexed: 01/14/2023] Open
Abstract
Sodium-dodecyl-sulfate polyacrylamide gel electrophoresis (SDS-PAGE) can be used to separate proteins based mainly on their size such as in denaturing gels. Different staining methods have been reported to observe proteins in the gel matrix, where the most used dyes are generally anionic. Anionic dyes allow for interactions with protonated amino acids, retaining the dye in the proteins. Fluorescent staining is an alternative technique considered to be sensitive, safe, and versatile. Some anionic complexes based on d6 transition metals have been used for this purpose, where cationic dyes have been less explored in this context. In this work, we synthesized and characterized a new monocationic rhenium complex fac-[Re(CO)3(deeb)B2]+ (where deeb is 4,4′-bis(ethoxycarbonyl)-2,2′-bpy and B2 is 2,4-di-tert-butyl-6-(3H-imidazo[4,5-c]pyridine-2-yl)phenol). We carried out a structural characterization of this complex by MS+, FTIR, 1H NMR, D2O exchange, and HHCOSY. Moreover, we carried out UV-Vis, luminescence, and cyclic voltammetry experiments to understand the effect of ligands on the complex’s electronic structure. We also performed relativistic theoretical calculations using the B3LYP/TZ2P level of theory and R-TDDFT within a dielectric continuum model (COSMO) to better understand electronic transitions and optical properties. We finally assessed the potential of fac-[Re(CO)3(deeb)B2]+ (as well as the precursor fac-Re(CO)3(deeb)Br and the free ligand B2) to stain proteins separated by SDS-PAGE. We found that only fac-[Re(CO)3(deeb)B2]+ proved viable to be directly used as a luminescent dye for proteins, presumably due to its interaction with negatively charged residues in proteins and by weak interactions provided by B2. In addition, fac-[Re(CO)3(deeb)B2]+ seems to interact preferentially with proteins and not with the gel matrix despite the presence of sodium dodecyl sulfate (SDS). In future applications, these alternative cationic complexes might be used alone or in combination with more traditional anionic compounds to generate counterion dye stains to improve the process.
Collapse
Affiliation(s)
- Alexander Carreño
- Center of Applied NanoSciences (CANS), Facultad de Ciencias Exactas, Universidad Andres Bello, Santiago, Chile
| | | | - Eduardo Solis-Céspedes
- Escuela de Bioingeniería Médica, Facultad de Medicina, Universidad Católica del Maule, Talca, Chile.,Laboratorio de Bioinformática y Química Computacional, Facultad de Medicina, Universidad Católica del Maule, Talca, Chile
| | - Dayán Páez-Hernández
- Center of Applied NanoSciences (CANS), Facultad de Ciencias Exactas, Universidad Andres Bello, Santiago, Chile
| | - Wesley B Swords
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Gerald J Meyer
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Marcelo D Preite
- Departamento de Química Orgánica, Facultad de Química y Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Ivonne Chávez
- Departamento de Química Inorgánica, Facultad de Química y Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Andrés Vega
- Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andres Bello, Viña del Mar, Chile.,Centro para el Desarrollo de la Nanociencia y la Nanotecnología Cedenna, Santiago, Chile
| | - Juan A Fuentes
- Laboratorio de Genética y Patogénesis Bacteriana, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| |
Collapse
|
24
|
Draft Genome Sequences of 3 Strains of Apilactobacillus kunkeei Isolated from the Bee Gut Microbial Community. Microbiol Resour Announc 2021; 10:10/13/e00088-21. [PMID: 33795338 PMCID: PMC8104046 DOI: 10.1128/mra.00088-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Apilactobacillus kunkeei is a fructophilic lactic acid bacterium found in fructose-rich environments such as flowers, fruits, fermented food, honey, and honeydew, as well as in the guts of fructose-feeding insects. We report here the draft genome sequences of three Apilactobacillus kunkeei strains isolated from the gut microbial community of three honeybees. Apilactobacillus kunkeei is a fructophilic lactic acid bacterium found in fructose-rich environments such as flowers, fruits, fermented food, honey, and honeydew, as well as in the guts of fructose-feeding insects. We report here the draft genome sequences of three Apilactobacillus kunkeei strains isolated from the gut microbial community of three honeybees.
Collapse
|
25
|
Pachla A, Ptaszyńska AA, Wicha M, Kunat M, Wydrych J, Oleńska E, Małek W. Insight into probiotic properties of lactic acid bacterial endosymbionts of Apis mellifera L. derived from the Polish apiary. Saudi J Biol Sci 2021; 28:1890-1899. [PMID: 33732075 PMCID: PMC7938192 DOI: 10.1016/j.sjbs.2020.12.040] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/21/2020] [Accepted: 12/23/2020] [Indexed: 12/22/2022] Open
Abstract
Taking into account that fructophilic lactic acid bacteria (FLAB) can play an important role in the health of honey bees and can be used as probiotics, phenotypic properties of probiotic interest of Lactobacillus kunkeei (12 strains) and Fructobacillus fructossus bacteria (2 strains), isolated from Apis mellifera gastrointestinal tract, have been studied. We have evaluated survival of tested FLAB in honey bee gut, their susceptibility to antibiotics (ampicillin, erythromycin, tylosin), cell surface hydrophobicity, auto-aggregation ability, co-aggregation with model pathogenic bacteria, biofilm formation capacity, and effect of studied FLAB, added to sucrose syrup bee diet, on longevity of honey bees. The tested FLAB exhibited good gastrointestinal tract tolerance and high antibiotic susceptibility, which are important criteria in the screening of probiotic candidates. It was also found that all FLAB studied have high cell surface hydrophobicity and fulfil next selection criterion for their use as probiotics. Symbionts of A. mellifera showed also auto- and co-aggregation capacities regarded as valuable features for biofilm formation and inhibition of pathogens adhesion to the bee gut cells. Biofilm-development ability is a desired characteristic of probiotic lactic acid bacteria. As indicated by quantitative crystal violet-stained microplate assay and confocal laser scanning microscopy imaging, all studied A. mellifera gut isolates exhibit a biofilm positive phenotype. Moreover, it was also documented, on honey bees kept in cages, that supplementation of A. mellifera sucrose diet with FLAB decreases mortality and improves significantly longevity of honey bees. Presented research showed that A. mellifera FLAB symbionts are good candidates for application as probiotics.
Collapse
Affiliation(s)
- Artur Pachla
- Research and Development Center, Biowet Puławy, 2 H. Arciucha st., 24–100 Puławy, Poland
| | - Aneta A. Ptaszyńska
- Department of Immunobiology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie–Skłodowska University, 19 Akademicka st., 20–033 Lublin, Poland
| | - Magdalena Wicha
- Research and Development Center, Biowet Puławy, 2 H. Arciucha st., 24–100 Puławy, Poland
| | - Magdalena Kunat
- Department of Immunobiology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie–Skłodowska University, 19 Akademicka st., 20–033 Lublin, Poland
| | - Jerzy Wydrych
- Department of Functional Anatomy and Cytobiology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, M. Curie–Skłodowska University, Akademicka 19, 20–033 Lublin, Poland
| | - Ewa Oleńska
- Department of Microbiology and Biotechnology, Faculty of Biology, University of Białystok, Ciołkowskiego 1J, 15-245 Białystok, Poland
| | - Wanda Małek
- Department of Genetics and Microbiology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, M. Curie–Skłodowska University, Akademicka 19, 20–033 Lublin, Poland
| |
Collapse
|
26
|
Aziz G, Tariq M, Zaidi AH. Mining indigenous honeybee gut microbiota for Lactobacillus with probiotic potential. MICROBIOLOGY-SGM 2021; 167. [PMID: 33587693 DOI: 10.1099/mic.0.001032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The present study was done to explore the diversity of lactic acid bacteria (LAB) associated with the gastrointestinal tract (GIT) of honeybee species endemic to northeastern Pakistan. Healthy worker bees belonging to Apis mellifera, A. dorsata, A. cerana and A. florea were collected from hives and the surroundings of a major apiary in the region. The 16S rRNA amplicon sequencing revealed a microbial community in A. florea that was distinct from the others in having an abundance of Lactobacillus and Bifidobacteria. However, this was not reflected in the culturable bacteria obtained from these species. The isolates were characterized for safety parameters, and 20 LAB strains deemed safe were evaluated for resistance to human GIT stresses like acid and bile, adhesion and adhesiveness, and anti-pathogenicity. The five most robust strains, Enterococcus saigonensis NPL780a, Lactobacillus rapi NPL782a, Lactobacillus kunkeei NPL783a, and NPL784, and Lactobacillus paracasei NPL783b, were identified through normalized Pearson (n) principal components analysis (PCA). These strains were checked for inhibition of human pathogens, antibiotic resistance, osmotic tolerance, metabolic and enzymatic functions, and carbohydrate utilization, along with antioxidative and cholesterol-removing potential. The findings suggest at least three strains (NPL 783a, 784 and 782a) as candidates for further in vitro and in vivo investigations of their potential health benefits and application as novel probiotic adjuncts.
Collapse
Affiliation(s)
- Ghazal Aziz
- Pakistan Institute of Engineering and Applied Sciences, Nilore, Islamabad 45650, Pakistan.,National Probiotic Lab-NIBGE, Jhang Road, Faisalabad 38000 (Punjab), Pakistan
| | - Muhammad Tariq
- Pakistan Institute of Engineering and Applied Sciences, Nilore, Islamabad 45650, Pakistan.,National Probiotic Lab-NIBGE, Jhang Road, Faisalabad 38000 (Punjab), Pakistan
| | - Arsalan Haseeb Zaidi
- National Probiotic Lab-NIBGE, Jhang Road, Faisalabad 38000 (Punjab), Pakistan.,Pakistan Institute of Engineering and Applied Sciences, Nilore, Islamabad 45650, Pakistan
| |
Collapse
|
27
|
Luiz de Freitas L, Pereira da Silva F, Fernandes KM, Carneiro DG, Licursi de Oliveira L, Martins GF, Dantas Vanetti MC. The virulence of Salmonella Enteritidis in Galleria mellonella is improved by N-dodecanoyl-homoserine lactone. Microb Pathog 2021; 152:104730. [PMID: 33444697 DOI: 10.1016/j.micpath.2021.104730] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 01/01/2021] [Accepted: 01/03/2021] [Indexed: 01/18/2023]
Abstract
Salmonella is a food and waterborne pathogen responsible for outbreaks worldwide, and it can survive during passage through the stomach and inside host phagocytic cells. Virulence genes are required for infection and survival in macrophages, and some are under the regulation of the quorum sensing (QS) system. This study investigated the influence of the autoinducer 1 (AI-1), N-dodecanoyl-homoserine lactone (C12-HSL), on the virulence of Salmonella PT4 using Galleria mellonella as an infection model. Salmonella PT4 was grown in the presence and absence of C12-HSL under anaerobic conditions for 7 h, and the expression of rpoS, arcA, arcB, and invA genes was evaluated. After the inoculation of G. mellonella with the median lethal dose (LD50) of Salmonella PT4, the survival of bacteria inside the larvae and their health status (health index scoring) were monitored, as well as the pigment, nitric oxide (NO), superoxide dismutase (SOD), and catalase (CAT) production. Also, the hemocyte viability, the induction of caspase-3, and microtubule-associated light chain 3 (LC3) protein in hemocytes were evaluated. Salmonella PT4 growing in the presence of C12-HSL showed increased rpoS, arcA, arcB, and invA expression and promoted higher larvae mortality and worse state of health after 24 h of infection. The C12-HSL also increased the persistence of Salmonella PT4 in the hemolymph and in the hemocytes. The highest pigmentation, NO production, and antioxidant enzymes were verified in the larva hemolymph infected with Salmonella PT4 grown with C12-HSL. Hemocytes from larvae infected with Salmonella PT4 grown with C12-HSL showed lower viability and higher production of caspase-3 and LC3. Taken together, these findings suggest that C12-HSL could be involved in the virulence of Salmonella PT4.
Collapse
Affiliation(s)
- Leonardo Luiz de Freitas
- Departmento de Microbiologia, Universidade Federal de Viçosa (UFV), Viçosa, Minas Gerais, Brazil
| | | | - Kenner Morais Fernandes
- Departamento de Biologia Geral, Universidade Federal de Viçosa (UFV), Viçosa, Minas Gerais, Brazil
| | - Deisy Guimarães Carneiro
- Departmento de Microbiologia, Universidade Federal de Viçosa (UFV), Viçosa, Minas Gerais, Brazil
| | | | - Gustavo Ferreira Martins
- Departamento de Biologia Geral, Universidade Federal de Viçosa (UFV), Viçosa, Minas Gerais, Brazil
| | | |
Collapse
|
28
|
Growth of Lactic Acid Bacteria on Gold-Influence of Surface Roughness and Chemical Composition. NANOMATERIALS 2020; 10:nano10122499. [PMID: 33322124 PMCID: PMC7763910 DOI: 10.3390/nano10122499] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/11/2020] [Accepted: 12/11/2020] [Indexed: 02/08/2023]
Abstract
The main focus of this work was to establish a correlation between surface topography and chemistry and surface colonization by lactic acid bacteria. For this reason, we chose gold substrates with different surface architectures (i.e., smooth and nanorough) that were characterized by atomic force microscopy (AFM), electron scanning microscopy (SEM), and X-ray diffractometry (XRD). Moreover, to enhance biocompatibility, we modified gold substrates with polymeric monolayers, namely cationic dextran derivatives with different molar masses. The presence of those layers was confirmed by AFM, infrared spectroscopy (IR), and X-ray photoelectron spectroscopy (XPS). In order to determine the adhesion abilities of non-modified and modified gold surfaces, we tested three lactic acid bacteria (LAB) strains (i.e., Lactobacillus rhamnosus GG, Lactobacillus acidophilus, and Lactobacillus plantarum 299v). We have shown that surface roughness influences the surface colonization of bacteria, and the most significant impact on the growth was observed for the Lactobacillus rhamnosus GG strain. What is more, covering the gold surface with a molecular polymeric film by using the layer-by-layer (LbL) method allows additional changes in the bacterial growth, independently on the used strain. The well-being of the bacteria cells on tested surfaces was confirmed by using selective staining and fluorescence microscopy. Finally, we have determined the bacterial metabolic activity by measuring the amount of produced lactic acid regarding the growth conditions. The obtained results proved that the adhesion of bacteria to the metallic surface depends on the chemistry and topography of the surface, as well as the specific bacteria strain.
Collapse
|
29
|
Vergalito F, Testa B, Cozzolino A, Letizia F, Succi M, Lombardi SJ, Tremonte P, Pannella G, Di Marco R, Sorrentino E, Coppola R, Iorizzo M. Potential Application of Apilactobacillus kunkeei for Human Use: Evaluation of Probiotic and Functional Properties. Foods 2020; 9:E1535. [PMID: 33113800 PMCID: PMC7693146 DOI: 10.3390/foods9111535] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 10/21/2020] [Accepted: 10/23/2020] [Indexed: 12/11/2022] Open
Abstract
Apilactobacillus kunkeei is an insect symbiont with documented beneficial effects on the health of honeybees. It belongs to fructophilic lactic acid bacteria (FLAB), a subgroup of lactic acid bacteria (LAB) notably recognized for their safe status. This fact, together with its recurrent isolation from hive products that are traditionally part of the human diet, suggests its possible safe use as human probiotic. Our data concerning three strains of A. kunkeei isolated from bee bread and honeybee gut highlighted several interesting features, such as the presence of beneficial enzymes (β-glucosidase, β-galactosidase and leucine arylamidase), the low antibiotic resistance, the ability to inhibit P. aeruginosa and, for one tested strain, E. faecalis, and an excellent viability in presence of high sugar concentrations, especially for one strain tested in sugar syrup stored at 4 °C for 30 d. This datum is particularly stimulating, since it demonstrates that selected strains of A. kunkeei can be used for the probiotication of fruit preparations, which are often used in the diet of hospitalized and immunocompromised patients. Finally, we tested for the first time the survival of strains belonging to the species A. kunkeei during simulated gastrointestinal transit, detecting a similar if not a better performance than that showed by Lacticaseibacillus rhamnosus GG, used as probiotic control in each trial.
Collapse
Affiliation(s)
- Franca Vergalito
- Department of Agricultural, Environmental and Food Sciences (DiAAA), University of Molise, via De Sanctis snc, 86100 Campobasso, Italy; (F.V.); (B.T.); (A.C.); (F.L.); (S.J.L.); (P.T.); (G.P.); (E.S.); (R.C.); (M.I.)
| | - Bruno Testa
- Department of Agricultural, Environmental and Food Sciences (DiAAA), University of Molise, via De Sanctis snc, 86100 Campobasso, Italy; (F.V.); (B.T.); (A.C.); (F.L.); (S.J.L.); (P.T.); (G.P.); (E.S.); (R.C.); (M.I.)
| | - Autilia Cozzolino
- Department of Agricultural, Environmental and Food Sciences (DiAAA), University of Molise, via De Sanctis snc, 86100 Campobasso, Italy; (F.V.); (B.T.); (A.C.); (F.L.); (S.J.L.); (P.T.); (G.P.); (E.S.); (R.C.); (M.I.)
| | - Francesco Letizia
- Department of Agricultural, Environmental and Food Sciences (DiAAA), University of Molise, via De Sanctis snc, 86100 Campobasso, Italy; (F.V.); (B.T.); (A.C.); (F.L.); (S.J.L.); (P.T.); (G.P.); (E.S.); (R.C.); (M.I.)
| | - Mariantonietta Succi
- Department of Agricultural, Environmental and Food Sciences (DiAAA), University of Molise, via De Sanctis snc, 86100 Campobasso, Italy; (F.V.); (B.T.); (A.C.); (F.L.); (S.J.L.); (P.T.); (G.P.); (E.S.); (R.C.); (M.I.)
| | - Silvia Jane Lombardi
- Department of Agricultural, Environmental and Food Sciences (DiAAA), University of Molise, via De Sanctis snc, 86100 Campobasso, Italy; (F.V.); (B.T.); (A.C.); (F.L.); (S.J.L.); (P.T.); (G.P.); (E.S.); (R.C.); (M.I.)
| | - Patrizio Tremonte
- Department of Agricultural, Environmental and Food Sciences (DiAAA), University of Molise, via De Sanctis snc, 86100 Campobasso, Italy; (F.V.); (B.T.); (A.C.); (F.L.); (S.J.L.); (P.T.); (G.P.); (E.S.); (R.C.); (M.I.)
| | - Gianfranco Pannella
- Department of Agricultural, Environmental and Food Sciences (DiAAA), University of Molise, via De Sanctis snc, 86100 Campobasso, Italy; (F.V.); (B.T.); (A.C.); (F.L.); (S.J.L.); (P.T.); (G.P.); (E.S.); (R.C.); (M.I.)
| | - Roberto Di Marco
- Department of Medicine and Health Sciences “Vincenzo Tiberio”, University of Molise, via De Sanctis snc, 86100 Campobasso, Italy;
| | - Elena Sorrentino
- Department of Agricultural, Environmental and Food Sciences (DiAAA), University of Molise, via De Sanctis snc, 86100 Campobasso, Italy; (F.V.); (B.T.); (A.C.); (F.L.); (S.J.L.); (P.T.); (G.P.); (E.S.); (R.C.); (M.I.)
| | - Raffaele Coppola
- Department of Agricultural, Environmental and Food Sciences (DiAAA), University of Molise, via De Sanctis snc, 86100 Campobasso, Italy; (F.V.); (B.T.); (A.C.); (F.L.); (S.J.L.); (P.T.); (G.P.); (E.S.); (R.C.); (M.I.)
| | - Massimo Iorizzo
- Department of Agricultural, Environmental and Food Sciences (DiAAA), University of Molise, via De Sanctis snc, 86100 Campobasso, Italy; (F.V.); (B.T.); (A.C.); (F.L.); (S.J.L.); (P.T.); (G.P.); (E.S.); (R.C.); (M.I.)
| |
Collapse
|
30
|
Antimicrobial Activity against Paenibacillus larvae and Functional Properties of Lactiplantibacillus plantarum Strains: Potential Benefits for Honeybee Health. Antibiotics (Basel) 2020; 9:antibiotics9080442. [PMID: 32722196 PMCID: PMC7460353 DOI: 10.3390/antibiotics9080442] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 07/21/2020] [Accepted: 07/22/2020] [Indexed: 01/09/2023] Open
Abstract
Paenibacillus larvae is the causative agent of American foulbrood (AFB), a severe bacterial disease that affects larvae of honeybees. The present study evaluated, in vitro, antimicrobial activity of sixty-one Lactiplantibacillus plantarum strains, against P. larvae ATCC 9545. Five strains (P8, P25, P86, P95 and P100) that showed the greatest antagonism against P. larvae ATCC 9545 were selected for further physiological and biochemical characterizations. In particular, the hydrophobicity, auto-aggregation, exopolysaccharides production, osmotic tolerance, enzymatic activity and carbohydrate assimilation patterns were evaluated. The five L. plantarum selected strains showed suitable physical and biochemical properties for their use as probiotics in the honeybee diet. The selection and availability of new selected bacteria with good functional characteristics and with antagonistic activity against P. larvae opens up interesting perspectives for new biocontrol strategies of diseases such as AFB.
Collapse
|
31
|
Moman R, O'Neill CA, Ledder RG, Cheesapcharoen T, McBain AJ. Mitigation of the Toxic Effects of Periodontal Pathogens by Candidate Probiotics in Oral Keratinocytes, and in an Invertebrate Model. Front Microbiol 2020; 11:999. [PMID: 32612578 PMCID: PMC7308727 DOI: 10.3389/fmicb.2020.00999] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 04/24/2020] [Indexed: 12/23/2022] Open
Abstract
The larvae of the wax moth Galleria mellonella and human oral keratinocytes were used to investigate the protective activity of the candidate oral probiotics Lactobacillus rhamnosus GG (LHR), Lactobacillus reuteri (LR), and Streptococcus salivarius K-12 (SS) against the periodontal pathogens Fusobacterium nucleatum (FN), Porphyromonas gingivalis (PG), and Aggregatibacter actinomycetemcomitans (AA). Probiotics were delivered to the larvae (i) concomitantly with the pathogen in the same larval pro-leg; (ii) concomitantly with the pathogen in different pro-legs, and (iii) before inoculation with the pathogen in different pro-legs. Probiotics were delivered as viable cells, cell lysates or cell supernatants to the oral keratinocytes concomitantly with the pathogen. The periodontal pathogens killed at least 50% of larvae within 24 h although PG and FN were significantly more virulent than AA in the order FN > PG > AA and were also significantly lethal to mammalian cells. The candidate probiotics, however, were not lethal to the larvae or human oral keratinocytes at doses up to 107 cells/larvae. Wax worm survival rates increased up to 60% for some probiotic/pathogen combinations compared with control larvae inoculated with pathogens only. SS was the most effective probiotic against FN challenge and LHR the least, in simultaneous administration and pre-treatment, SS and LR were generally the most protective against all pathogens (up to 60% survival). For P. gingivalis, LR > LHR > SS, and for A. actinomycetemcomitans SS > LHR and LR. Administering the candidate probiotics to human oral keratinocytes significantly decreased the toxic effects of the periodontal pathogens. In summary, the periodontal pathogens were variably lethal to G. mellonella and human oral keratinocytes and the candidate probiotics had measurable protective effects, which were greatest when administrated simultaneously with the periodontal pathogens, suggesting protective effects based on bacterial interaction, and providing a basis for mechanistic studies.
Collapse
Affiliation(s)
- Raja Moman
- Department of Microbiology and Immunology, Faculty of Pharmacy, University of Tripoli, Tripoli, Libya
| | - Catherine A O'Neill
- Division of Musculoskeletal and Dermatological Sciences, School of Biological Sciences, The University of Manchester, Manchester, United Kingdom
| | - Ruth G Ledder
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Tanaporn Cheesapcharoen
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Andrew J McBain
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
32
|
Iorizzo M, Lombardi SJ, Ganassi S, Testa B, Ianiro M, Letizia F, Succi M, Tremonte P, Vergalito F, Cozzolino A, Sorrentino E, Coppola R, Petrarca S, Mancini M, De Cristofaro A. Antagonistic Activity against Ascosphaera apis and Functional Properties of Lactobacillus kunkeei Strains. Antibiotics (Basel) 2020; 9:E262. [PMID: 32443465 PMCID: PMC7277644 DOI: 10.3390/antibiotics9050262] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/15/2020] [Accepted: 05/17/2020] [Indexed: 02/07/2023] Open
Abstract
: Lactic acid bacteria (LAB) are an important group of honeybee gut microbiota. These bacteria are involved in food digestion, stimulate the immune system, and may antagonize undesirable microorganisms in the gastrointestinal tract. Lactobacillus kunkeei is a fructophilic lactic acid bacterium (FLAB) most frequently found in the gastrointestinal tracts of honeybees. Ascosphaera apis is an important pathogenic fungus of honeybee larvae; it can colonize the intestine, especially in conditions of nutritional or environmental stress that cause microbial dysbiosis. In this work, some functional properties of nine selected L. kunkeei strains were evaluated. The study focused on the antifungal activity of these strains against A. apis DSM 3116, using different matrices: cell lysate, broth culture, cell-free supernatant, and cell pellet. The cell lysate showed the highest antifungal activity. Moreover, the strains were shown to possess good cell-surface properties (hydrophobicity, auto-aggregation, and biofilm production) and a good resistance to high sugar concentrations. These L. kunkeei strains were demonstrated to be functional for use in "probiotic syrup", useful to restore the symbiotic communities of the intestine in case of dysbiosis and to exert a prophylactic action against A. apis.
Collapse
Affiliation(s)
- Massimo Iorizzo
- Department of Agriculture, Environmental and Food Sciences, University of Molise, 86100 Campobasso, Italy; (M.I.); (S.J.L.); (S.G.); (M.I.); (F.L.); (M.S.); (P.T.); (F.V.); (A.C.); (E.S.); (R.C.); (M.M.); (A.D.C.)
| | - Silvia Jane Lombardi
- Department of Agriculture, Environmental and Food Sciences, University of Molise, 86100 Campobasso, Italy; (M.I.); (S.J.L.); (S.G.); (M.I.); (F.L.); (M.S.); (P.T.); (F.V.); (A.C.); (E.S.); (R.C.); (M.M.); (A.D.C.)
| | - Sonia Ganassi
- Department of Agriculture, Environmental and Food Sciences, University of Molise, 86100 Campobasso, Italy; (M.I.); (S.J.L.); (S.G.); (M.I.); (F.L.); (M.S.); (P.T.); (F.V.); (A.C.); (E.S.); (R.C.); (M.M.); (A.D.C.)
| | - Bruno Testa
- Department of Agriculture, Environmental and Food Sciences, University of Molise, 86100 Campobasso, Italy; (M.I.); (S.J.L.); (S.G.); (M.I.); (F.L.); (M.S.); (P.T.); (F.V.); (A.C.); (E.S.); (R.C.); (M.M.); (A.D.C.)
| | - Mario Ianiro
- Department of Agriculture, Environmental and Food Sciences, University of Molise, 86100 Campobasso, Italy; (M.I.); (S.J.L.); (S.G.); (M.I.); (F.L.); (M.S.); (P.T.); (F.V.); (A.C.); (E.S.); (R.C.); (M.M.); (A.D.C.)
| | - Francesco Letizia
- Department of Agriculture, Environmental and Food Sciences, University of Molise, 86100 Campobasso, Italy; (M.I.); (S.J.L.); (S.G.); (M.I.); (F.L.); (M.S.); (P.T.); (F.V.); (A.C.); (E.S.); (R.C.); (M.M.); (A.D.C.)
| | - Mariantonietta Succi
- Department of Agriculture, Environmental and Food Sciences, University of Molise, 86100 Campobasso, Italy; (M.I.); (S.J.L.); (S.G.); (M.I.); (F.L.); (M.S.); (P.T.); (F.V.); (A.C.); (E.S.); (R.C.); (M.M.); (A.D.C.)
| | - Patrizio Tremonte
- Department of Agriculture, Environmental and Food Sciences, University of Molise, 86100 Campobasso, Italy; (M.I.); (S.J.L.); (S.G.); (M.I.); (F.L.); (M.S.); (P.T.); (F.V.); (A.C.); (E.S.); (R.C.); (M.M.); (A.D.C.)
| | - Franca Vergalito
- Department of Agriculture, Environmental and Food Sciences, University of Molise, 86100 Campobasso, Italy; (M.I.); (S.J.L.); (S.G.); (M.I.); (F.L.); (M.S.); (P.T.); (F.V.); (A.C.); (E.S.); (R.C.); (M.M.); (A.D.C.)
| | - Autilia Cozzolino
- Department of Agriculture, Environmental and Food Sciences, University of Molise, 86100 Campobasso, Italy; (M.I.); (S.J.L.); (S.G.); (M.I.); (F.L.); (M.S.); (P.T.); (F.V.); (A.C.); (E.S.); (R.C.); (M.M.); (A.D.C.)
| | - Elena Sorrentino
- Department of Agriculture, Environmental and Food Sciences, University of Molise, 86100 Campobasso, Italy; (M.I.); (S.J.L.); (S.G.); (M.I.); (F.L.); (M.S.); (P.T.); (F.V.); (A.C.); (E.S.); (R.C.); (M.M.); (A.D.C.)
| | - Raffaele Coppola
- Department of Agriculture, Environmental and Food Sciences, University of Molise, 86100 Campobasso, Italy; (M.I.); (S.J.L.); (S.G.); (M.I.); (F.L.); (M.S.); (P.T.); (F.V.); (A.C.); (E.S.); (R.C.); (M.M.); (A.D.C.)
| | - Sonia Petrarca
- CONAPROA, Consorzio Nazionale Produttori Apistici, 86100 Campobasso, Italy;
| | - Massimo Mancini
- Department of Agriculture, Environmental and Food Sciences, University of Molise, 86100 Campobasso, Italy; (M.I.); (S.J.L.); (S.G.); (M.I.); (F.L.); (M.S.); (P.T.); (F.V.); (A.C.); (E.S.); (R.C.); (M.M.); (A.D.C.)
| | - Antonio De Cristofaro
- Department of Agriculture, Environmental and Food Sciences, University of Molise, 86100 Campobasso, Italy; (M.I.); (S.J.L.); (S.G.); (M.I.); (F.L.); (M.S.); (P.T.); (F.V.); (A.C.); (E.S.); (R.C.); (M.M.); (A.D.C.)
| |
Collapse
|
33
|
Barzegari A, Kheyrolahzadeh K, Hosseiniyan Khatibi SM, Sharifi S, Memar MY, Zununi Vahed S. The Battle of Probiotics and Their Derivatives Against Biofilms. Infect Drug Resist 2020; 13:659-672. [PMID: 32161474 PMCID: PMC7049744 DOI: 10.2147/idr.s232982] [Citation(s) in RCA: 126] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 02/06/2020] [Indexed: 01/08/2023] Open
Abstract
Biofilm-related infections have been a major clinical problem and include chronic infections, device-related infections and malfunction of medical devices. Since biofilms are not fully available for the human immune system and antibiotics, they are difficult to eradicate and control; therefore, imposing a global threat to human health. There have been avenues to tackle biofilms largely based on the disruption of their adhesion and maturation. Nowadays, the use of probiotics and their derivatives has gained a growing interest in battling against pathogenic biofilms. In the present review, we have a close look at probiotics with the ultimate objective of inhibiting biofilm formation and maturation. Overall, insights into the mechanisms by which probiotics and their derivatives can be used in the management of biofilm infections would be warranted.
Collapse
Affiliation(s)
- Abolfazl Barzegari
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Keyvan Kheyrolahzadeh
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
- Azad University, Tabriz, Iran
| | | | - Simin Sharifi
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Yousef Memar
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
34
|
Daisley BA, Pitek AP, Chmiel JA, Al KF, Chernyshova AM, Faragalla KM, Burton JP, Thompson GJ, Reid G. Novel probiotic approach to counter Paenibacillus larvae infection in honey bees. THE ISME JOURNAL 2020; 14:476-491. [PMID: 31664160 PMCID: PMC6976702 DOI: 10.1038/s41396-019-0541-6] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 10/07/2019] [Accepted: 10/11/2019] [Indexed: 11/12/2022]
Abstract
American foulbrood (AFB) is a highly virulent disease afflicting honey bees (Apis mellifera). The causative organism, Paenibacillus larvae, attacks honey bee brood and renders entire hives dysfunctional during active disease states, but more commonly resides in hives asymptomatically as inactive spores that elude even vigilant beekeepers. The mechanism of this pathogenic transition is not fully understood, and no cure exists for AFB. Here, we evaluated how hive supplementation with probiotic lactobacilli (delivered through a nutrient patty; BioPatty) affected colony resistance towards a naturally occurring AFB outbreak. Results demonstrated a significantly lower pathogen load and proteolytic activity of honey bee larvae from BioPatty-treated hives. Interestingly, a distinctive shift in the microbiota composition of adult nurse bees occurred irrespective of treatment group during the monitoring period, but only vehicle-supplemented nurse bees exhibited higher P. larvae loads. In vitro experiments utilizing laboratory-reared honey bee larvae showed Lactobacillus plantarum Lp39, Lactobacillus rhamnosus GR-1, and Lactobacillus kunkeei BR-1 (contained in the BioPatty) could reduce pathogen load, upregulate expression of key immune genes, and improve survival during P. larvae infection. These findings suggest the usage of a lactobacilli-containing hive supplement, which is practical and affordable for beekeepers, may be effective for reducing enzootic pathogen-related hive losses.
Collapse
Affiliation(s)
- Brendan A Daisley
- Centre for Human Microbiome and Probiotic Research, Lawson Health Research Institute, London, ON, Canada
- Department of Microbiology and Immunology, The University of Western Ontario, London, ON, Canada
| | - Andrew P Pitek
- Department of Biology, The University of Western Ontario, London, ON, Canada
| | - John A Chmiel
- Centre for Human Microbiome and Probiotic Research, Lawson Health Research Institute, London, ON, Canada
- Department of Microbiology and Immunology, The University of Western Ontario, London, ON, Canada
| | - Kait F Al
- Centre for Human Microbiome and Probiotic Research, Lawson Health Research Institute, London, ON, Canada
- Department of Microbiology and Immunology, The University of Western Ontario, London, ON, Canada
| | - Anna M Chernyshova
- Department of Biology, The University of Western Ontario, London, ON, Canada
| | | | - Jeremy P Burton
- Centre for Human Microbiome and Probiotic Research, Lawson Health Research Institute, London, ON, Canada
- Department of Microbiology and Immunology, The University of Western Ontario, London, ON, Canada
- Department of Surgery, The University of Western Ontario, London, ON, Canada
| | - Graham J Thompson
- Department of Biology, The University of Western Ontario, London, ON, Canada
| | - Gregor Reid
- Centre for Human Microbiome and Probiotic Research, Lawson Health Research Institute, London, ON, Canada.
- Department of Microbiology and Immunology, The University of Western Ontario, London, ON, Canada.
- Department of Surgery, The University of Western Ontario, London, ON, Canada.
| |
Collapse
|
35
|
Gavrilova E, Anisimova E, Gabdelkhadieva A, Nikitina E, Vafina A, Yarullina D, Bogachev M, Kayumov A. Newly isolated lactic acid bacteria from silage targeting biofilms of foodborne pathogens during milk fermentation. BMC Microbiol 2019; 19:248. [PMID: 31703621 PMCID: PMC6839075 DOI: 10.1186/s12866-019-1618-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Accepted: 10/22/2019] [Indexed: 01/08/2023] Open
Abstract
Background Raw milk, meat and plant materials are subjected to high risks of contamination by various pathogenic bacteria and thus their growth prevention is a great challenge in the food industry. Food fermentation by lactic acid bacteria (LAB) besides changing its organoleptic characteristics also helps to eliminate unfavorable microflora and represses growth of pathogens. To the date only few LABs has been reported to exhibit activity against bacteria embedded in the biofilms characterized by extreme resistance to antimicrobials, high exchange rate with resistance genes and represent high risk factor for foodborne disease development. Results Six novel LAB strains isolated from the clover silage exhibited pronounced antibacterial activity against biofilm embedded pathogens. We show explicitly that these strains demonstrate high acidification rate, completely repress the growth of E. coli, S. aureus and to a lesser extent P. aeruginosa as well as exhibit appropriate probiotic and milk-fermenting properties. Moreover, in contrast to the approved probiotic strain Lactobacillus plantarum 8PA3, the new isolates were able to efficiently eradicate preformed biofilms of these pathogens and prevent bacterial spreading originating from the biofilm. We suggest these strains as potential additives to the pre-cultures of conventional LAB strains as efficient tools targeting foodborne pathogens in order to prevent food contamination from either seeded raw material or biofilm-fouled equipment. Conclusions The AG10 strain identified as L. plantarum demonstrate attractive probiotic and milk fermentation properties as well as high resistance to simulated gastric conditions thus appearing perspective as a starter culture for the prevention of bacterial contamination originating from fouled equipment during milk fermentation.
Collapse
Affiliation(s)
| | | | - Alsu Gabdelkhadieva
- Kazan National Research Technological University, 68 Karl Marx Str, 420015, Kazan, Russia
| | - Elena Nikitina
- Kazan Federal University, 18 Kremlevskaya Str, 420008, Kazan, Russia.,Kazan National Research Technological University, 68 Karl Marx Str, 420015, Kazan, Russia
| | - Adel Vafina
- Kazan National Research Technological University, 68 Karl Marx Str, 420015, Kazan, Russia
| | - Dina Yarullina
- Kazan Federal University, 18 Kremlevskaya Str, 420008, Kazan, Russia
| | - Mikhail Bogachev
- Kazan Federal University, 18 Kremlevskaya Str, 420008, Kazan, Russia.,Saint-Petersburg Electrotechnical University, 5 Professor Popov str, 197376, St. Petersburg, Russia
| | - Airat Kayumov
- Kazan Federal University, 18 Kremlevskaya Str, 420008, Kazan, Russia.
| |
Collapse
|
36
|
Ramos OY, Basualdo M, Libonatti C, Vega MF. Current status and application of lactic acid bacteria in animal production systems with a focus on bacteria from honey bee colonies. J Appl Microbiol 2019; 128:1248-1260. [PMID: 31566847 DOI: 10.1111/jam.14469] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 08/13/2019] [Accepted: 09/25/2019] [Indexed: 12/11/2022]
Abstract
Lactic acid bacteria (LAB) are widely distributed in nature and, due to their beneficial effects on the host, are used as probiotics. This review describes the applications of LAB in animal production systems such as beekeeping, poultry, swine and bovine production, particularly as probiotics used to improve health, enhance growth and reproductive performance. Given the importance of honeybees in nature and the beekeeping industry as a producer of healthy food worldwide, the focus of this review is on the coexistence of LAB with honeybees, their food and environment. The main LAB species isolated from the beehive and their potential technological use are described. Evidence is provided that 43 LAB bacteria species have been isolated from beehives, of which 20 showed inhibition against 28 species of human and animal pathogens, some of which are resistant to antibiotics. Additionally, the presence of LAB in the beehive and their relationship with antibacterial properties of honey and pollen is discussed. Finally, we describe the use of lactic bacteria from bee colonies and their antimicrobial effect against foodborne pathogens and human health. This review broadens knowledge by highlighting the importance of honeybee colonies as suppliers of LAB and functional food.
Collapse
Affiliation(s)
- O Y Ramos
- PROANVET, Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires, Tandil, Buenos Aires, Argentina.,Universidad Nacional del Centro de la Provincia de Buenos Aires, CONICET, Facultad de Ciencias Veterinarias, Tandil, Buenos Aires, Argentina
| | - M Basualdo
- PROANVET, Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires, Tandil, Buenos Aires, Argentina
| | - C Libonatti
- PROANVET, Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires, Tandil, Buenos Aires, Argentina
| | - M F Vega
- PROANVET, Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires, Tandil, Buenos Aires, Argentina
| |
Collapse
|
37
|
Filannino P, Di Cagno R, Tlais AZA, Cantatore V, Gobbetti M. Fructose-rich niches traced the evolution of lactic acid bacteria toward fructophilic species. Crit Rev Microbiol 2019; 45:65-81. [PMID: 30663917 DOI: 10.1080/1040841x.2018.1543649] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Fructophilic lactic acid bacteria (FLAB) are found in fructose-rich habitats associated with flowers, fruits, fermented foods, and the gastrointestinal tract of several insects having a fructose-based diet. FLAB are heterofermentative lactobacilli that prefer fructose instead of glucose as carbon source, although additional electron acceptor substrates (e.g. oxygen) remarkably enhance their growth on glucose. As a newly discovered bacterial group, FLAB are gaining increasing interest. In this review, the ecological context in which these bacteria exist and evolve was resumed. The wide frequency of isolation of FLAB from fructose feeding insects has been deepened to reveal their ecological significance. Genomic, metabolic data, reductive evolution, and niche specialization of the main FLAB species have been discussed. Findings to date acquired are consistent with a metabolic model in which FLAB display a reliance on environmental niches and the degree of host specificity. In light of FLAB proximity to lactic acid bacteria generally considered to be safe, and due to their peculiar metabolic traits, FLAB may be successfully exploited in food and pharmaceutical applications.
Collapse
Affiliation(s)
- Pasquale Filannino
- a Department of Soil, Plant and Food Science , University of Bari Aldo Moro , Bari , Italy
| | - Raffaella Di Cagno
- b Faculty of Science and Technology , Libera Università di Bolzano , Bolzano , Italy
| | | | - Vincenzo Cantatore
- a Department of Soil, Plant and Food Science , University of Bari Aldo Moro , Bari , Italy
| | - Marco Gobbetti
- b Faculty of Science and Technology , Libera Università di Bolzano , Bolzano , Italy
| |
Collapse
|
38
|
Endo A, Maeno S, Tanizawa Y, Kneifel W, Arita M, Dicks L, Salminen S. Fructophilic Lactic Acid Bacteria, a Unique Group of Fructose-Fermenting Microbes. Appl Environ Microbiol 2018; 84:e01290-18. [PMID: 30054367 PMCID: PMC6146980 DOI: 10.1128/aem.01290-18] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Fructophilic lactic acid bacteria (FLAB) are a recently discovered group, consisting of a few Fructobacillus and Lactobacillus species. Because of their unique characteristics, including poor growth on glucose and preference of oxygen, they are regarded as "unconventional" lactic acid bacteria (LAB). Their unusual growth characteristics are due to an incomplete gene encoding a bifunctional alcohol/acetaldehyde dehydrogenase (adhE). This results in the imbalance of NAD/NADH and the requirement of additional electron acceptors to metabolize glucose. Oxygen, fructose, and pyruvate are used as electron acceptors. FLAB have significantly fewer genes for carbohydrate metabolism than other LAB, especially due to the lack of complete phosphotransferase system (PTS) transporters. They have been isolated from fructose-rich environments, including flowers, fruits, fermented fruits, and the guts of insects that feed on plants rich in fructose, and are separated into two groups on the basis of their habitats. One group is associated with flowers, grapes, wines, and insects, and the second group is associated with ripe fruits and fruit fermentations. Species associated with insects may play a role in the health of their host and are regarded as suitable vectors for paratransgenesis in honey bees. Besides their impact on insect health, FLAB may be promising candidates for the promotion of human health. Further studies are required to explore their beneficial properties in animals and humans and their applications in the food industry.
Collapse
Affiliation(s)
- Akihito Endo
- Department of Food, Aroma and Cosmetic Chemistry, Tokyo University of Agriculture, Hokkaido, Japan
| | - Shintaro Maeno
- Department of Food, Aroma and Cosmetic Chemistry, Tokyo University of Agriculture, Hokkaido, Japan
| | | | - Wolfgang Kneifel
- Department of Food Sciences and Technology, University of Natural Resources and Life Science Vienna, Vienna, Austria
| | - Masanori Arita
- National Institute of Genetics, Shizuoka, Japan
- RIKEN Center for Sustainable Resource Science, Kanagawa, Japan
| | - Leon Dicks
- Department of Microbiology, University of Stellenbosch, Stellenbosch, South Africa
| | - Seppo Salminen
- Functional Foods Forum, University of Turku, Turku, Finland
| |
Collapse
|
39
|
Llancalahuen FM, Fuentes JA, Carreño A, Zúñiga C, Páez-Hernández D, Gacitúa M, Polanco R, Preite MD, Arratia-Pérez R, Otero C. New Properties of a Bioinspired Pyridine Benzimidazole Compound as a Novel Differential Staining Agent for Endoplasmic Reticulum and Golgi Apparatus in Fluorescence Live Cell Imaging. Front Chem 2018; 6:345. [PMID: 30211148 PMCID: PMC6123694 DOI: 10.3389/fchem.2018.00345] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 07/23/2018] [Indexed: 12/16/2022] Open
Abstract
In this study, we explored new properties of the bioinspired pyridine benzimidazole compound B2 (2,4-di-tert-butyl-6-(3H-imidazo[4,5-c]pyridine-2-yl)phenol) regarding its potential use as a differential biomarker. For that, we performed 1D 1HNMR (TOCSY), UV-Vis absorption spectra in different organic solvents, voltammetry profile (including a scan-rate study), and TD-DFT calculations that including NBO analyses, to provide valuable information about B2 structure and luminescence. In our study, we found that the B2 structure is highly stable, where the presence of an intramolecular hydrogen bond (IHB) seems to have a crucial role in the stability of luminescence, and its emission can be assigned as fluorescence. In fact, we found that the relatively large Stokes Shift observed for B2 (around 175 nm) may be attributed to the stability of the B2 geometry and the strength of its IHB. On the other hand, we determined that B2 is biocompatible by cytotoxicity experiments in HeLa cells, an epithelial cell line. Furthermore, in cellular assays we found that B2 could be internalized by passive diffusion in absence of artificial permeabilization at short incubation times (15 min to 30 min). Fluorescence microscopy studies confirmed that B2 accumulates in the endoplasmic reticulum (ER) and Golgi apparatus, two organelles involved in the secretory pathway. Finally, we determined that B2 exhibited no noticeable blinking or bleaching after 1 h of continuous exposure. Thus, B2 provides a biocompatible, rapid, simple, and efficient way to fluorescently label particular organelles, producing similar results to that obtained with other well-established but more complex methods.
Collapse
Affiliation(s)
- Felipe M Llancalahuen
- Escuela de Química y Farmacia, Facultad de Medicina, Universidad Andres Bello, Santiago, Chile
| | - Juan A Fuentes
- Laboratorio de Patogénesis y Genética Bacteriana, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Alexander Carreño
- Center of Applied Nanosciences, Universidad Andres Bello, Santiago, Chile.,Fondo Nacional de Ciencia y Tecnología (FONDECYT), Santiago, Chile
| | - César Zúñiga
- Center of Applied Nanosciences, Universidad Andres Bello, Santiago, Chile
| | | | | | - Rubén Polanco
- Centro de Biotecnología Vegeta, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Marcelo D Preite
- Departamento de Química Orgánica, Facultad de Química, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | - Carolina Otero
- Escuela de Química y Farmacia, Facultad de Medicina, Universidad Andres Bello, Santiago, Chile
| |
Collapse
|