1
|
De Sales-Millán A, Aguirre-Garrido JF, González-Cervantes RM, Velázquez-Aragón JA. Microbiome-Gut-Mucosal-Immune-Brain Axis and Autism Spectrum Disorder (ASD): A Novel Proposal of the Role of the Gut Microbiome in ASD Aetiology. Behav Sci (Basel) 2023; 13:548. [PMID: 37503995 PMCID: PMC10376175 DOI: 10.3390/bs13070548] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/22/2023] [Accepted: 06/26/2023] [Indexed: 07/29/2023] Open
Abstract
Autism Spectrum Disorder (ASD) is a complex neurodevelopmental disorder characterised by deficits in social interaction and communication, as well as restricted and stereotyped interests. Due of the high prevalence of gastrointestinal disorders in individuals with ASD, researchers have investigated the gut microbiota as a potential contributor to its aetiology. The relationship between the microbiome, gut, and brain (microbiome-gut-brain axis) has been acknowledged as a key factor in modulating brain function and social behaviour, but its connection to the aetiology of ASD is not well understood. Recently, there has been increasing attention on the relationship between the immune system, gastrointestinal disorders and neurological issues in ASD, particularly in relation to the loss of specific species or a decrease in microbial diversity. It focuses on how gut microbiota dysbiosis can affect gut permeability, immune function and microbiota metabolites in ASD. However, a very complete study suggests that dysbiosis is a consequence of the disease and that it has practically no effect on autistic manifestations. This is a review of the relationship between the immune system, microbial diversity and the microbiome-gut-brain axis in the development of autistic symptoms severity and a proposal of a novel role of gut microbiome in ASD, where dysbiosis is a consequence of ASD-related behaviour and where dysbiosis in turn accentuates the autistic manifestations of the patients via the microbiome-gut-brain axis in a feedback circuit.
Collapse
Affiliation(s)
- Amapola De Sales-Millán
- División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana-Lerma, Lerma 52006, Estado de Mexico, Mexico
| | - José Félix Aguirre-Garrido
- Departamento de Ciencias Ambientales, Universidad Autónoma Metropolitana-Lerma, Lerma 52006, Estado de Mexico, Mexico
| | - Rina María González-Cervantes
- Departamento de Ciencias Ambientales, Universidad Autónoma Metropolitana-Lerma, Lerma 52006, Estado de Mexico, Mexico
| | | |
Collapse
|
2
|
Gough EK. The impact of mass drug administration of antibiotics on the gut microbiota of target populations. Infect Dis Poverty 2022; 11:76. [PMID: 35773678 PMCID: PMC9245274 DOI: 10.1186/s40249-022-00999-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 06/09/2022] [Indexed: 12/15/2022] Open
Abstract
Antibiotics have become a mainstay of healthcare in the past century due to their activity against pathogens. This manuscript reviews the impact of antibiotic use on the intestinal microbiota in the context of mass drug administration (MDA). The importance of the gut microbiota to human metabolism and physiology is now well established, and antibiotic exposure may impact host health via collateral effects on the microbiota and its functions. To gain further insight into how gut microbiota respond to antibiotic perturbation and the implications for public health, factors that influence the impact of antibiotic exposure on the microbiota, potential health outcomes of antibiotic-induced microbiota alterations, and strategies that have the potential to ameliorate these wider antibiotic-associated microbiota perturbations are also reviewed.
Collapse
Affiliation(s)
- Ethan K Gough
- Department of International Health, Human Nutrition Program, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
| |
Collapse
|
3
|
Shen C, Zhu Q, Dong F, Wang W, Fan B, Li K, Chen J, Hu S, He Z, Li X. Identifying Two Novel Clusters in Calcium Oxalate Stones With Urinary Tract Infection Using 16S rDNA Sequencing. Front Cell Infect Microbiol 2021; 11:723781. [PMID: 34869053 PMCID: PMC8635737 DOI: 10.3389/fcimb.2021.723781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 10/25/2021] [Indexed: 02/01/2023] Open
Abstract
Urinary stones and urinary tract infection (UTI) are the most common diseases in urology and they are characterized by high incidence and high recurrence rate in China. Previous studies have shown that urinary stones are closely associated with gut or urine microbiota. Calcium oxalate stones are the most common type of urinary stones. However, the profile of urinary tract microorganisms of calcium oxalate stones with UTI is not clear. In this research, we firstly found two novel clusters in patients with calcium oxalate stones (OA) that were associated with the WBC/HP (white blood cells per high-power field) level in urine. Two clusters in the OA group (OA1 and OA2) were distinguished by the key microbiota Firmicutes and Enterobacteriaceae. We found that Enterobacteriaceae enriched in OA1 cluster was positively correlated with several infection-related pathways and negatively correlated with a few antibiotics-related pathways. Meantime, some probiotics with higher abundance in OA2 cluster such as Bifidobacterium were positively correlated with antibiotics-related pathways, and some common pathogens with higher abundance in OA2 cluster such as Enterococcus were positively correlated with infection-related pathways. Therefore, we speculated that as a sub-type of OA disease, OA1 was caused by Enterobacteriaceae and the lack of probiotics compared with OA2 cluster. Moreover, we also sequenced urine samples of healthy individuals (CK), patients with UTI (I), patients with uric acid stones (UA), and patients with infection stones (IS). We identified the differentially abundant taxa among all groups. We hope the findings will be helpful for clinical treatment and diagnosis of urinary stones.
Collapse
Affiliation(s)
- Chen Shen
- Departmant of Urology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Qianhui Zhu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Fan Dong
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Wei Wang
- Departmant of Urology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Bo Fan
- Departmant of Urology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Kexin Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jun Chen
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN, United States
| | - Songnian Hu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Zilong He
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Interdisciplinary Innovation Institute of Medicine and Engineering, Beihang University, Beijing, China.,School of Engineering Medicine, Beihang University, Beijing, China
| | - Xiancheng Li
- Departmant of Urology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
4
|
Abstract
Aside from nutritional components, human milk is rich in microorganisms. Through breastfeeding these microorganisms are introduced to the infant gut where they may transiently or persistently colonize it. Therefore, the human milk microbiota may be an important factor which shapes the infant gut microbiota further influencing infant health and disease. In the current review we aim to give a brief updated insight into the putative origin of the human milk microbiota, its constituents and the possible factors that shape it. Understanding the factors that determine the human milk microbiota composition and function will aid developing optimal postnatal feeding and intervention strategies to reduce the risk of communicable and noncommunicable diseases.
Collapse
Affiliation(s)
- Anastasia Mantziari
- Functional Foods Forum, Faculty of Medicine, University of Turku, Itäinen Pitkäkatu 4A, 20520 Turku, Finland
| | - Samuli Rautava
- University of Helsinki and Helsinki University Hospital, New Children's Hospital, Pediatric Research Center, Helsinki, Finland.
| |
Collapse
|
5
|
Damaceno QS, Gallotti B, Reis IMM, Totte YCP, Assis GB, Figueiredo HC, Silva TF, Azevedo V, Nicoli JR, Martins FS. Isolation and Identification of Potential Probiotic Bacteria from Human Milk. Probiotics Antimicrob Proteins 2021; 15:491-501. [PMID: 34671923 DOI: 10.1007/s12602-021-09866-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/14/2021] [Indexed: 10/20/2022]
Abstract
Breast milk was long considered a sterile environment, but now it is known to harbor many bacteria that will shape the newborn microbiota. The benefits of breastfeeding to newborn health are, on some level, related to the presence of beneficial bacteria in human milk. Therefore, this study aims to investigate and isolate potential probiotics present in human milk that might be associated with improved health in infants, being potential candidates to be used in simulated human milk formula. Milk samples of 24 healthy mothers were collected at three time points: 30 min (colostrum), 5-9 days (transitional milk), and 25-30 days (mature milk) postpartum. Samples were evaluated by culturing, and the isolated bacteria were identified by MALDI-TOF MS and 16S DNA sequencing. In vitro screening for probiotics properties was performed, and the potential probiotics were mono-associated with germ-free mice to evaluate their ability to colonize the gastrointestinal tract. The microorganisms were submitted to the spray-drying process to check their viability for a potential simulated milk formula production. Seventy-seven bacteria were isolated from breast milk pertaining to four bacterial genera (Staphylococcus, Streptococcus, Leuconostoc, and Lacticaseibacillus). Four potential probiotics were selected: Lacticaseibacillus rhamnosus (n = 2) and Leuconostoc mesenteroides (n = 2). Isolates were able to colonize the gastrointestinal tract of germ-free mice and remained viable after the spray-drying process. In conclusion, breast milk harbors a unique microbiota with beneficial microorganisms that will impact the newborn gut colonization, being an essential source of probiotic candidates to be used in a formula of simulated maternal milk.
Collapse
Affiliation(s)
- Quésia S Damaceno
- Laboratório de Agentes Bioterapêuticos, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, Belo Horizonte, MG, 662730270-901, Brazil
| | - Bruno Gallotti
- Laboratório de Agentes Bioterapêuticos, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, Belo Horizonte, MG, 662730270-901, Brazil
| | - Isabela M M Reis
- Laboratório de Agentes Bioterapêuticos, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, Belo Horizonte, MG, 662730270-901, Brazil
| | - Yasmim C P Totte
- Laboratório de Agentes Bioterapêuticos, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, Belo Horizonte, MG, 662730270-901, Brazil
| | - Gabriella B Assis
- Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Henrique C Figueiredo
- Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Tales F Silva
- Departamento de Genética, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Ecologia e Evolução, Belo Horizonte, MG, Brazil
| | - Vasco Azevedo
- Departamento de Genética, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Ecologia e Evolução, Belo Horizonte, MG, Brazil
| | - Jacques R Nicoli
- Laboratório de Agentes Bioterapêuticos, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, Belo Horizonte, MG, 662730270-901, Brazil
| | - Flaviano S Martins
- Laboratório de Agentes Bioterapêuticos, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, Belo Horizonte, MG, 662730270-901, Brazil.
| |
Collapse
|
6
|
Ser HL, Letchumanan V, Goh BH, Wong SH, Lee LH. The Use of Fecal Microbiome Transplant in Treating Human Diseases: Too Early for Poop? Front Microbiol 2021; 12:519836. [PMID: 34054740 PMCID: PMC8155486 DOI: 10.3389/fmicb.2021.519836] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 04/07/2021] [Indexed: 12/15/2022] Open
Abstract
Fecal microbiome transplant (FMT) has gained popularity over the past few years, given its success in treating several gastrointestinal diseases. At the same time, microbial populations in the gut have been shown to have more physiological effects than we expected as "habitants" of the gut. The imbalance in the gut microbiome or dysbiosis, particularly when there are excessive harmful pathogens, can trigger not just infections but can also result in the development of common diseases, such as cancer and cardiometabolic diseases. By using FMT technology, the dysbiosis of the gut microbiome in patients can be resolved by administering fecal materials from a healthy donor. The current review summarizes the history and current uses of FMT before suggesting potential ideas for its high-quality application in clinical settings.
Collapse
Affiliation(s)
- Hooi-Leng Ser
- Novel Bacteria and Drug Discovery Research Group, Microbiome and Bioresource Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Vengadesh Letchumanan
- Novel Bacteria and Drug Discovery Research Group, Microbiome and Bioresource Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Bey-Hing Goh
- Biofunctional Molecule Exploratory Research Group, School of Pharmacy, Monash University Malaysia, Bandar Sunway, Malaysia
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Sunny Hei Wong
- Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Sha Tin, Hong Kong
| | - Learn-Han Lee
- Novel Bacteria and Drug Discovery Research Group, Microbiome and Bioresource Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
| |
Collapse
|
7
|
Guo J, Han X, Huang W, You Y, Zhan J. Gut dysbiosis during early life: causes, health outcomes, and amelioration via dietary intervention. Crit Rev Food Sci Nutr 2021; 62:7199-7221. [PMID: 33909528 DOI: 10.1080/10408398.2021.1912706] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The colonization and maturation of gut microbiota (GM) is a delicate and precise process, which continues to influence not only infancy and childhood but also adulthood health by affecting immunity. However, many perinatal factors, including gestational age, delivery mode, antibiotic administration, feeding mode, and environmental and maternal factors, can disturb this well-designed process, increasing the morbidity of various gut dysbiosis-related diseases, such as type-1-diabetes, allergies, necrotizing enterocolitis, and obesity. In this review, we discussed the early-life colonization and maturation of the GM, factors influencing this process, and diseases related to the disruption of this process. Moreover, we focused on discussing dietary interventions, including probiotics, oligosaccharides, nutritional supplementation, and exclusive enteral nutrition, in ameliorating early-life dysbiosis and diseases related to it. Furthermore, possible mechanisms, and shortcomings, as well as potential solutions to the drawbacks of dietary interventions, were also discussed.
Collapse
Affiliation(s)
- Jielong Guo
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Beijing, China
| | - Xue Han
- Peking University School of Basic Medical Science, Peking University Health Science Centre, Beijing, China
| | - Weidong Huang
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Beijing, China
| | - Yilin You
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Beijing, China
| | - Jicheng Zhan
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Beijing, China
| |
Collapse
|
8
|
Fernández L, Pannaraj PS, Rautava S, Rodríguez JM. The Microbiota of the Human Mammary Ecosystem. Front Cell Infect Microbiol 2020; 10:586667. [PMID: 33330129 PMCID: PMC7718026 DOI: 10.3389/fcimb.2020.586667] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 10/15/2020] [Indexed: 12/12/2022] Open
Abstract
Human milk contains a dynamic and complex site-specific microbiome, which is not assembled in an aleatory way, formed by organized microbial consortia and networks. Presence of some genera, such as Staphylococcus, Streptococcus, Corynebacterium, Cutibacterium (formerly known as Propionibacterium), Lactobacillus, Lactococcus and Bifidobacterium, has been detected by both culture-dependent and culture-independent approaches. DNA from some gut-associated strict anaerobes has also been repeatedly found and some studies have revealed the presence of cells and/or nucleic acids from viruses, archaea, fungi and protozoa in human milk. Colostrum and milk microbes are transmitted to the infant and, therefore, they are among the first colonizers of the human gut. Still, the significance of human milk microbes in infant gut colonization remains an open question. Clinical studies trying to elucidate the question are confounded by the profound impact of non-microbial human milk components to intestinal microecology. Modifications in the microbiota of human milk may have biological consequences for infant colonization, metabolism, immune and neuroendocrine development, and for mammary health. However, the factors driving differences in the composition of the human milk microbiome remain poorly known. In addition to colostrum and milk, breast tissue in lactating and non-lactating women may also contain a microbiota, with implications in the pathogenesis of breast cancer and in some of the adverse outcomes associated with breast implants. This and other open issues, such as the origin of the human milk microbiome, and the current limitations and future prospects are addressed in this review.
Collapse
Affiliation(s)
- Leónides Fernández
- Department of Galenic Pharmacy and Food Technology, Complutense University of Madrid, Madrid, Spain
| | - Pia S. Pannaraj
- Department of Pediatrics and Molecular Microbiology and Immunology, Keck School of Medicine and Children’s Hospital, Los Angeles, CA, United States
| | - Samuli Rautava
- University of Helsinki and Helsinki University Hospital, New Children’s Hospital, Pediatric Research Center, Helsinki, Finland
| | - Juan M. Rodríguez
- Department of Nutrition and Food Science, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
9
|
Asbury MR, Butcher J, Copeland JK, Unger S, Bando N, Comelli EM, Forte V, Kiss A, LeMay-Nedjelski L, Sherman PM, Stintzi A, Tomlinson C, Wang PW, O'Connor DL. Mothers of Preterm Infants Have Individualized Breast Milk Microbiota that Changes Temporally Based on Maternal Characteristics. Cell Host Microbe 2020; 28:669-682.e4. [PMID: 32888417 DOI: 10.1016/j.chom.2020.08.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 07/01/2020] [Accepted: 07/31/2020] [Indexed: 02/08/2023]
Abstract
Mother's milk contains complex microbial communities thought to be important for colonizing a preterm infant's gastrointestinal tract. However, little is known about the microbiota in the preterm mother's milk and factors influencing its composition. We characterized the temporal dynamics of microbial communities in 490 breast milk samples from 86 mothers of preterm infants (born <1,250g) over the first 8 weeks postpartum. Highly individualized microbial communities were identified in each mother's milk that changed temporally with notable alterations in predicted microbial functions. However, pre-pregnancy BMI, delivery mode, and antibiotics were associated with changes in these microbial dynamics. Individual classes of antibiotics and their duration of exposure during prenatal and postpartum periods showed unique relationships with microbial taxa abundance and diversity in mother's milk. These results highlight the temporal complexity of the preterm mother's milk microbiota and its relationship with maternal characteristics as well as the importance of discussing antibiotic stewardship for mothers.
Collapse
Affiliation(s)
- Michelle R Asbury
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada; Translational Medicine Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - James Butcher
- Department of Biochemistry, Microbiology and Immunology and Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Julia K Copeland
- Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, ON M5S 3B2, Canada
| | - Sharon Unger
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada; Rogers Hixon Ontario Human Milk Bank and the Department of Pediatrics, Sinai Health, Toronto, ON M5G 1X5, Canada; Division of Neonatology, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Nicole Bando
- Translational Medicine Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Elena M Comelli
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada; Joannah and Brian Lawson Centre for Child Nutrition, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Victoria Forte
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada; Translational Medicine Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Alex Kiss
- Institute of Health Policy, Management and Evaluation, University of Toronto, Toronto, ON M5T 3M6, Canada; Evaluative and Clinical Sciences, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
| | - Lauren LeMay-Nedjelski
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada; Translational Medicine Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Philip M Sherman
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada; Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Gastroenterology, Hepatology, and Nutrition, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Alain Stintzi
- Department of Biochemistry, Microbiology and Immunology and Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Christopher Tomlinson
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada; Translational Medicine Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Division of Neonatology, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Pauline W Wang
- Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, ON M5S 3B2, Canada
| | - Deborah L O'Connor
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada; Translational Medicine Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Rogers Hixon Ontario Human Milk Bank and the Department of Pediatrics, Sinai Health, Toronto, ON M5G 1X5, Canada.
| |
Collapse
|
10
|
Probiotics and Preterm Infants: A Position Paper by the European Society for Paediatric Gastroenterology Hepatology and Nutrition Committee on Nutrition and the European Society for Paediatric Gastroenterology Hepatology and Nutrition Working Group for Probiotics and Prebiotics. J Pediatr Gastroenterol Nutr 2020; 70:664-680. [PMID: 32332478 DOI: 10.1097/mpg.0000000000002655] [Citation(s) in RCA: 139] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
More than 10,000 preterm infants have participated in randomised controlled trials on probiotics worldwide, suggesting that probiotics in general could reduce rates of necrotising enterocolitis (NEC), sepsis, and mortality. Answers to relevant clinical questions as to which strain to use, at what dosage, and how long to supplement are, however, not available. On the other hand, an increasing number of commercial products containing probiotics are available from sometimes suboptimal quality. Also, a large number of units around the world are routinely offering probiotic supplementation as the standard of care despite lacking solid evidence. Our recent network meta-analysis identified probiotic strains with greatest efficacy regarding relevant clinical outcomes for preterm neonates. Efficacy in reducing mortality and morbidity was found for only a minority of the studied strains or combinations. In the present position paper, we aim to provide advice, which specific strains might potentially be used and which strains should not be used. In addition, we aim to address safety issues of probiotic supplementation to preterm infants, who have reduced immunological capacities and occasional indwelling catheters. For example, quality reassurance of the probiotic product is essential, probiotic strains should be devoid of transferable antibiotic resistance genes, and local microbiologists should be able to routinely detect probiotic sepsis. Provided all safety issues are met, there is currently a conditional recommendation (with low certainty of evidence) to provide either Lactobacillus rhamnosus GG ATCC53103 or the combination of Bifidobacterium infantis Bb-02, Bifidobacterium lactis Bb-12, and Streptococcus thermophilus TH-4 in order to reduce NEC rates.
Collapse
|
11
|
Lyons KE, Ryan CA, Dempsey EM, Ross RP, Stanton C. Breast Milk, a Source of Beneficial Microbes and Associated Benefits for Infant Health. Nutrients 2020; 12:E1039. [PMID: 32283875 PMCID: PMC7231147 DOI: 10.3390/nu12041039] [Citation(s) in RCA: 292] [Impact Index Per Article: 58.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/03/2020] [Accepted: 04/04/2020] [Indexed: 12/27/2022] Open
Abstract
Human breast milk is considered the optimum feeding regime for newborn infants due to its ability to provide complete nutrition and many bioactive health factors. Breast feeding is associated with improved infant health and immune development, less incidences of gastrointestinal disease and lower mortality rates than formula fed infants. As well as providing fundamental nutrients to the growing infant, breast milk is a source of commensal bacteria which further enhance infant health by preventing pathogen adhesion and promoting gut colonisation of beneficial microbes. While breast milk was initially considered a sterile fluid and microbes isolated were considered contaminants, it is now widely accepted that breast milk is home to its own unique microbiome. The origins of bacteria in breast milk have been subject to much debate, however, the possibility of an entero-mammary pathway allowing for transfer of microbes from maternal gut to the mammary gland is one potential pathway. Human milk derived strains can be regarded as potential probiotics; therefore, many studies have focused on isolating strains from milk for subsequent use in infant health and nutrition markets. This review aims to discuss mammary gland development in preparation for lactation as well as explore the microbial composition and origins of the human milk microbiota with a focus on probiotic development.
Collapse
Affiliation(s)
- Katríona E. Lyons
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork P61 C996, Ireland
- School of Microbiology, University College Cork, Cork T12 YN60, Ireland
| | - C. Anthony Ryan
- APC Microbiome Ireland, University College Cork, Cork T12 YT20, Ireland
- Department of Neonatology, Cork University Maternity Hospital, Cork T12 YE02, Ireland
| | - Eugene M. Dempsey
- APC Microbiome Ireland, University College Cork, Cork T12 YT20, Ireland
- Department of Neonatology, Cork University Maternity Hospital, Cork T12 YE02, Ireland
- INFANT Research Centre, University College Cork, Cork T12 DFK4, Ireland
| | - R. Paul Ross
- APC Microbiome Ireland, University College Cork, Cork T12 YT20, Ireland
| | - Catherine Stanton
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork P61 C996, Ireland
- APC Microbiome Ireland, University College Cork, Cork T12 YT20, Ireland
| |
Collapse
|
12
|
Ho KM, Kalgudi S, Corbett JM, Litton E. Gut microbiota in surgical and critically ill patients. Anaesth Intensive Care 2020; 48:179-195. [PMID: 32131606 DOI: 10.1177/0310057x20903732] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Microbiota-defined as a collection of microbial organisms colonising different parts of the human body-is now recognised as a pivotal element of human health, and explains a large part of the variance in the phenotypic expression of many diseases. A reduction in microbiota diversity, and replacement of normal microbes with non-commensal, pathogenic or more virulent microbes in the gastrointestinal tract-also known as gut dysbiosis-is now considered to play a causal role in the pathogenesis of many acute and chronic diseases. Results from animal and human studies suggest that dysbiosis is linked to cardiovascular and metabolic disease through changes to microbiota-derived metabolites, including trimethylamine-N-oxide and short-chain fatty acids. Dysbiosis can occur within hours of surgery or the onset of critical illness, even without the administration of antibiotics. These pathological changes in microbiota may contribute to important clinical outcomes, including surgical infection, bowel anastomotic leaks, acute kidney injury, respiratory failure and brain injury. As a strategy to reduce dysbiosis, the use of probiotics (live bacterial cultures that confer health benefits) or synbiotics (probiotic in combination with food that encourages the growth of gut commensal bacteria) in surgical and critically ill patients has been increasingly reported to confer important clinical benefits, including a reduction in ventilator-associated pneumonia, bacteraemia and length of hospital stay, in small randomised controlled trials. However, the best strategy to modulate dysbiosis or counteract its potential harms remains uncertain and requires investigation by a well-designed, adequately powered, randomised controlled trial.
Collapse
Affiliation(s)
- Kwok M Ho
- Department of Intensive Care Medicine, Royal Perth Hospital, Perth, Australia.,School of Veterinary and Life Sciences, Murdoch University, Perth, Australia.,Medical School, University of Western Australia, Perth, Australia
| | - Shankar Kalgudi
- Department of Intensive Care Medicine, Royal Perth Hospital, Perth, Australia
| | - Jade-Marie Corbett
- Department of Intensive Care Medicine, Royal Perth Hospital, Perth, Australia
| | - Edward Litton
- Medical School, University of Western Australia, Perth, Australia.,Department of Intensive Care Medicine, Fiona Stanley Hospital, Murdoch, Australia
| |
Collapse
|
13
|
Zimmermann P, Curtis N. Breast milk microbiota: A review of the factors that influence composition. J Infect 2020; 81:17-47. [PMID: 32035939 DOI: 10.1016/j.jinf.2020.01.023] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 01/29/2020] [Accepted: 01/30/2020] [Indexed: 01/31/2023]
Abstract
Breastfeeding is associated with considerable health benefits for infants. Aside from essential nutrients, immune cells and bioactive components, breast milk also contains a diverse range of microbes, which are important for maintaining mammary and infant health. In this review, we summarise studies that have investigated the composition of the breast milk microbiota and factors that might influence it. We identified 44 studies investigating 3105 breast milk samples from 2655 women. Several studies reported that the bacterial diversity is higher in breast milk than infant or maternal faeces. The maximum number of each bacterial taxonomic level detected per study was 58 phyla, 133 classes, 263 orders, 596 families, 590 genera, 1300 species and 3563 operational taxonomic units. Furthermore, fungal, archaeal, eukaryotic and viral DNA was also detected. The most frequently found genera were Staphylococcus, Streptococcus Lactobacillus, Pseudomonas, Bifidobacterium, Corynebacterium, Enterococcus, Acinetobacter, Rothia, Cutibacterium, Veillonella and Bacteroides. There was some evidence that gestational age, delivery mode, biological sex, parity, intrapartum antibiotics, lactation stage, diet, BMI, composition of breast milk, HIV infection, geographic location and collection/feeding method influence the composition of the breast milk microbiota. However, many studies were small and findings sometimes contradictory. Manipulating the microbiota by adding probiotics to breast milk or artificial milk offers an exciting avenue for future interventions to improve infant health.
Collapse
Affiliation(s)
- Petra Zimmermann
- Department of Paediatrics, Fribourg Hospital HFR and Faculty of Science and Medicine, University of Fribourg, Switzerland; Department of Paediatrics, The University of Melbourne, Parkville, Australia; Infectious Diseases Research Group, Murdoch Children's Research Institute, Parkville, Australia; Infectious Diseases Unit, The Royal Children's Hospital Melbourne, Parkville, Australia.
| | - Nigel Curtis
- Department of Paediatrics, The University of Melbourne, Parkville, Australia; Infectious Diseases Research Group, Murdoch Children's Research Institute, Parkville, Australia; Infectious Diseases Unit, The Royal Children's Hospital Melbourne, Parkville, Australia
| |
Collapse
|
14
|
Lundgren SN, Madan JC, Karagas MR, Morrison HG, Hoen AG, Christensen BC. Microbial Communities in Human Milk Relate to Measures of Maternal Weight. Front Microbiol 2019; 10:2886. [PMID: 31921063 PMCID: PMC6933483 DOI: 10.3389/fmicb.2019.02886] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 11/29/2019] [Indexed: 12/22/2022] Open
Abstract
The process of breastfeeding exposes infants to bioactive substances including a diversity of bacteria from breast milk as well as maternal skin. Knowledge of the character of and variation in these microbial communities, as well as the factors that influence them, is limited. We aimed to identify profiles of breastfeeding-associated microbial communities and their association with maternal and infant factors. Bilateral milk samples were collected from women in the New Hampshire Birth Cohort Study at approximately 6 weeks postpartum without sterilization of the skin in order to capture the infant-relevant exposure. We sequenced the V4-V5 hypervariable region of the bacterial 16S rRNA gene in 155 human milk samples. We used unsupervised clustering (partitioning around medoids) to identify microbial profiles in milk samples, and multinomial logistic regression to test their relation with maternal and infant variables. Associations between alpha diversity and maternal and infant factors were tested with linear models. Four breastfeeding microbiome types (BMTs) were identified, which differed in alpha diversity and in Streptococcus, Staphylococcus, Acinetobacter, and Pseudomonas abundances. Higher maternal pre-pregnancy BMI was associated with increased odds of belonging to BMT1 [OR (95% CI) = 1.13 (1.02, 1.24)] or BMT3 [OR (95% CI) = 1.12 (1.01, 1.25)] compared to BMT2. Independently, increased gestational weight gain was related to reduced odds of membership in BMT1 [OR (95% CI) = 0.66 (0.44, 1.00) per 10 pounds]. Alpha diversity was positively associated with gestational weight gain and negatively associated with postpartum sample collection week. There were no statistically significant associations of breastfeeding microbiota with delivery mode. Our results indicate that the breastfeeding microbiome partitions into four profiles and that its composition and diversity is associated with measures of maternal weight.
Collapse
Affiliation(s)
- Sara N. Lundgren
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Hanover, NH, United States
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
| | - Juliette C. Madan
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Hanover, NH, United States
- Division of Neonatology, Department of Pediatrics, Children’s Hospital at Dartmouth, Lebanon, NH, United States
| | - Margaret R. Karagas
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Hanover, NH, United States
- Department of Community and Family Medicine, Geisel School of Medicine at Dartmouth, Hanover, NH, United States
| | - Hilary G. Morrison
- Josephine Bay Paul Center, Marine Biological Laboratory, Woods Hole, MA, United States
| | - Anne G. Hoen
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Hanover, NH, United States
- Department of Biomedical Data Science, Geisel School of Medicine at Dartmouth, Hanover, NH, United States
| | - Brock C. Christensen
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Hanover, NH, United States
- Department of Community and Family Medicine, Geisel School of Medicine at Dartmouth, Hanover, NH, United States
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, United States
| |
Collapse
|
15
|
Douville SE, Callaway LK, Amoako A, Roberts JA, Eley VA. Reducing post-caesarean delivery surgical site infections: a narrative review. Int J Obstet Anesth 2019; 42:76-86. [PMID: 31606251 DOI: 10.1016/j.ijoa.2019.08.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 08/22/2019] [Accepted: 08/28/2019] [Indexed: 01/15/2023]
Abstract
Surgical site infection complicates 1-10% of caesarean deliveries. With the rate of caesarean delivery increasing, it is important to identify effective measures of preventing surgical site infection and to consider their impact on maternal and neonatal outcomes. Compelling evidence supports the use of prophylactic antibiotics, prior to skin incision, to reduce surgical site infection. However, there remain international variations in terms of the recommended agent, dose and body weight-adjusted dosing. Advances in wound dressings are an evolving area of interest and surgical technique can influence outcomes. This narrative review explores pharmacological and non-pharmacological methods of preventing surgical site infection following caesarean delivery.
Collapse
Affiliation(s)
- S E Douville
- Faculty of Medicine, The University of Queensland, Herston, Queensland, Australia
| | - L K Callaway
- Faculty of Medicine, The University of Queensland, Herston, Queensland, Australia; Department of Obstetrics and Gynaecology/Obstetric Medicine, The Royal Brisbane and Women's Hospital, Herston, Queensland, Australia
| | - A Amoako
- Faculty of Medicine, The University of Queensland, Herston, Queensland, Australia; Department of Obstetrics and Gynaecology/Obstetric Medicine, The Royal Brisbane and Women's Hospital, Herston, Queensland, Australia
| | - J A Roberts
- Faculty of Medicine, The University of Queensland, Herston, Queensland, Australia; University of Queensland Centre for Clinical Research, The University of Queensland, Herston, Queensland, Australia; Centre for Translational Anti-infective Pharmacodynamics, School of Pharmacy, The University of Queensland, Herston, Queensland, Australia; Division of Anaesthesiology Critical Care Emergency and Pain Medicine, Nîmes University Hospital, University of Montpellier, Nîmes, France; Department of Pharmacy and Intensive Care Medicine, The Royal Brisbane and Women's Hospital, Herston, Qld, Australia
| | - V A Eley
- Faculty of Medicine, The University of Queensland, Herston, Queensland, Australia; Department of Anaesthesia and Perioperative Medicine, The Royal Brisbane and Women's Hospital, Herston, Queensland, Australia.
| |
Collapse
|