1
|
Shi L, Wang J, Chen G, Kwok LY, Zhang W. Sensory quality and Metabolomic fingerprinting of Lacticaseibacillus paracasei-derived fermented soymilk beverages: Impact of starter strain and storage. Food Chem 2025; 482:144147. [PMID: 40199154 DOI: 10.1016/j.foodchem.2025.144147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 03/27/2025] [Accepted: 03/29/2025] [Indexed: 04/10/2025]
Abstract
Few previous studies have concurrently evaluated the effects of different fermentation bacterial strains and storage durations on the characteristics of fermented soymilk beverages (FSBs). This study used Lacticaseibacillus paracasei to conduct systematic assessments and demonstrated that soy protein is the optimal ingredient for sensory evaluation. Both investigated strains (PC-01 and PC646) significantly enhanced the nutritional and flavor profiles of FSBs, introducing a range of bioactive metabolites absent in non-fermented soymilk. Throughout the storage period, a decline in pH and viable bacterial counts was observed, along with an increase in titratable acidity and stability. Moreover, the metabolomic structure and metabolite abundance varied considerably between the FSBs produced by the two strains, with the non-volatile components showing greater variation, whereas the storage duration predominantly influenced the volatile metabolite components. These insights highlight the critical roles of strain selection and storage duration in shaping the nutritional and sensory qualities of FSBs.
Collapse
Affiliation(s)
- Linbo Shi
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Jicheng Wang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Guohuan Chen
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Lai-Yu Kwok
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Wenyi Zhang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot 010018, China.
| |
Collapse
|
2
|
Jeyaram K, Lahti L, Tims S, Heilig HGHJ, van Gelder AH, de Vos WM, Smidt H, Zoetendal EG. Fermented foods affect the seasonal stability of gut bacteria in an Indian rural population. Nat Commun 2025; 16:771. [PMID: 39824829 PMCID: PMC11748640 DOI: 10.1038/s41467-025-56014-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 01/06/2025] [Indexed: 01/20/2025] Open
Abstract
The effect of fermented foods on healthy human gut microbiota structure and function, particularly its seasonal preference and frequent long-term consumption, has been largely uncharacterised. Here, we assess the gut microbiota and metabolite composition of 78 healthy Indian agrarian individuals who differ in the intake of fermented milk and soybean products by seasonal sampling during hot-humid summer, autumn and dry winter. Here we show that, seasonal shifts between the Prevotella- and Bifidobacterium/Ruminococcus-driven community types, or ecological states, and associated fatty acid derivatives, with a bimodal change in Bacteroidota community structure during summer, particularly in fermented milk consumers. Our results associate long-term fermented food consumption with reduced gut microbiota diversity and bacterial load. We identify taxonomic groups that drive the seasonal fluctuation and associated shifts between the two ecological states in gut microbiota. This understanding may pave the way towards developing strategies to sustain a healthy and resilient gut microbiota through dietary interventions.
Collapse
Affiliation(s)
- Kumaraswamy Jeyaram
- Biotechnology Research and Innovation Council - Institute of Bioresources and Sustainable Development (BRIC-IBSD), Regional Centre, Tadong, Gangtok, 737102, Sikkim, India.
- Laboratory of Microbiology, Wageningen University & Research, 6708, WE, Wageningen, The Netherlands.
| | - Leo Lahti
- Laboratory of Microbiology, Wageningen University & Research, 6708, WE, Wageningen, The Netherlands
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, 00014, Helsinki, Finland
- Department of Computing, University of Turku, FI-20014, Turku, Finland
| | - Sebastian Tims
- Laboratory of Microbiology, Wageningen University & Research, 6708, WE, Wageningen, The Netherlands
- Danone Nutricia Research, 3584, CT, Utrecht, The Netherlands
| | - Hans G H J Heilig
- Laboratory of Microbiology, Wageningen University & Research, 6708, WE, Wageningen, The Netherlands
| | - Antonie H van Gelder
- Laboratory of Microbiology, Wageningen University & Research, 6708, WE, Wageningen, The Netherlands
| | - Willem M de Vos
- Laboratory of Microbiology, Wageningen University & Research, 6708, WE, Wageningen, The Netherlands
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, 00014, Helsinki, Finland
| | - Hauke Smidt
- Laboratory of Microbiology, Wageningen University & Research, 6708, WE, Wageningen, The Netherlands
| | - Erwin G Zoetendal
- Laboratory of Microbiology, Wageningen University & Research, 6708, WE, Wageningen, The Netherlands
| |
Collapse
|
3
|
Todorov SD, Tagg J, Algburi A, Tiwari SK, Popov I, Weeks R, Mitrokhin OV, Kudryashov IA, Kraskevich DA, Chikindas ML. The Hygienic Significance of Microbiota and Probiotics for Human Wellbeing. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10419-9. [PMID: 39688648 DOI: 10.1007/s12602-024-10419-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/01/2024] [Indexed: 12/18/2024]
Abstract
The human body can be viewed as a combination of ecological niches inhabited by trillions of bacteria, viruses, fungi, and parasites, all united by the microbiota concept. Human health largely depends on the nature of these relationships and how they are built and maintained. However, personal hygiene practices have historically been focused on the wholesale elimination of pathogens and "hygiene-challenging microorganisms" without considering the collateral damage to beneficial and commensal species. The microbiota can vary significantly in terms of the qualitative and quantitative composition both between different people and within one person during life, and the influence of various environmental factors, including age, nutrition, bad habits, genetic factors, physical activity, medication, and hygienic practices, facilitates these changes. Disturbance of the microbiota is a predisposing factor for the development of diseases and also greatly influences the course and severity of potential complications. Therefore, studying the composition of the microbiota of the different body systems and its appropriate correction is an urgent problem in the modern world. The application of personal hygiene products or probiotics must not compromise health through disruption of the healthy microbiota. Where changes in the composition or metabolic functions of the microbiome may occur, they must be carefully evaluated to ensure that essential biological functions are unaffected. As such, the purpose of this review is to consider the microbiota of each of the "ecological niches" of the human body and highlight the importance of the microbiota in maintaining a healthy body as well as the possibility of its modulation through the use of probiotics for the prevention and treatment of certain human diseases.
Collapse
Affiliation(s)
- Svetoslav D Todorov
- ProBacLab, Laboratório de Microbiologia de Alimentos, Departamento de Alimentos E Nutrição Experimental, Food Research Center, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, SP, 05508-000, Brazil.
- Instituto Politécnico de Viana Do Castelo, 4900-347, Viana Do Castelo, Portugal.
| | - John Tagg
- Blis Technologies, South Dunedin, 9012, New Zealand
| | - Ammar Algburi
- Department of Microbiology, College of Veterinary Medicine, University of Diyala, Baqubah, Iraq
| | - Santosh Kumar Tiwari
- Department of Genetics, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Igor Popov
- Center for Agrobiotechnology, Don State Technical University, Gagarina Sq., 1344002, Rostov-On-Don, Russia
- Division of Immunobiology and Biomedicine, Center of Genetics and Life Sciences, Sirius University of Science and Technology, Federal Territory Sirius, Olimpijskij Ave., 1, Federal Territory Sirius, Sirius, 354340, Russia
- Centre for Healthy Eating & Food Innovation (HEFI), Maastricht University-Campus Venlo, Villafloraweg, 1, 5928 SZ, Venlo, The Netherlands
| | - Richard Weeks
- Health Promoting Naturals Laboratory, School of Environmental and Biological Sciences, Rutgers, the State University of New Jersey, New Brunswick, NJ, 08901, USA
| | - Oleg V Mitrokhin
- Department of General Hygiene, I.M. Sechenov First Moscow State Medical University, Moscow, 119435, Russia
| | - Ilya A Kudryashov
- Department of General Hygiene, I.M. Sechenov First Moscow State Medical University, Moscow, 119435, Russia
| | - Denis A Kraskevich
- Department of General Hygiene, I.M. Sechenov First Moscow State Medical University, Moscow, 119435, Russia
| | - Michael L Chikindas
- Center for Agrobiotechnology, Don State Technical University, Gagarina Sq., 1344002, Rostov-On-Don, Russia.
- Health Promoting Naturals Laboratory, School of Environmental and Biological Sciences, Rutgers, the State University of New Jersey, New Brunswick, NJ, 08901, USA.
- Department of General Hygiene, I.M. Sechenov First Moscow State Medical University, Moscow, 119435, Russia.
| |
Collapse
|
4
|
Shirkhan F, Safaei F, Mirdamadi S, Zandi M. The Role of Probiotics in Skin Care: Advances, Challenges, and Future Needs. Probiotics Antimicrob Proteins 2024; 16:2132-2149. [PMID: 38965196 DOI: 10.1007/s12602-024-10319-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/27/2024] [Indexed: 07/06/2024]
Abstract
The skin, being the largest organ in the human body, plays a pivotal role in safeguarding the body against invasive pathogens. Therefore, it is essential to reinforce and protect this vital organ. Current research supports the impact of probiotics on skin health and their ability to alleviate various skin disorders. However, the effectiveness and probable side effects of probiotics in skin care remain a subject of debate, necessitating further investigation and analysis. Hence, this study aims to highlight existing gaps and future needs in the current research on probiotics in skin care and pave the way for future investigations. Therefore, we scrutinized the effects of oral (fermented foods and dietary supplements) and non-oral/topical probiotics on skin care, and the mechanism of probiotics that affect skin health. The results of most studies showed that fermented foods containing probiotics, particularly dairy products, positively impact skin health. The research results regarding the efficacy of probiotic supplements and live strains in treating skin disorders show promising potential. However, safety evaluations are crucial, to identify any potential adverse effects. While research has identified numerous potential mechanisms by which probiotics may influence skin health, a complete understanding of their precise mode of action remains elusive. However, it seems that probiotics can exert their positive effects through the gut-skin and gut-skin-brain axis on the human body. Therefore, following the identification of safe probiotics, additional studies should be carried out to establish optimal dosages, potential side effects, suitable regulatory guidelines, and validation methods.
Collapse
Affiliation(s)
- Faezeh Shirkhan
- Department of Food Science and Technology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, 19496-35881, Iran
| | - Fatemeh Safaei
- Iranian Research Organization for Science and Technology, Microbial Biotechnology Student in Iranian Research Organization for Science and Technology, Microbial biotechnology, Tehran, 3353511, Iran
| | - Saeed Mirdamadi
- Department of Biotechnology, Iranian Research Organization for Science & Technology (IROST), Tehran, 33131-93685, Iran.
| | - Mohammad Zandi
- Department of Agriculture, Iranian Research Organization for Science and Technology (IROST), Tehran, 3353511, Iran.
| |
Collapse
|
5
|
Khayatan D, Nouri K, Momtaz S, Roufogalis BD, Alidadi M, Jamialahmadi T, Abdolghaffari AH, Sahebkar A. Plant-Derived Fermented Products: An Interesting Concept for Human Health. Curr Dev Nutr 2024; 8:102162. [PMID: 38800633 PMCID: PMC11126794 DOI: 10.1016/j.cdnut.2024.102162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 03/23/2024] [Accepted: 04/14/2024] [Indexed: 05/29/2024] Open
Abstract
The health benefits of fermenting plant-derived products remain an underexplored domain. Plants and other natural products serve as medicinal agents when consumed as part of our diets, and the role of microorganisms in fermentation garners significant scientific interest. The present narrative review investigates the effects of fermentation of substances such as plants, algae, and fungi on their therapeutic and related purposes. Among the microorganisms used in fermentation, lactic acid bacteria are often linked to fermented products, particularly dairy and animal-based ones, and take center stage. These microorganisms are adept at synthesizing vitamins, active peptides, minerals, proteinases, and enzymes. Plant-derived fermented products are a significant source of active peptides, phytochemicals, flavonoids, and bioactive molecules with a profound impact on human health. They exhibit anti-inflammatory, anticarcinogenic, antiatherosclerotic, antidiabetic, antimicrobial, and antioxidant properties, the effects being substantiated by experimental studies. Clinical investigations underscore their effectiveness in managing diverse health conditions. Various studies highlight a synergy between microorganisms and plant-based materials, with fermentation as an innovative method for daily food preparation or a treatment option for specific ailments. These promising findings highlight the need for continued scientific inquiry into the impact of fermentation-derived products in clinical settings. Clinical observations to date have offered valuable insights into health improvement for various disorders. This current narrative review explores the impact of natural and plant-originated fermented products on health and well-being.
Collapse
Affiliation(s)
- Danial Khayatan
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Kiana Nouri
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Saeideh Momtaz
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran
| | - Basil D Roufogalis
- Discipline of Pharmacology, School of Medical Sciences, University of Sydney, Sydney, New South Wales, Australia
| | - Mona Alidadi
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Tannaz Jamialahmadi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Hossein Abdolghaffari
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
6
|
Zhao Z, Xu Z, Lv D, Rong Y, Hu Z, Yin R, Dong Y, Cao X, Tang B. Impact of the gut microbiome on skin fibrosis: a Mendelian randomization study. Front Med (Lausanne) 2024; 11:1380938. [PMID: 38695027 PMCID: PMC11061451 DOI: 10.3389/fmed.2024.1380938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 04/04/2024] [Indexed: 05/04/2024] Open
Abstract
Objective Skin fibrosis is a lesion in the dermis causing to itching, pain, and psychological stress. The gut microbiome plays as an essential role in skin diseases developments. We conducted a Mendelian randomization study to determine the causal association between the gut microbiome and skin fibrosis. Methods We retrieved valid instrumental variables from the genome-wide association study (GWAS) files of the gut microbiome (n = 18,340) conducted by the MiBioGen consortium. Skin fibrosis-associated data were downloaded from the GWAS Catalog. Subsequently, a two-sample Mendelian randomization (MR) analysis was performed to determine whether the gut microbiome was related to skin fibrosis. A reverse MR analysis was also performed on the bacterial traits which were causally associated with skin fibrosis in the forward MR analysis. In addition, we performed an MR-Pleiotropy Residual Sum and Outlier analysis to remove outliers and a sensitivity analysis to verify our results. Results According to the inverse variance-weighted estimation, we identified that ten bacterial traits (Class Actinobacteria, Class Bacteroidia, family Bifidobacteriaceae, family Rikenellaceae, genus Lachnospiraceae (UCG004 group), genus Ruminococcaceae (UCG013 group), order Bacteroidales, order Bifidobacteriales, genus Peptococcus and genus Victivallis) were negatively correlated with skin fibrosis while five bacterial traits (genus Olsenella, genus Oscillospira, genus Turicibacter, genus Lachnospiraceae (NK4A136group), and genus Sellimonas) were positively correlated. No results were obtained from reverse MR analysis. No significant heterogeneity or horizontal pleiotropy was observed in MR analysis. Objective conclusion There is a causal association between the gut microbiome and skin fibrosis, indicating the existence of a gut-skin axis. This provides a new breakthrough point for mechanistic and clinical studies of skin fibrosis.
Collapse
Affiliation(s)
- Zirui Zhao
- Department of Burn and Plastic Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zhongye Xu
- Department of Burn and Plastic Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Dongming Lv
- Department of Burn and Plastic Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yanchao Rong
- Department of Burn and Plastic Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zhicheng Hu
- Department of Burn and Plastic Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Rong Yin
- Department of Dermatology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yunxian Dong
- Department of Plastic and Reconstructive Surgery, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Xiaoling Cao
- Department of Burn and Plastic Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Bing Tang
- Department of Burn and Plastic Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
7
|
Hashimoto Y, Hamaguchi M, Fukui M. Fermented soybean foods and diabetes. J Diabetes Investig 2023; 14:1329-1340. [PMID: 37799064 PMCID: PMC10688128 DOI: 10.1111/jdi.14088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/29/2023] [Accepted: 09/05/2023] [Indexed: 10/07/2023] Open
Abstract
The number of patients with type 2 diabetes mellitus is increasing, and its prevention and management are important. One of the factors contributing to the increased incidence of type 2 diabetes mellitus is the change in dietary habits, including a Westernized diet. Fermented foods are foods that are transformed by the action of microorganisms to produce beneficial effects in humans and have been consumed for thousands of years. The production and consumption of fermented soy foods, including natto, miso, douchi, cheonggukjang, doenjang, tempeh, and fermented soy milk, are widespread in Asian countries. This review focuses on fermented soybean foods and summarizes their effects on diabetes. Fermentation increases the content of ingredients originally contained in soybeans and adds new ingredients that are not present in the original soybeans. Recent studies have revealed that fermented soybean food modifies the gut microbiota-related metabolites by modifying dysbiosis. Furthermore, it has been reported that fermented soybean foods have antioxidant, anti-inflammatory, and anti-diabetic effects. In recent years, fermented foods, including fermented soybeans, have shown various beneficial effects. Therefore, it is necessary to continue focusing on the benefits and mechanisms of action of fermented foods.
Collapse
Affiliation(s)
- Yoshitaka Hashimoto
- Department of Endocrinology and Metabolism, Graduate School of Medical ScienceKyoto Prefectural University of MedicineKyotoJapan
- Department of Diabetes and EndocrinologyMatsushita Memorial HospitalMoriguchiJapan
| | - Masahide Hamaguchi
- Department of Endocrinology and Metabolism, Graduate School of Medical ScienceKyoto Prefectural University of MedicineKyotoJapan
| | - Michiaki Fukui
- Department of Endocrinology and Metabolism, Graduate School of Medical ScienceKyoto Prefectural University of MedicineKyotoJapan
| |
Collapse
|
8
|
Natarelli N, Gahoonia N, Maloh J, Sivamani RK. Clinical Efficacy of Topical or Oral Soy Supplementation in Dermatology: A Systematic Review. J Clin Med 2023; 12:4171. [PMID: 37373864 DOI: 10.3390/jcm12124171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/10/2023] [Accepted: 06/19/2023] [Indexed: 06/29/2023] Open
Abstract
Soybean, a legume native to Southeast Asia, serves many nutritional and medical purposes due to its rich source of phytochemicals and its antioxidant activity. Many animal and in vitro studies have demonstrated its potential impact on dermatologic health. The objective of this review is to investigate the clinical response of soy-based oral supplementation or topical application on dermatologic outcomes. A systematic review of studies assessing soy supplementation or application was performed in January 2023. Databases included PubMed, Embase, Cochrane, and Natural Medicines, and studies assessing any formulation that included soybean or associated products were included. Thirty studies met the inclusion criteria and are included in the review; 13 of these studies assessed oral supplementation and 17 assessed topical application. Topical and oral supplementation demonstrated efficacious results for a variety of dermatologic parameters, including chronological or photoaging parameters, skin barrier status, hydration, hyperpigmentation, dermal network composition, erythema, hair and nail parameters, acne lesion counts, and vulvar lichen sclerosis scores. Factors associated with aging, such as wrinkle area and depth, were most frequently assessed among the studies, and both topical and oral studies demonstrated efficacy. Effects are likely mediated by dermal compositional changes, such as increased collagen and/or elastic fiber numbers. Transepidermal water loss measurements, an indicator of skin barrier status, were frequently obtained among the studies, although improvement was more likely achieved with topical application compared to oral supplementation. The results of this review highlight the utility of soy-based products for a variety of dermatologic applications, although future studies are required to determine optimal formulations and application routes for intended outcomes.
Collapse
Affiliation(s)
- Nicole Natarelli
- Morsani College of Medicine, University of South Florida, 560 Channelside Drive, Tampa, FL 33602, USA
| | - Nimrit Gahoonia
- College of Osteopathic Medicine, Touro University, 1310 Club Dr., Vallejo, CA 94592, USA
| | - Jessica Maloh
- Integrative Skin Science and Research, 4825 J St., Sacramento, CA 95819, USA
| | - Raja K Sivamani
- Integrative Skin Science and Research, 4825 J St., Sacramento, CA 95819, USA
- Pacific Skin Institute, 1451 River Park Drive, Suite 222, Sacramento, CA 95815, USA
- College of Medicine, California Northstate University, 9700 W Taron Dr., Elk Grove, CA 95757, USA
- Department of Dermatology, University of California-Davis, 3301 C St. 1300, Sacramento, CA 95816, USA
| |
Collapse
|
9
|
Zhu Y, Chen G, Diao J, Wang C. Recent advances in exploring and exploiting soybean functional peptides-a review. Front Nutr 2023; 10:1185047. [PMID: 37396130 PMCID: PMC10310054 DOI: 10.3389/fnut.2023.1185047] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 05/09/2023] [Indexed: 07/04/2023] Open
Abstract
Soybeans are rich in proteins and phytochemicals such as isoflavones and phenolic compounds. It is an excellent source of peptides with numerous biological functions, including anti-inflammatory, anticancer, and antidiabetic activities. Soy bioactive peptides are small building blocks of proteins that are released after fermentation or gastrointestinal digestion as well as by food processing through enzymatic hydrolysis, often in combination with novel food processing techniques (i.e., microwave, ultrasound, and high-pressure homogenization), which are associated with numerous health benefits. Various studies have reported the potential health benefits of soybean-derived functional peptides, which have made them a great substitute for many chemical-based functional elements in foods and pharmaceutical products for a healthy lifestyle. This review provides unprecedented and up-to-date insights into the role of soybean peptides in various diseases and metabolic disorders, ranging from diabetes and hypertension to neurodegenerative disorders and viral infections with mechanisms were discussed. In addition, we discuss all the known techniques, including conventional and emerging approaches, for the prediction of active soybean peptides. Finally, real-life applications of soybean peptides as functional entities in food and pharmaceutical products are discussed.
Collapse
Affiliation(s)
- Yongsheng Zhu
- Hangzhou Joyoung Soymilk & Food Co., Ltd., Hangzhou, China
| | - Gang Chen
- Hangzhou Joyoung Soymilk & Food Co., Ltd., Hangzhou, China
| | - Jingjing Diao
- National Coarse Cereals Engineering Research Center, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Changyuan Wang
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, China
| |
Collapse
|
10
|
Farhat EK, Sher EK, Džidić-Krivić A, Banjari I, Sher F. Functional biotransformation of phytoestrogens by gut microbiota with impact on cancer treatment. J Nutr Biochem 2023; 118:109368. [PMID: 37100304 DOI: 10.1016/j.jnutbio.2023.109368] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 04/12/2023] [Accepted: 04/23/2023] [Indexed: 04/28/2023]
Abstract
The human gut is a host for trillions of microorganisms, divided into more than 3000 heterogeneous species, which is called the gut microbiota. The gut microbiota composition can be altered by many different endogenous and exogenous factors, especially diet and nutrition. A diet rich in phytoestrogens, a variable group of chemical compounds similar to 17-β-estradiol (E2), the essential female steroid sex hormone is potent to change the composition of gut microbiota. However, the metabolism of phytoestrogens also highly depends on the action of enzymes produced by gut microbiota. Novel studies have shown that phytoestrogens could play an important role in the treatment of different types of cancers, such as breast cancer in women, due to their potential to decrease estrogen levels. This review aims to summarize recent findings about the lively dialogue between phytoestrogens and the gut microbiota and to address their possible future application, especially in treating patients with diagnosed breast cancer. A potential therapeutic approach for the prevention and improving outcomes in breast cancer patients could be based on targeted probiotic supplementation with the use of soy phytoestrogens. A positive effect of probiotics on the outcome and survival of patients with breast cancer has been established. However, more in vivo scientific studies are needed to pave the way for the use of probiotics and phytoestrogens in the clinical practice of breast cancer treatment.
Collapse
Affiliation(s)
- Esma Karahmet Farhat
- Department of Food and Nutrition Research, Faculty of Food Technology, Juraj Strossmayer University of Osijek, Croatia; International Society of Engineering Science and Technology, Nottingham, United Kingdom
| | - Emina Karahmet Sher
- Department of Biosciences, School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, United Kingdom.
| | - Amina Džidić-Krivić
- International Society of Engineering Science and Technology, Nottingham, United Kingdom; Department of Oncology, Cantonal Hospital Zenica, Zenica, 72000, Bosnia and Herzegovina
| | - Ines Banjari
- Department of Food and Nutrition Research, Faculty of Food Technology, Juraj Strossmayer University of Osijek, Croatia
| | - Farooq Sher
- Department of Engineering, School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, United Kingdom.
| |
Collapse
|
11
|
Sun Q, Wu J, Qian G, Cheng H. Effectiveness of Dietary Supplement for Skin Moisturizing in Healthy Adults: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Front Nutr 2022; 9:895192. [PMID: 35719159 PMCID: PMC9201759 DOI: 10.3389/fnut.2022.895192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 05/04/2022] [Indexed: 11/13/2022] Open
Abstract
Background The dietary supplement industry offers many oral cosmetics that purportedly assist in skin moisturization often with unclear evidence supporting efficacy and safety. To update the accessible proofs pertaining to the safety and effectiveness of oral dietary supplements to facilitate skin moisturizing via an all-around review and meta-analysis. Methods Three on-line databases [Pubmed, Embase, and Cochrane Library (CENTRAL)] were retrieved from January 2000 to November 2021. An overall 66 randomized controlled trials (RCTs) of skin care were recognized. Meta-analysis was performed for dietary supplements with four or more available research. Results Oral collagen or ceramide resulted in a statistically significant increase in skin hydration and a decrease in transepidermal water loss (TEWL) compared to placebo. No benefits regarding the improvement of skin conditions in terms of water content and TEWL were observed for lactic acid bacteria or Lactobacillus fermented foods. A statistically significant and positive effect on skin hydration was observed for both hyaluronan and procyanidin, with an unknown effect on TEWL due to insufficient RCTs. There was a non-significant improvement in the water content of stratum corneum for astaxanthin based on subgroup analyses. Among the dietary supplements trialed in ≤ 3 RCTs, the judgment regarding their effects on skin moisturizing was prevented by inconsistent conclusions as well as insufficient research. All food supplements were safe throughout the research (normally ≤ 24 weeks). Conclusion Oral dietary supplements, including collagen, ceramides, hyaluronan, and procyanidin, were proven to be effective for skin moisturization. At present, for skin moisturization, the proofs supporting the recommendation of other dietary supplements, such as lactic acid bacteria and astaxanthin, are insufficient. Systematic Review Registration http://www.crd.york.ac.uk/PROSPERO/ identifier CRD42021290818.
Collapse
Affiliation(s)
- Qian Sun
- Department of Medical Cosmetology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jingping Wu
- Department of Medical Cosmetology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Guofei Qian
- Haisco Pharmaceutical Group Company Ltd., Chengdu, China
| | - Hongbin Cheng
- Dermatology Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
12
|
Mafra D, Borges NA, Alvarenga L, Ribeiro M, Fonseca L, Leal VO, Shiels PG, Stenvinkel P. Fermented food: Should patients with cardiometabolic diseases go back to an early neolithic diet? Crit Rev Food Sci Nutr 2022; 63:10173-10196. [PMID: 35593230 DOI: 10.1080/10408398.2022.2077300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Fermentation has been used since the Early Neolithic period to preserve foods. It has inherent organoleptic and nutritive properties that bestow health benefits, including reducing inflammation and oxidative stress, supporting the growth of salutogenic microbiota, enhancing intestinal mucosal protection and promoting beneficial immunometabolic health effects. The fermentation of food with specific microbiota increases the production salutogenic bioactive compounds that can activate Nrf2 mediated cytoprotective responses and mitigate the effects of the 'diseasome of aging' and its associated inflammageing, which presents as a prominent feature of obesity, type-2 diabetes, cardiovascular and chronic kidney disease. This review discusses the importance of fermented food in improving health span, with special reference to cardiometabolic diseases.
Collapse
Affiliation(s)
- D Mafra
- Post Graduation Program in Medical Sciences, Federal Fluminense University, Niterói-Rio de Janeiro, Brazil
- Graduate Program in Biological Sciences, Physiology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - N A Borges
- Institute of Nutrition, University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - L Alvarenga
- Post Graduation Program in Medical Sciences, Federal Fluminense University, Niterói-Rio de Janeiro, Brazil
| | - M Ribeiro
- Graduate Program in Biological Sciences, Physiology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - L Fonseca
- Post Graduation Program in Medical Sciences, Federal Fluminense University, Niterói-Rio de Janeiro, Brazil
| | - V O Leal
- Division of Nutrition, Pedro Ernesto University Hospital, University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - P G Shiels
- Wolfson Wohl Translational Research Centre, University of Glasgow, Bearsden, Glasgow, UK
| | - P Stenvinkel
- Division of Renal Medicine, Department of Clinical Science, Technology and Intervention, Karolinska Instituted, Stockholm, Sweden
| |
Collapse
|
13
|
Hernández‐García Y, Melgar‐Lalanne G, Téllez‐Medina DI, Ruiz‐May E, Salgado‐Cruz MDLP, Andrade‐Velásquez A, Dorantes‐Álvarez L, López‐Hernández D, Santiago Gómez MP. Scavenging peptides, antioxidant activity, and hypoglycemic activity of a germinated amaranth (
Amaranthus hypochondriacus
L.) beverage fermented by
Lactiplantibacillus plantarum. J Food Biochem 2022; 46:e14139. [DOI: 10.1111/jfbc.14139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/09/2022] [Accepted: 03/03/2022] [Indexed: 01/08/2023]
Affiliation(s)
- Yazmín Hernández‐García
- Departamento Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas Instituto Politécnico Nacional México City Mexico
| | | | - Darío Iker Téllez‐Medina
- Departamento Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas Instituto Politécnico Nacional México City Mexico
| | - Eliel Ruiz‐May
- Red de Estudios Moleculares Avanzados Instituto de Ecología A.C. Clúster Científico y Tecnologico BioMimic® Veracruz Mexico
| | - Ma. de la Paz Salgado‐Cruz
- Departamento Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas Instituto Politécnico Nacional México City Mexico
| | - Amaury Andrade‐Velásquez
- Departamento Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas Instituto Politécnico Nacional México City Mexico
| | - Lidia Dorantes‐Álvarez
- Departamento Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas Instituto Politécnico Nacional México City Mexico
| | | | | |
Collapse
|
14
|
Suda Y, Kagawa K, Fukuyama K, Elean M, Zhou B, Tomokiyo M, Islam MA, Rajoka MSR, Kober AKMH, Shimazu T, Egusa S, Terashima Y, Aso H, Ikeda-Ohtsubo W, Villena J, Kitazawa H. Soymilk-fermented with Lactobacillus delbrueckii subsp. delbrueckii TUA4408L improves immune-health in pigs. Benef Microbes 2022; 13:61-72. [PMID: 35098908 DOI: 10.3920/bm2021.0068] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Lactobacillus delbrueckii subsp. delbrueckii TUA4408L has the ability to grow and ferment soymilk and is able to modulate the innate immune response of intestinal epithelial cells in vitro. These two properties prompt us to evaluate whether the soymilk fermented with the TUA4408L strain can induce beneficial immunomodulatory effects in vivo. For this purpose, pigs were selected as a preclinical model. The studies performed here demonstrated that the L. delbrueckii subsp. delbrueckii TUA4408L-fermented soymilk (TUA4408L FSM) reduced blood markers of inflammation and differentially regulated the expression of inflammatory and regulatory cytokines in the intestinal mucosa. These immunological changes induced by the TUA4408L FSM were associated to an enhanced resistance to pathogenic Escherichia coli and an improved grow performance and meat quality of pigs. The experiments and analysis in our study indicate that the immunobiotic TUA4408L FSM could be an interesting non-dairy functional food to beneficially modulate the intestinal immune system, improve protection against pathogens and reduce inflammatory damage. The preclinical study carried out here in pigs could have a better correlation in humans, compared to a rodent model. However, the clinical relevance of these findings still needs to be confirmed by further research, for example, in controlled human challenge studies.
Collapse
Affiliation(s)
- Y Suda
- Department of Food Resource Development, School of Food Industrial Sciences, Miyagi University, Sendai 982-0215, Japan
| | - K Kagawa
- Department of Food Resource Development, School of Food Industrial Sciences, Miyagi University, Sendai 982-0215, Japan.,Graduate School of Food, Agricultural and Environmental Sciences, Miyagi University, Sendai 982-0215, Japan
| | - K Fukuyama
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan.,Livestock Immunology Unit, International Education and Research Center for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| | - M Elean
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), Chacabuco145, San Miguel de Tucuman, 4000 Tucuman, Argentina
| | - B Zhou
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan.,Livestock Immunology Unit, International Education and Research Center for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| | - M Tomokiyo
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan.,Livestock Immunology Unit, International Education and Research Center for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| | - M Aminul Islam
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan.,Livestock Immunology Unit, International Education and Research Center for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan.,Department of Medicine, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh-2202, Bangladesh
| | - M S R Rajoka
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan.,Livestock Immunology Unit, International Education and Research Center for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| | - A K M Humayun Kober
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan.,Livestock Immunology Unit, International Education and Research Center for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan.,Department of Dairy and Poultry Science, Faculty of Veterinary Medicine, Chittagong Veterinary and Animal Sciences University, Khulshi, Chittagong-4225, Bangladesh
| | - T Shimazu
- Department of Food Science and Business, School of Food Industrial Sciences, Miyagi University, Sendai 982-0215, Japan
| | - S Egusa
- Research and Development Div., Marusan-Ai Co., Ltd., Okazaki 444-2193, Japan
| | - Y Terashima
- Research and Development Div., Marusan-Ai Co., Ltd., Okazaki 444-2193, Japan
| | - H Aso
- Livestock Immunology Unit, International Education and Research Center for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan.,Laboratory of Animal Health Science, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| | - W Ikeda-Ohtsubo
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan.,Livestock Immunology Unit, International Education and Research Center for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| | - J Villena
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), Chacabuco145, San Miguel de Tucuman, 4000 Tucuman, Argentina.,Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| | - H Kitazawa
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan.,Livestock Immunology Unit, International Education and Research Center for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| |
Collapse
|
15
|
KESIKA P, SIVAMARUTHI BS, CHAIYASUT C. A review on the functional properties of fermented soymilk. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.10721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
16
|
Wang X, Chen Y, Wang Y, Dai W, Piao C, Yu H. Characteristics of lipoxygenase-based and lipoxygenase-deficient soy yogurt with modified okara. Food Sci Biotechnol 2021; 30:1675-1684. [PMID: 34925942 DOI: 10.1007/s10068-021-01003-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/27/2021] [Accepted: 10/31/2021] [Indexed: 11/28/2022] Open
Abstract
Lipoxygenase-based and lipoxygenase-deficient okara were modified by Kluyveromyces marxianus fermentation, then adding modified okara back to the corresponding soymilk to prepare soy yogurt. The physicochemical properties, texture, and volatile components of soy yogurt were characterized. The results showed that okara modified by Kluyveromyces marxianus fermentation was rich in soluable dietary fiber and was imparted better water-holding capacity, swelling capacity, and oil-holding capacity. The soy yogurt with the modified okara was greatly enhanced in its appearance, texture and was relatively stable during storage. Moreover, lipoxygenase-based soy yogurt had a unique soybean flavor while lipoxygenase-deficient soy yogurt had a slight beany flavor and soybean flavor. This article guides a bio-modified method for okara and provides a theoretical basis for the further development and application of soy yogurt with high dietary fiber as well as lipoxygenase-deficient soy yogurt. Supplementary Information The online version contains supplementary material available at 10.1007/s10068-021-01003-w.
Collapse
Affiliation(s)
- Xiujuan Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun , 130118 Jilin Province China
| | - Yue Chen
- College of Food Science and Engineering, Jilin Agricultural University, Changchun , 130118 Jilin Province China.,Jilin Green Food Engineering Research Institute, Changchun, 130000 Jilin Province China
| | - Yuhua Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun , 130118 Jilin Province China.,National Engineering Laboratory for Wheat and Corn Deep Processing, Changchun, 130118 Jilin Province China
| | - Weichang Dai
- College of Food Science and Engineering, Jilin Agricultural University, Changchun , 130118 Jilin Province China
| | - Chunhong Piao
- College of Food Science and Engineering, Jilin Agricultural University, Changchun , 130118 Jilin Province China.,National Engineering Laboratory for Wheat and Corn Deep Processing, Changchun, 130118 Jilin Province China
| | - Hansong Yu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun , 130118 Jilin Province China.,National Engineering Laboratory for Wheat and Corn Deep Processing, Changchun, 130118 Jilin Province China
| |
Collapse
|
17
|
Piwowarski JP, Stanisławska I, Granica S. Dietary polyphenol and microbiota interactions in the context of prostate health. Ann N Y Acad Sci 2021; 1508:54-77. [PMID: 34636052 DOI: 10.1111/nyas.14701] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 08/14/2021] [Accepted: 09/06/2021] [Indexed: 12/13/2022]
Abstract
Recent data strongly indicate a relationship between prostate health and gut microbiota, in which composition and physiological function strictly depend on dietary patterns. The bidirectional interplay of foods containing polyphenols, such as ellagitannins, condensed tannins, lignans, isoflavones, and prenylated flavonoids with human gut microbiota, has been proven to contribute to their impact on prostate health. Considering the attributed role of dietary polyphenols in the prevention of prostate diseases, this paper aims to critically review the studies concerning the influence of polyphenols' postbiotic metabolites on processes associated with the pathophysiology of prostate diseases. Clinical, in vivo, and in vitro studies on polyphenols have been juxtaposed with the current knowledge regarding their pharmacokinetics, microbial metabolism, and potential interactions with microbiota harboring different niches of the human organism. Directions of future research on dietary polyphenols regarding their interaction with microbiota and prostate health have been indicated.
Collapse
Affiliation(s)
- Jakub P Piwowarski
- Microbiota Lab, Department of Pharmacognosy and Molecular Basis of Phytotherapy, Medical University of Warsaw, Warsaw, Poland
| | - Iwona Stanisławska
- Faculty of Pharmacy, Department of Bromatology, Medical University of Warsaw, Warsaw, Poland
| | - Sebastian Granica
- Microbiota Lab, Department of Pharmacognosy and Molecular Basis of Phytotherapy, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
18
|
Hung YP, Lee CC, Lee JC, Tsai PJ, Hsueh PR, Ko WC. The Potential of Probiotics to Eradicate Gut Carriage of Pathogenic or Antimicrobial-Resistant Enterobacterales. Antibiotics (Basel) 2021; 10:antibiotics10091086. [PMID: 34572668 PMCID: PMC8470257 DOI: 10.3390/antibiotics10091086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/03/2021] [Accepted: 09/06/2021] [Indexed: 12/31/2022] Open
Abstract
Probiotic supplements have been used to decrease the gut carriage of antimicrobial-resistant Enterobacterales through changes in the microbiota and metabolomes, nutrition competition, and the secretion of antimicrobial proteins. Many probiotics have shown Enterobacterales-inhibiting effects ex vivo and in vivo. In livestock, probiotics have been widely used to eradicate colon or environmental antimicrobial-resistant Enterobacterales colonization with promising efficacy for many years by oral supplementation, in ovo use, or as environmental disinfectants. In humans, probiotics have been used as oral supplements for infants to decease potential gut pathogenic Enterobacterales, and probiotic mixtures, especially, have exhibited positive results. In contrast to the beneficial effects in infants, for adults, probiotic supplements might decrease potentially pathogenic Enterobacterales, but they fail to completely eradicate them in the gut. However, there are several ways to improve the effects of probiotics, including the discovery of probiotics with gut-protection ability and antimicrobial effects, the modification of delivery methods, and the discovery of engineered probiotics. The search for multifunctional probiotics and synbiotics could render the eradication of “bad” Enterobacterales in the human gut via probiotic administration achievable in the future.
Collapse
Affiliation(s)
- Yuan-Pin Hung
- Department of Internal Medicine, Tainan Hospital, Ministry of Health and Welfare, Tainan 700, Taiwan;
- Department of Internal Medicine, College of Medicine, National Cheng Kung University Hospital, National Cheng Kung University, Tainan 704, Taiwan; (C.-C.L.); (J.-C.L.)
| | - Ching-Chi Lee
- Department of Internal Medicine, College of Medicine, National Cheng Kung University Hospital, National Cheng Kung University, Tainan 704, Taiwan; (C.-C.L.); (J.-C.L.)
- Clinical Medicine Research Center, College of Medicine, National Cheng Kung University Hospital, National Cheng Kung University, Tainan 704, Taiwan
| | - Jen-Chieh Lee
- Department of Internal Medicine, College of Medicine, National Cheng Kung University Hospital, National Cheng Kung University, Tainan 704, Taiwan; (C.-C.L.); (J.-C.L.)
| | - Pei-Jane Tsai
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan 705, Taiwan;
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 705, Taiwan
- Department of Pathology, National Cheng Kung University Hospital, National Cheng Kung University, Tainan 704, Taiwan
| | - Po-Ren Hsueh
- Departments of Laboratory Medicine and Internal Medicine, China Medical University Hospital, School of Medicine, China Medical University, Taichung 404, Taiwan
- Correspondence: (P.-R.H.); (W.-C.K.)
| | - Wen-Chien Ko
- Department of Internal Medicine, College of Medicine, National Cheng Kung University Hospital, National Cheng Kung University, Tainan 704, Taiwan; (C.-C.L.); (J.-C.L.)
- Department of Medicine, College of Medicine, National Cheng Kung University, Tainan 705, Taiwan
- Correspondence: (P.-R.H.); (W.-C.K.)
| |
Collapse
|
19
|
The potential of non-dairy synbiotic instant beverage powder: Review on a new generation of healthy ready-to-reconstitute drinks. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101195] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
20
|
Gustaw K, Niedźwiedź I, Rachwał K, Polak-Berecka M. New Insight into Bacterial Interaction with the Matrix of Plant-Based Fermented Foods. Foods 2021; 10:1603. [PMID: 34359473 PMCID: PMC8304663 DOI: 10.3390/foods10071603] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 06/24/2021] [Accepted: 07/08/2021] [Indexed: 12/12/2022] Open
Abstract
Microorganisms have been harnessed to process raw plants into fermented foods. The adaptation to a variety of plant environments has resulted in a nearly inseparable association between the bacterial species and the plant with a characteristic chemical profile. Lactic acid bacteria, which are known for their ability to adapt to nutrient-rich niches, have altered their genomes to dominate specific habitats through gene loss or gain. Molecular biology approaches provide a deep insight into the evolutionary process in many bacteria and their adaptation to colonize the plant matrix. Knowledge of the adaptive characteristics of microorganisms facilitates an efficient use thereof in fermentation to achieve desired final product properties. With their ability to acidify the environment and degrade plant compounds enzymatically, bacteria can modify the textural and organoleptic properties of the product and increase the bioavailability of plant matrix components. This article describes selected microorganisms and their competitive survival and adaptation in fermented fruit and vegetable environments. Beneficial changes in the plant matrix caused by microbial activity and their beneficial potential for human health are discussed as well.
Collapse
Affiliation(s)
| | | | - Kamila Rachwał
- Department of Biotechnology, Microbiology and Human Nutrition, Faculty of Food Science and Biotechnology, University of Life Sciences in Lublin, 8 Skromna Street, 20-704 Lublin, Poland; (K.G.); (I.N.); (M.P.-B.)
| | | |
Collapse
|
21
|
Chandan N, Rajkumar JR, Shi VY, Lio PA. A new era of moisturizers. J Cosmet Dermatol 2021; 20:2425-2430. [PMID: 33977643 DOI: 10.1111/jocd.14217] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/25/2021] [Accepted: 05/05/2021] [Indexed: 12/20/2022]
Abstract
BACKGROUND Moisturizers traditionally function to replenish both the intercellular lipid lamella and natural moisturizing factors, and form a hydrolipid film on the skin surface to decrease transepidermal water loss and improve hydration. As we continue to identify epidermal lipid imbalance in patients with atopic dermatitis, we turn to the use of bioactive ingredients in moisturizers for improving barrier repair and function. METHODS This review aims to explore the modern use of moisturizers in targeting various components of the skin barrier, dampening immune response, and restoring microbial balance. We conducted a balanced and comprehensive narrative review of the literature. Studies were identified by searching electronic databases (MEDLINE and PubMed), focusing on studies and trials regarding moisturizers that include endocannabinoids, bioactive lipids, anti-inflammatory agents, antioxidants, and microbiome modulators. Only articles published in English language were included. RESULTS The aforementioned ingredients exert additional biological effects to improve skin function by upregulating lipid synthesis, decreasing neurosensory transmission of itch signals, reversing oxidative stress, decreasing inflammatory cell activity and cytokine release, and modulating skin microbiota. The shift from traditional moisturizers to those with bioactive ingredients, anti-inflammatory agents, and microbiome modulating effects opens a realm of possible therapeutic options for patients with barrier-defective cutaneous conditions. CONCLUSION Focusing on the disrupted skin barrier as a target for both prevention and treatment and incorporating a combined strategy that utilizes the aforementioned agents to tackle barrier dysfunction from different angles remains a promising area for clinical impact in dermatology.
Collapse
Affiliation(s)
- Neha Chandan
- University of Illinois College of Medicine, Chicago, IL, USA
| | | | - Vivian Y Shi
- Department of Dermatology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Peter A Lio
- Medical Dermatology Associates of Chicago, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
22
|
Łoś-Rycharska E, Gołębiewski M, Sikora M, Grzybowski T, Gorzkiewicz M, Popielarz M, Gawryjołek J, Krogulska A. A Combined Analysis of Gut and Skin Microbiota in Infants with Food Allergy and Atopic Dermatitis: A Pilot Study. Nutrients 2021; 13:nu13051682. [PMID: 34063398 PMCID: PMC8156695 DOI: 10.3390/nu13051682] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/03/2021] [Accepted: 05/12/2021] [Indexed: 12/15/2022] Open
Abstract
The gut microbiota in patients with food allergy, and the skin microbiota in atopic dermatitis patients differ from those of healthy people. We hypothesize that relationships may exist between gut and skin microbiota in patients with allergies. The aim of this study was to determine the possible relationship between gut and skin microbiota in patients with allergies, hence simultaneous analysis of the two compartments of microbiota was performed in infants with and without allergic symptoms. Fifty-nine infants with food allergy and/or atopic dermatitis and 28 healthy children were enrolled in the study. The skin and gut microbiota were evaluated using 16S rRNA gene amplicon sequencing. No significant differences in the α-diversity of dermal or fecal microbiota were observed between allergic and non-allergic infants; however, a significant relationship was found between bacterial community structure and allergy phenotypes, especially in the fecal samples. Certain clinical conditions were associated with characteristic bacterial taxa in the skin and gut microbiota. Positive correlations were found between skin and fecal samples in the abundance of Gemella among allergic infants, and Lactobacillus and Bacteroides among healthy infants. Although infants with allergies and healthy infants demonstrate microbiota with similar α-diversity, some differences in β-diversity and bacterial species abundance can be seen, which may depend on the phenotype of the allergy. For some organisms, their abundance in skin and feces samples may be correlated, and these correlations might serve as indicators of the host's allergic state.
Collapse
Affiliation(s)
- Ewa Łoś-Rycharska
- Department of Pediatrics, Allergology and Gastroenterology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 87-100 Toruń, Poland; (M.P.); (J.G.); (A.K.)
- Correspondence: (E.Ł.-R.); (M.G.)
| | - Marcin Gołębiewski
- Department of Plant Physiology and Biotechnology, Nicolaus Copernicus University in Torun, 87-100 Toruń, Poland
- Interdisciplinary Centre of Modern Technologies, Nicolaus Copernicus University in Torun, 87-100 Toruń, Poland;
- Correspondence: (E.Ł.-R.); (M.G.)
| | - Marcin Sikora
- Interdisciplinary Centre of Modern Technologies, Nicolaus Copernicus University in Torun, 87-100 Toruń, Poland;
| | - Tomasz Grzybowski
- Department of Forensic Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 87-100 Toruń, Poland; (T.G.); (M.G.)
| | - Marta Gorzkiewicz
- Department of Forensic Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 87-100 Toruń, Poland; (T.G.); (M.G.)
| | - Maria Popielarz
- Department of Pediatrics, Allergology and Gastroenterology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 87-100 Toruń, Poland; (M.P.); (J.G.); (A.K.)
| | - Julia Gawryjołek
- Department of Pediatrics, Allergology and Gastroenterology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 87-100 Toruń, Poland; (M.P.); (J.G.); (A.K.)
| | - Aneta Krogulska
- Department of Pediatrics, Allergology and Gastroenterology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 87-100 Toruń, Poland; (M.P.); (J.G.); (A.K.)
| |
Collapse
|
23
|
Chourasia R, Padhi S, Chiring Phukon L, Abedin MM, Singh SP, Rai AK. A Potential Peptide From Soy Cheese Produced Using Lactobacillus delbrueckii WS4 for Effective Inhibition of SARS-CoV-2 Main Protease and S1 Glycoprotein. Front Mol Biosci 2020; 7:601753. [PMID: 33363209 PMCID: PMC7759660 DOI: 10.3389/fmolb.2020.601753] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 11/23/2020] [Indexed: 12/12/2022] Open
Abstract
The COVID-19 pandemic caused by novel SARS-CoV-2 has resulted in an unprecedented loss of lives and economy around the world. In this study, search for potential inhibitors against two of the best characterized SARS-CoV-2 drug targets: S1 glycoprotein receptor-binding domain (RBD) and main protease (3CLPro), was carried out using the soy cheese peptides. A total of 1,420 peptides identified from the cheese peptidome produced using Lactobacillus delbrueckii WS4 were screened for antiviral activity by employing the web tools, AVPpred, and meta-iAVP. Molecular docking studies of the selected peptides revealed one potential peptide "KFVPKQPNMIL" that demonstrated strong affinity toward significant amino acid residues responsible for the host cell entry (RBD) and multiplication (3CLpro) of SARS-CoV-2. The peptide was also assessed for its ability to interact with the critical residues of S1 RBD and 3CLpro of other β-coronaviruses. High binding affinity was observed toward critical amino acids of both the targeted proteins in SARS-CoV, MERS-CoV, and HCoV-HKU1. The binding energy of KFVPKQPNMIL against RBD and 3CLpro of the four viruses ranged from -8.45 to -26.8 kcal/mol and -15.22 to -22.85 kcal/mol, respectively. The findings conclude that cheese, produced by using Lb. delbrueckii WS4, could be explored as a prophylactic food for SARS-CoV-2 and related viruses. In addition, the multi-target inhibitor peptide, which effectively inhibited both the viral proteins, could further be used as a terminus a quo for the in vitro and in vivo function against SARS-CoV-2.
Collapse
Affiliation(s)
- Rounak Chourasia
- Institute of Bioresources and Sustainable Development (DBT-IBSD), Regional Centre, Sikkim, India
| | - Srichandan Padhi
- Institute of Bioresources and Sustainable Development (DBT-IBSD), Regional Centre, Sikkim, India
| | - Loreni Chiring Phukon
- Institute of Bioresources and Sustainable Development (DBT-IBSD), Regional Centre, Sikkim, India
| | - Md Minhajul Abedin
- Institute of Bioresources and Sustainable Development (DBT-IBSD), Regional Centre, Sikkim, India
| | - Sudhir P. Singh
- Center of Innovative and Applied Bioprocessing (DBT-CIAB), Mohali, India
| | - Amit Kumar Rai
- Institute of Bioresources and Sustainable Development (DBT-IBSD), Regional Centre, Sikkim, India
| |
Collapse
|
24
|
Kakiyama S, Kubota N, Shida K, Harima-Mizusawa N. Effects of citrus juice fermented with Lactobacillus plantarum YIT 0132 on Japanese cedar pollinosis during probiotic consumption: an open study. BIOSCIENCE OF MICROBIOTA FOOD AND HEALTH 2020; 39:137-144. [PMID: 32775132 PMCID: PMC7392906 DOI: 10.12938/bmfh.2019-017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 02/23/2020] [Indexed: 11/28/2022]
Abstract
Certain strains of lactic acid bacteria (LAB) have beneficial effects on Japanese cedar pollinosis (JCPsis), which is a major concern in Japan. Heat-killed Lactobacillus
plantarum YIT 0132 (LP0132), selected for its ability to induce interleukin (IL)-10, has been shown to suppress JCPsis symptoms. Lactobacillus casei
Shirota (LcS), a popular probiotic, potentially induces a high level of IL-12 and is reported to delay the onset of JCPsis symptoms. However, it is unclear whether a combination of
different types of LAB exerts additional effects without interfering with the benefits of each individual LAB. Thus, we conducted a pilot study to investigate the effects of
LP0132-fermented citrus juice on JCPsis during simultaneous consumption of LcS-fermented milk. Fifty-nine subjects with JCPsis were allocated to two groups after a 2-week
preconsumption period: one group consumed LP0132-fermented citrus juice and LcS-fermented milk (LcS+LP0132 group) for 12 weeks, while the other consumed LcS-fermented milk alone
(LcS group). JCPsis symptoms, JCPsis-associated quality of life (QOL) impairment, and bowel movements were assessed by questionnaires. Compared with the LcS group, the LcS+LP0132
group showed significant alleviation of total symptoms and total ocular symptoms during the consumption period, as well as relief of impaired QOL. Bowel movements were
significantly improved during the consumption period compared with the baseline in a combined analysis of all subjects in the two groups. In conclusion, LP0132-fermented citrus
juice appears to have positive effects on some JCPsis symptoms and QOL in a population consuming immunomodulating probiotics such as LcS-fermented milk.
Collapse
Affiliation(s)
- Sayaka Kakiyama
- Yakult Central Institute, 5-11 Izumi, Kunitachi-shi, Tokyo 186-8650, Japan
| | - Norihiro Kubota
- Yakult Central Institute, 5-11 Izumi, Kunitachi-shi, Tokyo 186-8650, Japan
| | - Kan Shida
- Yakult Central Institute, 5-11 Izumi, Kunitachi-shi, Tokyo 186-8650, Japan
| | | |
Collapse
|
25
|
Valero-Cases E, Cerdá-Bernad D, Pastor JJ, Frutos MJ. Non-Dairy Fermented Beverages as Potential Carriers to Ensure Probiotics, Prebiotics, and Bioactive Compounds Arrival to the Gut and Their Health Benefits. Nutrients 2020; 12:E1666. [PMID: 32503276 PMCID: PMC7352914 DOI: 10.3390/nu12061666] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/27/2020] [Accepted: 05/28/2020] [Indexed: 12/17/2022] Open
Abstract
In alignment with Hippocrates' aphorisms "Let food be your medicine and medicine be your food" and "All diseases begin in the gut", recent studies have suggested that healthy diets should include fermented foods to temporally enhance live microorganisms in our gut. As a result, consumers are now demanding this type of food and fermented food has gained popularity. However, certain sectors of population, such as those allergic to milk proteins, lactose intolerant and strict vegetarians, cannot consume dairy products. Therefore, a need has arisen in order to offer consumers an alternative to fermented dairy products by exploring new non-dairy matrices as probiotics carriers. Accordingly, this review aims to explore the benefits of different fermented non-dairy beverages (legume, cereal, pseudocereal, fruit and vegetable), as potential carriers of bioactive compounds (generated during the fermentation process), prebiotics and different probiotic bacteria, providing protection to ensure that their viability is in the range of 106-107 CFU/mL at the consumption time, in order that they reach the intestine in high amounts and improve human health through modulation of the gut microbiome.
Collapse
Affiliation(s)
- Estefanía Valero-Cases
- Research Group on Quality and Safety, Food Technology Department, Miguel Hernández University, 03312 Orihuela, Spain; (E.V.-C.); (D.C.-B.)
| | - Débora Cerdá-Bernad
- Research Group on Quality and Safety, Food Technology Department, Miguel Hernández University, 03312 Orihuela, Spain; (E.V.-C.); (D.C.-B.)
| | | | - María-José Frutos
- Research Group on Quality and Safety, Food Technology Department, Miguel Hernández University, 03312 Orihuela, Spain; (E.V.-C.); (D.C.-B.)
| |
Collapse
|
26
|
Shiferaw Terefe N, Augustin MA. Fermentation for tailoring the technological and health related functionality of food products. Crit Rev Food Sci Nutr 2019; 60:2887-2913. [PMID: 31583891 DOI: 10.1080/10408398.2019.1666250] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Fermented foods are experiencing a resurgence due to the consumers' growing interest in foods that are natural and health promoting. Microbial fermentation is a biotechnological process which transforms food raw materials into palatable, nutritious and healthy food products. Fermentation imparts unique aroma, flavor and texture to food, improves digestibility, degrades anti-nutritional factors, toxins and allergens, converts phytochemicals such as polyphenols into more bioactive and bioavailable forms, and enriches the nutritional quality of food. Fermentation also modifies the physical functional properties of food materials, rendering them differentiated ingredients for use in formulated foods. The science of fermentation and the technological and health functionality of fermented foods is reviewed considering the growing interest worldwide in fermented foods and beverages and the huge potential of the technology for reducing food loss and improving nutritional food security.
Collapse
|
27
|
Zhang L, Li Z, Li Y, Tian J, Jia K, Zhang D, Song M, Abbas Raza SH, Garcia M, Kang Y, Zheng W, Qian A, Shan X, Xu Y. OmpW expressed by recombinant Lactobacillus casei elicits protective immunity against Aeromonas veronii in common carp. Microb Pathog 2019; 133:103552. [PMID: 31121269 DOI: 10.1016/j.micpath.2019.103552] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 05/16/2019] [Accepted: 05/19/2019] [Indexed: 12/22/2022]
Abstract
Aeromonas veronii is an opportunistic pathogen that is capable of infecting both aquatic livestock and mammals. Natural infection in fishes results in irreparable damage to the aquaculture industry. In this study, we sought to investigate whether recombinant Lactobacillus casei expressing the outer membrane protein W (OmpW) of A.veronii could elicit protective immunity against A.veronii infections. We generated two recombinant Lactobacillus casei (L.casei) strains expressing the OmpW of A.veronii (surface-displayed or secreted) and evaluated the effect on immune responses in a fish model. A 600-bp gene fragment was subcloned into the L.casei expression plasmids pPG-1 (surface-displayed) and pPG-2 (secreted). Expression of the recombinant OmpW protein was also confirmed by Western blot and immunofluorescence assays. Common carp immunized with Lc-pPG-1- OmpW and Lc-pPG-2- OmpW via oral administration elicited high serum specific antibody titers and high LZM, ACP, and SOD activities. High levels of the IL-10, IL-β, IFN-γ, and TNF-α genes in different organs indicated that the inflammatory response and cell immune response were triggered. Additionally, when immunized fish were challenged with A.veronii, Lc-pPG1-OmpW and Lc-pPG2-OmpW demonstrated 40% and 50% protective efficacy. These data indicate that the combination of OmpW delivery and the lactic acid bacteria (LAB) approach may be a promising mucosal therapeutic strategy for treatment of A.veronii.
Collapse
Affiliation(s)
- Lei Zhang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Zhenxing Li
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Ying Li
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Jiaxin Tian
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Kaixiang Jia
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Dongxing Zhang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Mingfang Song
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Sayed Haidar Abbas Raza
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shanxi, 712100, PR China
| | - Matthew Garcia
- Utah State University, School of Animal Dairy and Veterinary Sciences, Logan Utah USA, 84322, USA
| | - Yuanhuan Kang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Wei Zheng
- Jilin Province Fisheries Research Institute, Changchun, 130000, China
| | - Aidong Qian
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Xiaofeng Shan
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China.
| | - Yang Xu
- Agriculture Ministry Key Laboratory of Healthy Freshwater Aquaculture, Key Laboratory of Freshwater Aquaculture Genetic and Breeding of Zhejiang Province, Zhejiang Institute of Freshwater Fisheries, Huzhou, 313001, China.
| |
Collapse
|