1
|
Mules TC, Vacca F, Cait A, Yumnam B, Schmidt A, Lavender B, Maclean K, Noble SL, Gasser O, Camberis M, Le Gros G, Inns S. A Small Intestinal Helminth Infection Alters Colonic Mucus and Shapes the Colonic Mucus Microbiome. Int J Mol Sci 2024; 25:12015. [PMID: 39596084 PMCID: PMC11593901 DOI: 10.3390/ijms252212015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/01/2024] [Accepted: 11/06/2024] [Indexed: 11/28/2024] Open
Abstract
Infecting humans with controlled doses of small intestinal helminths, such as human hookworm, is proposed as a therapy for the colonic inflammatory disease ulcerative colitis. Strengthening the colonic mucus barrier is a potential mechanism by which small intestinal helminths could treat ulcerative colitis. In this study, we compare C57BL/6 mice infected with the small intestinal helminth Heligmosomoides polygyrus and uninfected controls to investigate changes in colonic mucus. Histology, gene expression, and immunofluorescent analysis demonstrate that this helminth induces goblet cell hyperplasia, and an upregulation of mucin sialylation, and goblet-cell-derived functional proteins resistin-like molecule-beta (RELM-β) and trefoil factors (TFFs), in the colon. Using IL-13 knockout mice, we reveal that these changes are predominantly IL-13-dependent. The assessment of the colonic mucus microbiome demonstrates that H. polygyrus infection increases the abundance of Ruminococcus gnavus, a commensal bacterium capable of utilising sialic acid as an energy source. This study also investigates a human cohort experimentally challenged with human hookworm. It demonstrates that TFF blood levels increase in individuals chronically infected with small intestinal helminths, highlighting a conserved mucus response between humans and mice. Overall, small intestinal helminths modify colonic mucus, highlighting this as a plausible mechanism by which human hookworm therapy could treat ulcerative colitis.
Collapse
Affiliation(s)
- Thomas C. Mules
- Malaghan Institute of Medical Research, Kelburn, Wellington 6012, New Zealand
- Department of Medicine, University of Otago, 23A Mein St., Newtown, Wellington 6242, New Zealand
| | - Francesco Vacca
- Malaghan Institute of Medical Research, Kelburn, Wellington 6012, New Zealand
| | - Alissa Cait
- Malaghan Institute of Medical Research, Kelburn, Wellington 6012, New Zealand
| | - Bibek Yumnam
- Malaghan Institute of Medical Research, Kelburn, Wellington 6012, New Zealand
| | - Alfonso Schmidt
- Hugh Green Technology Centre, Malaghan Institute of Medical Research, Wellington 6012, New Zealand
| | - Brittany Lavender
- Malaghan Institute of Medical Research, Kelburn, Wellington 6012, New Zealand
| | - Kate Maclean
- Malaghan Institute of Medical Research, Kelburn, Wellington 6012, New Zealand
| | - Sophia-Louise Noble
- Malaghan Institute of Medical Research, Kelburn, Wellington 6012, New Zealand
| | - Olivier Gasser
- Malaghan Institute of Medical Research, Kelburn, Wellington 6012, New Zealand
| | - Mali Camberis
- Malaghan Institute of Medical Research, Kelburn, Wellington 6012, New Zealand
| | - Graham Le Gros
- Malaghan Institute of Medical Research, Kelburn, Wellington 6012, New Zealand
| | - Stephen Inns
- Department of Medicine, University of Otago, 23A Mein St., Newtown, Wellington 6242, New Zealand
| |
Collapse
|
2
|
Shin A, Xing Y, Waseem MR, Siwiec R, James-Stevenson T, Rogers N, Bohm M, Wo J, Lockett C, Gupta A, Kadariya J, Toh E, Anderson R, Xu H, Gao X. Microbiota-Short Chain Fatty Acid Relationships Underlie Clinical Heterogeneity and Identify Key Microbial Targets in Irritable Bowel Syndrome (IBS). MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.01.31.24302084. [PMID: 38352442 PMCID: PMC10863002 DOI: 10.1101/2024.01.31.24302084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Background Identifying microbial targets in irritable bowel syndrome (IBS) and other disorders of gut-brain interaction (DGBI) is challenging due to the dynamic nature of microbiota-metabolite-host interactions. SCFA are key microbial metabolites that modulate intestinal homeostasis and may influence IBS pathophysiology. We aimed to assess microbial features associated with short chain fatty acids (SCFA) and determine if features varied across IBS subtypes and endophenotypes. Among 96 participants who were screened, 71 completed the study. We conducted in-depth investigations of stool microbial metagenomes, stool SCFA, and measurable IBS traits (stool bile acids, colonic transit, stool form) in 41 patients with IBS (IBS with constipation [IBS-C] IBS with diarrhea [IBS-D]) and 17 healthy controls. We used partial canonical correspondence analyses (pCCA), conditioned on transit, to quantify microbe-SCFA associations across clinical groups. To explore relationships between microbially-derived SCFA and IBS traits, we compared gut microbiome-encoded potential for substrate utilization across groups and within a subset of participants selected by their stool characteristics as well as stool microbiomes of patients with and without clinical bile acid malabsorption. Results Overall stool microbiome composition and individual taxa abundances differed between clinical groups. Microbes-SCFA associations differed across groups and revealed key taxa including Dorea sp. CAG:317 and Bifidobacterium pseudocatenulatum in IBS-D and Akkermansia muciniphila and Prevotella copri in IBS-C that that may drive subtype-specific microbially-mediated mechanisms. Strongest microbe-SCFA associations were observed in IBS-D and several SCFA-producing species surprisingly demonstrated inverse correlations with SCFA. Fewer bacterial taxa were associated with acetate to butyrate ratios in IBS compared to health. In participants selected by stool form, we demonstrated differential abundances of microbial genes/pathways for SCFA metabolism and degradation of carbohydrates and mucin across groups. SCFA-producing taxa were reduced in IBS-D patients with BAM. Conclusion Keystone taxa responsible for SCFA production differ according to IBS subtype and traits and the IBS microbiome is characterized by reduced functional redundancy. Differences in microbial substrate preferences are also linked to bowel functions. Focusing on taxa that drive SCFA profiles and stool form may be a rational strategy for identifying relevant microbial targets in IBS and other DGBI.
Collapse
|
3
|
Altered Gut Microbic Flora and Haemorrhoids: Could They Have a Possible Relationship? J Clin Med 2023; 12:jcm12062198. [PMID: 36983199 PMCID: PMC10054427 DOI: 10.3390/jcm12062198] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/06/2023] [Accepted: 03/10/2023] [Indexed: 03/14/2023] Open
Abstract
To date, the exact pathophysiology of haemorrhoids is poorly understood. The different philosophies on haemorrhoids aetiology may lead to different approaches of treatment. A pathogenic theory involving a correlation between altered anal canal microflora, local inflammation, and muscular dyssynergia is proposed through an extensive review of the literature. Since the middle of the twentieth century, three main theories exist: (1) the varicose vein theory, (2) the vascular hyperplasia theory, and (3) the concept of a sliding anal lining. These phenomena determine changes in the connective tissue (linked to inflammation), including loss of organization, muscular hypertrophy, fragmentation of the anal subepithelial muscle and the elastin component, and vascular changes, including abnormal venous dilatation and vascular thrombosis. Recent studies have reported a possible involvement of gut microbiota in gut motility alteration. Furthermore, dysbiosis seems to represent the leading cause of bowel mucosa inflammation in any intestinal district. The alteration of the gut microbioma in the anorectal district could be responsible for haemorrhoids and other anorectal disorders. A deeper knowledge of the gut microbiota in anorectal disorders lays the basis for unveiling the roles of these various gut microbiota components in anorectal disorder pathogenesis and being conductive to instructing future therapeutics. The therapeutic strategy of antibiotics, prebiotics, probiotics, and fecal microbiota transplantation will benefit the effective application of precision microbiome manipulation in anorectal disorders.
Collapse
|
4
|
van Leeuwen PT, Brul S, Zhang J, Wortel MT. Synthetic microbial communities (SynComs) of the human gut: design, assembly, and applications. FEMS Microbiol Rev 2023; 47:fuad012. [PMID: 36931888 PMCID: PMC10062696 DOI: 10.1093/femsre/fuad012] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 03/16/2023] [Indexed: 03/19/2023] Open
Abstract
The human gut harbors native microbial communities, forming a highly complex ecosystem. Synthetic microbial communities (SynComs) of the human gut are an assembly of microorganisms isolated from human mucosa or fecal samples. In recent decades, the ever-expanding culturing capacity and affordable sequencing, together with advanced computational modeling, started a ''golden age'' for harnessing the beneficial potential of SynComs to fight gastrointestinal disorders, such as infections and chronic inflammatory bowel diseases. As simplified and completely defined microbiota, SynComs offer a promising reductionist approach to understanding the multispecies and multikingdom interactions in the microbe-host-immune axis. However, there are still many challenges to overcome before we can precisely construct SynComs of designed function and efficacy that allow the translation of scientific findings to patients' treatments. Here, we discussed the strategies used to design, assemble, and test a SynCom, and address the significant challenges, which are of microbiological, engineering, and translational nature, that stand in the way of using SynComs as live bacterial therapeutics.
Collapse
Affiliation(s)
- Pim T van Leeuwen
- Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Stanley Brul
- Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Jianbo Zhang
- Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Meike T Wortel
- Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| |
Collapse
|
5
|
Hu Y, Chen F, Ye H, Lu B. Integrative analysis of the gut microbiome and metabolome in a rat model with stress induced irritable bowel syndrome. Sci Rep 2021; 11:17596. [PMID: 34475489 PMCID: PMC8413334 DOI: 10.1038/s41598-021-97083-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 08/11/2021] [Indexed: 11/29/2022] Open
Abstract
Stress is one of the major causes of irritable bowel syndrome (IBS), which is well-known for perturbing the microbiome and exacerbating IBS-associated symptoms. However, changes in the gut microbiome and metabolome in response to colorectal distention (CRD), combined with restraint stress (RS) administration, remains unclear. In this study, CRD and RS stress were used to construct an IBS rat model. The 16S rRNA gene sequencing was used to characterize the microbiota in ileocecal contents. UHPLC-QTOF-MS/MS assay was used to characterize the metabolome of gut microbiota. As a result, significant gut microbial dysbiosis was observed in stress-induced IBS rats, with the obvious enrichment of three and depletion of 11 bacterial taxa in IBS rats, when compared with those in the control group (q < 0.05). Meanwhile, distinct changes in the fecal metabolic phenotype of stress-induced IBS rats were also found, including five increased and 19 decreased metabolites. Furthermore, phenylalanine, tyrosine and tryptophan biosynthesis were the main metabolic pathways induced by IBS stress. Moreover, the altered gut microbiota had a strong correlation with the changes in metabolism of stress-induced IBS rats. Prevotella bacteria are correlated with the metabolism of 1-Naphthol and Arg.Thr. In conclusion, the gut microbiome, metabolome and their interaction were altered. This may be critical for the development of stress-induced IBS.
Collapse
Affiliation(s)
- Yue Hu
- Department of Gastroenterology, First Affiliated Hospital of Zhejiang Chinese Medical University, 54 Youdian Road, Hangzhou, 310006, Zhejiang, China
| | - Fang Chen
- Department of Gastroenterology, Zhejiang Integrated Traditional and Western Medicine Hospital, Hangzhou, Zhejiang, China
| | - Haiyong Ye
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Bin Lu
- Department of Gastroenterology, First Affiliated Hospital of Zhejiang Chinese Medical University, 54 Youdian Road, Hangzhou, 310006, Zhejiang, China.
| |
Collapse
|
6
|
Urinary biomarkers as point-of-care tests for predicting progressive deterioration of kidney function in congenital anomalies of kidney and urinary tract: trefoil family factors (TFFs) as the emerging biomarkers. Pediatr Nephrol 2021; 36:1465-1472. [PMID: 33420628 DOI: 10.1007/s00467-020-04841-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 10/02/2020] [Accepted: 10/22/2020] [Indexed: 01/12/2023]
Abstract
BACKGROUND Children with congenital anomalies of kidney and urinary tract (CAKUT) are at high risk of progressive deterioration of kidney function and further developing stage 5 chronic kidney disease (CKD 5), even after a successful surgery. This prospective study was designed to determine whether urinary biomarkers can predict progressive deterioration of kidney function in children with CAKUT. METHODS The study included 50 consecutive children, aged < 14 years, who were diagnosed with congenital uropathies (PUV, VUR, and PUJO) and 20 age-matched controls. Examination of four urinary biomarkers, i.e., trefoil family factors (TFF) 1 and 3, neutrophil gelatinase-associated lipocalin (NGAL) and microalbuminuria (MALB) was done at the beginning of follow-up. Kidney function was assessed, at the beginning and after 12-months of follow-up, by technetium-99m diethylene triamine pentaacetic acid (DTPA) and technetium-99m dimercaptosuccinic acid (DMSA) scans. Progressive deterioration in the kidney function was defined as a fall in the GFR from ≥ 60 to < 60 ml/min/1.73 m2 on comparing the baseline and latest DTPA scans; and/or new-onset cortical scar/scars or increase in the size of previous scar/scars on serial DMSA scans. Group 1 and group 2 included children without and with progressive functional deterioration respectively. RESULTS The median (IQR) age of children with CAKUT and controls was 3 (1.5-5) and 2.3 (1.2-3.6) years, respectively, and showed no significant difference (p = 0.29). Median concentrations of TFF1, TFF3, NGAL, and microalbumin in patients were 44.5, 176.5, 281.2, and 15.5 mcg/gCr, respectively, and were significantly elevated as compared to controls (p < 0.05). Children belonging to group 2 had significantly higher concentration of biomarkers as compared to those in group 1. TFF3 was found have the highest AUC (0.9198) on ROC curve for predicting progressive functional deterioration. CONCLUSION Urinary TFFs, NGAL, and microalbumin significantly correlate with progressive deterioration of kidney function in children harboring CAKUT. TFF3, with the strongest prediction of functional deterioration, is an emerging peptide showing sufficient potential to be included in the biomarker panel. Graphical abstract.
Collapse
|
7
|
Mars RAT, Frith M, Kashyap PC. Functional Gastrointestinal Disorders and the Microbiome-What Is the Best Strategy for Moving Microbiome-based Therapies for Functional Gastrointestinal Disorders into the Clinic? Gastroenterology 2021; 160:538-555. [PMID: 33253687 PMCID: PMC8575137 DOI: 10.1053/j.gastro.2020.10.058] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/27/2020] [Accepted: 10/27/2020] [Indexed: 02/07/2023]
Abstract
There have been numerous human studies reporting associations between the intestinal microbiome and functional gastrointestinal disorders (FGIDs), and independently animal studies have explored microbiome-driven mechanisms underlying FGIDs. However, there is often a disconnect between human and animal studies, which hampers translation of microbiome findings to the clinic. Changes in the microbiota composition of patients with FGIDs are generally subtle, whereas changes in microbial function, reflected in the fecal metabolome, appear to be more precise indicators of disease subtype-specific mechanisms. Although we have made significant progress in characterizing the microbiome, to effectively translate microbiome science in a timely manner, we need concurrent and iterative longitudinal studies in humans and animals to determine the precise microbial functions that can be targeted to address specific pathophysiological processes in FGIDs. A systems approach integrating multiple data layers rather than evaluating individual data layers of symptoms, physiological changes, or -omics data in isolation will allow for validation of mechanistic insights from animal studies while also allowing new discovery. Patient stratification for clinical trials based on functional microbiome alterations and/or pathophysiological measurements may allow for more accurate determination of efficacy of individual microbiome-targeted interventions designed to correct an underlying abnormality. In this review, we outline current approaches and knowledge, and identify gaps, to provide a potential roadmap for accelerating translation of microbiome science toward microbiome-targeted personalized treatments for FGIDs.
Collapse
Affiliation(s)
- Ruben A T Mars
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Mary Frith
- Department of Medicine, University of Chicago, Chicago, Illinois
| | - Purna C Kashyap
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota; Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota.
| |
Collapse
|
8
|
Shastri MD, Chong WC, Vemuri R, Martoni CJ, Adhikari S, Bhullar H, Kunde D, Tristram SG, Eri RD. Streptococcus Thermophilus UASt-09 Upregulates Goblet Cell Activity in Colonic Epithelial Cells to a Greater Degree than other Probiotic Strains. Microorganisms 2020; 8:E1758. [PMID: 33182355 PMCID: PMC7695341 DOI: 10.3390/microorganisms8111758] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/29/2020] [Accepted: 11/06/2020] [Indexed: 12/26/2022] Open
Abstract
Probiotics have been widely used in maintaining gastrointestinal health, despite their actual mechanism remaining obscure. There are several hypotheses behind the beneficial effects of probiotics including the regulation of intestinal barrier function and improvement in immune responses in the gastrointestinal system. Multiple probiotics have been introduced in the market as effective dietary supplements in improving gastrointestinal integrity, but there are no or few studies that demonstrate their underlying mechanism. In the current study, we investigated and compared the efficacy of four probiotics (based on different bacterial species) in refining gastrointestinal health by improving mucus biosynthesis and intestinal immune response under in-vitro conditions. By analyzing the gene expression of mucus biosynthesis and intestinal immune response markers, we found that probiotic Streptococcus thermophilus UASt-09 showed promising potential in refining mucosal barrier and gastrointestinal health in human colonic epithelial cells, as compared to other commercial probiotics.
Collapse
Affiliation(s)
- Madhur D. Shastri
- School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston 7250, Australia; (R.V.); (S.A.); (H.B.); (D.K.); (S.G.T.)
- School of Pharmacy and Pharmacology, University of Tasmania, Hobart 7005, Australia
| | - Wai Chin Chong
- Department of Molecular and Translational Science, Monash University, Clayton 3800, Australia;
| | - Ravichandra Vemuri
- School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston 7250, Australia; (R.V.); (S.A.); (H.B.); (D.K.); (S.G.T.)
- Department of Pathology, Section of Comparative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA
| | | | - Santosh Adhikari
- School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston 7250, Australia; (R.V.); (S.A.); (H.B.); (D.K.); (S.G.T.)
| | - Harinder Bhullar
- School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston 7250, Australia; (R.V.); (S.A.); (H.B.); (D.K.); (S.G.T.)
| | - Dale Kunde
- School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston 7250, Australia; (R.V.); (S.A.); (H.B.); (D.K.); (S.G.T.)
| | - Stephen G. Tristram
- School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston 7250, Australia; (R.V.); (S.A.); (H.B.); (D.K.); (S.G.T.)
| | - Rajaraman D. Eri
- School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston 7250, Australia; (R.V.); (S.A.); (H.B.); (D.K.); (S.G.T.)
| |
Collapse
|
9
|
Ramadan RA, Zaki MA, Ooda SA, Abo Khalifa HM, Ragab WS. Comparison of Serum Trefoil Factor-3 to Endoscopy in Diagnosing Helicobacter Pylori Associated Gastric Ulcer. Asian Pac J Cancer Prev 2020; 21:2149-2153. [PMID: 32711444 PMCID: PMC7573434 DOI: 10.31557/apjcp.2020.21.7.2149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Indexed: 11/25/2022] Open
Abstract
Background and aim of the work: Helicobacter pylori-associated gastric ulcer (H.pylori-GU) is a serious condition, not only because H.pylori is identified as a grade 1 carcinogen but also because GU is a precancerous condition. Identification and treatment of H.pylori-GU may prevent the sequential progression of dysplasia to carcinoma. Trefoil factor 3 (Tf3) has been implicated in gastric mucosal repair. We compared serum Tf3 to gastric endoscopy in diagnosing H.pylori-GU. Subjects and methods: The study included eighty patients suffering from H.pylori induced gastritis, forty of which presented with GU. Gastric endoscopy with slide urease test was used to diagnose H.pylori-GU. Serum Tf3 level was determined using an enzyme immunoassay in all patients as well as thirty healthy volunteers. Results: Serum Tf3 showed a significant stepwise decrease among the studied groups. It was significantly lower in patients compared to the control group (p<0.001). Furthermore, it was lower in those with GU compared to those without GU (p=0.023). Based on a receiver operating characteristic curve generated cut off value of 2.4 ng/mL, the diagnostic performance of serum Tf3 as a biomarker of H.pylori-GU revealed a diagnostic specificity of 42.5%, sensitivity of 67.5%, positive and negative predictive values of 54% and 56.67% respectively. Conclusion: Although serum Tf3 showed significant variation in H.pylori-GU, further studies are warranted to confirm its role in the pathogenesis of gastric ulcers.
Collapse
Affiliation(s)
- Ragaa A Ramadan
- Chemical Pathology, Medical Research Institute, Alexandria University, Egypt
| | - Moyassar A Zaki
- Chemical Pathology, Medical Research Institute, Alexandria University, Egypt
| | - Said A Ooda
- Departments of Internal Medicine, Medical Research Institute, Alexandria University, Egypt
| | | | - Wafaa S Ragab
- Chemical Pathology, Medical Research Institute, Alexandria University, Egypt
| |
Collapse
|
10
|
Tully LA, Calzone KA, Cashion AK. Establishing the Omics Nursing Science & Education Network. J Nurs Scholarsh 2020; 52:192-200. [PMID: 32030867 DOI: 10.1111/jnu.12541] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/13/2019] [Indexed: 01/01/2023]
Abstract
PURPOSE To establish a website to advance nursing research and education involving omics technologies and methodologies through facilitating collaborations, use of existing data and samples, mentoring, and access to training opportunities. METHODS The Omics Nursing Science & Education Network (ONSEN) website was established following identification of gaps in omics nursing infrastructure and resources that could be addressed via a concerted, collaborative effort. ONSEN content was created using input from a workgroup of experts in genomics and other omics, education, practice, and nursing research. Alpha testing was conducted with workgroup members, followed by website refinements and enhancements, and subsequent beta testing by potential end users. ONSEN was launched in August 2018. FINDINGS ONSEN has three main sections. The Education and Training section provides information on mentoring and pre- or postdoctoral opportunities in addition to a knowledge matrix to advance education and skills in genomic nursing science. The Research Collaborations section promotes awareness of ongoing omics nursing research in order to foster collaborations and sharing of samples or data among investigators with programs in omics nursing research or an interest in developing such programs. The Common Data Elements (CDE) section provides information on the benefits of incorporating CDEs into nursing science as well as links to National Institutes of Health resources to facilitate use of CDEs. CONCLUSIONS ONSEN provides opportunities for nurse scientists and trainees to leverage samples and datasets, locate mentors and pre- or postdoctoral positions, further the use of CDEs, and enhance education and skills for integrating omics into nursing science. CLINICAL RELEVANCE Advancing omics nursing science via ONSEN resources will accelerate the elucidation of the molecular underpinnings of disease and associated symptoms as well as inform the development of rapidly translatable, personalized intervention strategies, grounded in biological mechanisms, for improved health outcomes across populations and the lifespan.
Collapse
Affiliation(s)
- Lois A Tully
- Program Officer, National Institutes of Health, National Institute of Nursing Research, Office of Extramural Programs, Bethesda, MD, USA
| | - Kathleen A Calzone
- XI, Research Geneticist, National Institutes of Health, National Cancer Institute, Center for Cancer Research, Genetics Branch, Bethesda, MD, USA
| | - Ann K Cashion
- Theta-at-Large, Acting Director and Scientific Director, National Institutes of Health, National Institute of Nursing Research, Office of the Director (retired), Bethesda, MD, USA
| |
Collapse
|
11
|
Yang Y, Yin Y, Chen X, Chen C, Xia Y, Qi H, Baker PN, Zhang H, Han TL. Evaluating different extraction solvents for GC-MS based metabolomic analysis of the fecal metabolome of adult and baby giant pandas. Sci Rep 2019; 9:12017. [PMID: 31427618 PMCID: PMC6700143 DOI: 10.1038/s41598-019-48453-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 08/06/2019] [Indexed: 01/21/2023] Open
Abstract
The gut microbiome plays a fundamental role in host health and the fecal metabolome can be analysed to assess microbial activity and can be used as an intermediate phenotype monitoring the host-microbiome relationship. However, there is no established extraction protocol to study the fecal metabolome of giant pandas. The aim of this research is to optimize extraction of the fecal metabolome from adult and baby pandas for high throughput metabolomics analysis using gas chromatography-mass spectrometry (GC-MS). Fecal samples were collected from eight adult pandas and a pair of twin baby pandas. Six different extraction solvents were investigated and evaluated for their reproducibility, metabolite coverage, and extraction efficiency, particularly in relation to the biochemical compound classes such as amino acids, tricarboxylic acid (TCA) cycle intermediates, fatty acids, secondary metabolites, and vitamin and cofactors. Our GC-MS results demonstrated that the extraction solvents with isopropanol: acetonitrile: water (3:2:2 ratio) and 80% methanol were the most appropriate for studying the fecal metabolome of adult and baby giant pandas respectively. These extraction solvents can be used in future study protocols for the analysis of the fecal metabolome in giant pandas.
Collapse
Affiliation(s)
- Yang Yang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Ministry of Education of China International Collaborative Joint Laboratory of Reproduction and Development, Chongqing Medical University, Chongqing, China.,State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, Chongqing Medical University, Chongqing, China
| | | | - Xuyang Chen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Chang Chen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Yinyin Xia
- School of Public Health and Management, Chongqing Medical University, Chongqing, China
| | - Hongbo Qi
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Ministry of Education of China International Collaborative Joint Laboratory of Reproduction and Development, Chongqing Medical University, Chongqing, China.,State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, Chongqing Medical University, Chongqing, China
| | - Philip N Baker
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,College of Life Sciences, University of Leicester, Leicester, UK
| | - Hua Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China. .,Ministry of Education of China International Collaborative Joint Laboratory of Reproduction and Development, Chongqing Medical University, Chongqing, China. .,State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, Chongqing Medical University, Chongqing, China.
| | - Ting-Li Han
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China. .,Ministry of Education of China International Collaborative Joint Laboratory of Reproduction and Development, Chongqing Medical University, Chongqing, China. .,State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
12
|
Han CJ, Pike K, Jarrett ME, Heitkemper MM. Symptom-based latent classes of persons with irritable bowel syndrome. Res Nurs Health 2019; 42:382-391. [PMID: 31393017 DOI: 10.1002/nur.21974] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 07/15/2019] [Indexed: 12/12/2022]
Abstract
A large amount of interindividual variability exists in symptom experiences of persons with irritable bowel syndrome (IBS). Thus, consideration of multiple symptoms to identify distinct symptom subgroups may be useful in directing personalized health strategies for symptom management. We aimed to identify latent classes (i.e., subgroups) of persons with IBS who share similar patterns of symptoms using symptom-related variables (six groups of daily diary symptoms, cognitive beliefs about IBS, and IBS quality of life [QOL]); and to examine how subgroups differed in patient characteristics. Data were derived from a baseline assessment of men and women enrolled in two cognitively-focused intervention trials (N = 332). Using latent class analysis, four latent classes were identified: Class 1 (low symptoms and good QOL, n = 153), Class 2 (low symptoms and moderate QOL, n = 106), Class 3 (high symptoms with diarrhea and poor QOL, n = 38), and Class 4 (high symptoms with low diarrhea and moderate QOL, n = 35). Diarrhea, being female, less formal education, unemployment, and previous history of major depressive disorder were associated with membership in Class 3. Using these distinct symptom profiles, the next step is to explore underlying mechanisms accounting for symptom burden with the goal of designing tailored interventions to reduce that burden.
Collapse
Affiliation(s)
- Claire J Han
- Departments of Public Health and Health Service, University of Washington, Seattle, Washington.,Biobehavioral Cancer Prevention and Control Training Program, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Ken Pike
- Department of Biostatistics and Office of Nursing Research, University of Washington, Seattle, Washington
| | - Monica E Jarrett
- Department of Biobehavioral Nursing and Health Informatics, University of Washington, Seattle, Washington
| | - Margaret M Heitkemper
- Department of Biobehavioral Nursing and Health Informatics, University of Washington, Seattle, Washington
| |
Collapse
|
13
|
Dysbiosis associated with acute helminth infections in herbivorous youngstock - observations and implications. Sci Rep 2019; 9:11121. [PMID: 31366962 PMCID: PMC6668452 DOI: 10.1038/s41598-019-47204-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 07/11/2019] [Indexed: 02/08/2023] Open
Abstract
A plethora of data points towards a role of the gastrointestinal (GI) microbiota of neonatal and young vertebrates in supporting the development and regulation of the host immune system. However, knowledge of the impact that infections by GI helminths exert on the developing microbiota of juvenile hosts is, thus far, limited. This study investigates, for the first time, the associations between acute infections by GI helminths and the faecal microbial and metabolic profiles of a cohort of equine youngstock, prior to and following treatment with parasiticides (ivermectin). We observed that high versus low parasite burdens (measured via parasite egg counts in faecal samples) were associated with specific compositional alterations of the developing microbiome; in particular, the faecal microbiota of animals with heavy worm infection burdens was characterised by lower microbial richness, and alterations to the relative abundances of bacterial taxa with immune-modulatory functions. Amino acids and glucose were increased in faecal samples from the same cohort, which indicated the likely occurrence of intestinal malabsorption. These data support the hypothesis that GI helminth infections in young livestock are associated with significant alterations to the GI microbiota, which may impact on both metabolism and development of acquired immunity. This knowledge will direct future studies aimed to identify the long-term impact of infection-induced alterations of the GI microbiota in young livestock.
Collapse
|
14
|
Shin A, Preidis GA, Shulman R, Kashyap PC. The Gut Microbiome in Adult and Pediatric Functional Gastrointestinal Disorders. Clin Gastroenterol Hepatol 2019; 17:256-274. [PMID: 30153517 PMCID: PMC6314902 DOI: 10.1016/j.cgh.2018.08.054] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 07/23/2018] [Accepted: 08/21/2018] [Indexed: 02/07/2023]
Abstract
The importance of gut microbiota in gastrointestinal (GI) physiology was well described, but our ability to study gut microbial ecosystems in their entirety was limited by culture-based methods prior to the sequencing revolution. The advent of high-throughput sequencing opened new avenues, allowing us to study gut microbial communities as an aggregate, independent of our ability to culture individual microbes. Early studies focused on association of changes in gut microbiota with different disease states, which was necessary to identify a potential role for microbes and generate novel hypotheses. Over the past few years the field has moved beyond associations to better understand the mechanistic implications of the microbiome in the pathophysiology of complex diseases. This movement also has resulted in a shift in our focus toward therapeutic strategies, which rely on better understanding the mediators of gut microbiota-host cross-talk. It is not surprising the gut microbiome has been implicated in the pathogenesis of functional gastrointestinal disorders given its role in modulating physiological processes such as immune development, GI motility and secretion, epithelial barrier integrity, and brain-gut communication. In this review, we focus on the current state of knowledge and future directions in microbiome research as it pertains to functional gastrointestinal disorders. We summarize the factors that help shape the gut microbiome in human beings. We discuss data from animal models and human studies to highlight existing paradigms regarding the mechanisms underlying microbiota-mediated alterations in physiological processes and their relevance in human interventions. While translation of microbiome science is still in its infancy, the outlook is optimistic and we are advancing in the right direction toward precise mechanism-based microbiota therapies.
Collapse
Affiliation(s)
- Andrea Shin
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Geoffrey A Preidis
- Section of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Baylor College of Medicine and Texas Children's Hospital, Houston, Texas
| | - Robert Shulman
- Section of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Baylor College of Medicine and Texas Children's Hospital, Houston, Texas
| | - Purna C Kashyap
- Enteric Neuroscience Program, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota.
| |
Collapse
|