1
|
Ebigbo N, Long A, Do P, Coughlin L, Poulides N, Jewell T, Gan S, Zhan X, Koh AY. Optimizing Precision Probiotics for Mitigating Graft-Versus-Host Disease. Microorganisms 2025; 13:706. [PMID: 40284543 PMCID: PMC12029423 DOI: 10.3390/microorganisms13040706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 02/27/2025] [Accepted: 03/11/2025] [Indexed: 04/29/2025] Open
Abstract
Precision probiotics have shown great promise as novel therapies but have not been fully realized. One major obstacle is that different strains of the same gut microbiota species can induce markedly variable phenotypic outcomes. Here, we aimed to optimize and validate in a preclinical model, a six-species precision probiotic therapy for graft-versus-host disease (GVHD), an autoimmune complication following allogeneic stem cell transplantation. We had identified these six species as associated with protection against GVHD in a prior clinical study. We isolated strains of three of the targeted taxa (B. longum, C. bolteae, and Blautia spp.) from human stem cell transplant patients and characterized their SCFA production in vitro. We observed significant strain-to-strain variability among these gut microbiota taxa in their capacity to produce short-chain fatty acids, a microbiota-derived metabolite shown to be important for mitigating gut GVHD and inflammatory bowel disease, in vitro. We found that B. longum was able to augment butyrate production by C. bolteae and Blautia when co-cultured in vitro. "Optimized" precision probiotics mitigated GVHD and significantly increased survival (p = 0.013, log-rank test) in mice compared to a "standard" probiotic consortium of the same bacterial species obtained from a commercial repository. Importantly, the optimized probiotics resulted in significant increases in intestinal short-chain fatty acid concentrations compared to standard probiotics (p < 0.001, Mann-Whitney test). Our findings highlight the promising potential of utilizing an optimized precision probiotic approach to maximize therapeutic efficacy.
Collapse
Affiliation(s)
- Nonyelum Ebigbo
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (N.E.)
| | - Apple Long
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Phinga Do
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (N.E.)
| | - Laura Coughlin
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (N.E.)
| | - Nicole Poulides
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (N.E.)
| | - Talia Jewell
- Isolation Bio Inc., San Francisco, CA 94306, USA
| | - Shuheng Gan
- Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xiaowei Zhan
- Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Andrew Y. Koh
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (N.E.)
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
2
|
Keung WS, Zhang WH, Luo HY, Chan KC, Chan YM, Xu J. Correlation between the structures of natural polysaccharides and their properties in regulating gut microbiota: Current understanding and beyond. Carbohydr Polym 2025; 352:123209. [PMID: 39843110 DOI: 10.1016/j.carbpol.2024.123209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/23/2024] [Accepted: 12/30/2024] [Indexed: 01/24/2025]
Abstract
Natural polysaccharides have complex structural properties and a wide range of health-promoting effects. Accumulating evidence suggests that the effects are significantly mediated through fermentation by gut microbiota. In recent years, the relationship between the structures of natural polysaccharides and their properties in regulating gut microbiota has garnered significant research attention as researchers attempt to precisely understand the role of gut microbiota in the bioactivities of natural polysaccharides. Progress in this niche, however, remains limited. In this review, we first provide an overview of current research investigating this structure-property relationship. We then present a detailed correlation analysis between the structural characteristics of 159 purified natural polysaccharides and their effects on gut microbiota reported over the past two decades. The analysis revealed that diverse gut bacteria show specific correlations with the molecular weight, glycosidic linkages, and monosaccharide composition of natural polysaccharides. Multifaceted molecular mechanisms, including carbohydrate binding, enzymatic degradation, and cross-feeding, were proposed to be collectively involved in these correlations. Finally, we offer our perspective on future studies to further improve our understanding of the relationship between polysaccharide structure and gut microbiota regulation.
Collapse
Affiliation(s)
- Wing-Shan Keung
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong
| | - Wei-Hao Zhang
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong
| | - Han-Yan Luo
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong
| | - Kam-Chun Chan
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong
| | - Yui-Man Chan
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong
| | - Jun Xu
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong.
| |
Collapse
|
3
|
Light SH, Nagler CR. Regulation of immune responses to food by commensal microbes. Immunol Rev 2024; 326:203-218. [PMID: 39285525 PMCID: PMC11472335 DOI: 10.1111/imr.13396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
The increasing prevalence of immune-mediated non-communicable chronic diseases, such as food allergies, has prompted a deeper investigation into the role of the gut microbiome in modulating immune responses. Here, we explore the complex interactions between commensal microbes and the host immune system, highlighting the critical role of gut bacteria in maintaining immune homeostasis. We examine how modern lifestyle practices and environmental factors have disrupted co-evolved host-microbe interactions and discuss how changes in microbiome composition impact epithelial barrier function, responses to food allergens, and susceptibility to allergic diseases. Finally, we examine the potential of bioengineered microbiome-based therapies, and live biotherapeutic products, for reestablishing immune homeostasis to prevent or treat food allergies.
Collapse
Affiliation(s)
- Samuel H. Light
- Department of Microbiology, University of Chicago, Chicago IL, 60637
| | - Cathryn R. Nagler
- Department of Pathology, University of Chicago, Chicago IL, 60637
- Department of Biological Sciences Division, Pritzker School of Molecular Engineering, University of Chicago, Chicago IL, 60637
| |
Collapse
|
4
|
Du Z, Li Z, Guang C, Zhu Y, Mu W. Recent advances of 3-fucosyllactose in health effects and production. Arch Microbiol 2024; 206:378. [PMID: 39143417 DOI: 10.1007/s00203-024-04104-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/29/2024] [Accepted: 08/05/2024] [Indexed: 08/16/2024]
Abstract
Human milk oligosaccharides (HMOs) have been recognized as gold standard for infant development. 3-Fucosyllactose (3-FL), being one of the Generally Recognized as Safe HMOs, represents a core trisaccharide within the realm of HMOs; however, it has received comparatively less attention in contrast to extensively studied 2'-fucosyllactose. The objective of this review is to comprehensively summarize the health effects of 3-FL, including its impact on gut microbiota proliferation, antimicrobial effects, immune regulation, antiviral protection, and brain maturation. Additionally, the discussion also covers the commercial application and regulatory approval status of 3-FL. Lastly, an organized presentation of large-scale production methods for 3-FL aims to provide a comprehensive guide that highlights current strategies and challenges in optimization.
Collapse
Affiliation(s)
- Zhihui Du
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, Jiangsu, People's Republic of China
| | - Zeyu Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, Jiangsu, People's Republic of China
| | - Cuie Guang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, Jiangsu, People's Republic of China
| | - Yingying Zhu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, Jiangsu, People's Republic of China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, Jiangsu, People's Republic of China.
| |
Collapse
|
5
|
Hesser LA, Puente AA, Arnold J, Ionescu E, Mirmira A, Talasani N, Lopez J, Maccio-Maretto L, Mimee M, Nagler CR. A synbiotic of Anaerostipes caccae and lactulose prevents and treats food allergy in mice. Cell Host Microbe 2024; 32:1163-1176.e6. [PMID: 38906158 PMCID: PMC11239278 DOI: 10.1016/j.chom.2024.05.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 03/26/2024] [Accepted: 05/28/2024] [Indexed: 06/23/2024]
Abstract
Depletion of beneficial microbes by modern lifestyle factors correlates with the rising prevalence of food allergies. Re-introduction of allergy-protective bacteria may be an effective treatment strategy. We characterized the fecal microbiota of healthy and food-allergic infants and found that the anaerobe Anaerostipes caccae (A. caccae) was representative of the protective capacity of the healthy microbiota. We isolated a strain of A. caccae from the feces of a healthy infant and identified lactulose as a prebiotic to optimize butyrate production by A. caccae in vitro. Administration of a synbiotic composed of our isolated A. caccae strain and lactulose increased luminal butyrate in gnotobiotic mice colonized with feces from an allergic infant and in antibiotic-treated specific pathogen-free (SPF) mice, and prevented or treated an anaphylactic response to allergen challenge. The synbiotic's efficacy in two models and microbial contexts suggests that it may be a promising approach for the treatment of food allergy.
Collapse
Affiliation(s)
- Lauren A Hesser
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, USA
| | - Armando A Puente
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, USA
| | - Jack Arnold
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, USA
| | - Edward Ionescu
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, USA
| | - Anjali Mirmira
- Department of Pathology, The University of Chicago, Chicago, IL, USA
| | - Nidhi Talasani
- Department of Pathology, The University of Chicago, Chicago, IL, USA
| | - Jacqueline Lopez
- Department of Pathology, The University of Chicago, Chicago, IL, USA
| | | | - Mark Mimee
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, USA; Committee on Microbiology, The University of Chicago, Chicago, IL, USA
| | - Cathryn R Nagler
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, USA; Department of Pathology, The University of Chicago, Chicago, IL, USA; Committee on Immunology, The University of Chicago, Chicago, IL, USA.
| |
Collapse
|
6
|
Xiao M, Zhang C, Duan H, Narbad A, Zhao J, Chen W, Zhai Q, Yu L, Tian F. Cross-feeding of bifidobacteria promotes intestinal homeostasis: a lifelong perspective on the host health. NPJ Biofilms Microbiomes 2024; 10:47. [PMID: 38898089 PMCID: PMC11186840 DOI: 10.1038/s41522-024-00524-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 06/07/2024] [Indexed: 06/21/2024] Open
Abstract
Throughout the life span of a host, bifidobacteria have shown superior colonization and glycan abilities. Complex glycans, such as human milk oligosaccharides and plant glycans, that reach the colon are directly internalized by the transport system of bifidobacteria, cleaved into simple structures by extracellular glycosyl hydrolase, and transported to cells for fermentation. The glycan utilization of bifidobacteria introduces cross-feeding activities between bifidobacterial strains and other microbiota, which are influenced by host nutrition and regulate gut homeostasis. This review discusses bifidobacterial glycan utilization strategies, focusing on the cross-feeding involved in bifidobacteria and its potential health benefits. Furthermore, the impact of cross-feeding on the gut trophic niche of bifidobacteria and host health is also highlighted. This review provides novel insights into the interactions between microbe-microbe and host-microbe.
Collapse
Affiliation(s)
- Meifang Xiao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Chuan Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Hui Duan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Arjan Narbad
- Quadram Institute Bioscience, Norwich Research Park Colney, Norwich, Norfolk, NR4 7UA, UK
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Wei Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Qixiao Zhai
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Leilei Yu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China.
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China.
| | - Fengwei Tian
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China.
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China.
| |
Collapse
|
7
|
Lordan C, Roche AK, Delsing D, Nauta A, Groeneveld A, MacSharry J, Cotter PD, van Sinderen D. Linking human milk oligosaccharide metabolism and early life gut microbiota: bifidobacteria and beyond. Microbiol Mol Biol Rev 2024; 88:e0009423. [PMID: 38206006 PMCID: PMC10966949 DOI: 10.1128/mmbr.00094-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024] Open
Abstract
SUMMARYHuman milk oligosaccharides (HMOs) are complex, multi-functional glycans present in human breast milk. They represent an intricate mix of heterogeneous structures which reach the infant intestine in an intact form as they resist gastrointestinal digestion. Therefore, they confer a multitude of benefits, directly and/or indirectly, to the developing neonate. Certain bifidobacterial species, being among the earliest gut colonizers of breast-fed infants, have an adapted functional capacity to metabolize various HMO structures. This ability is typically observed in infant-associated bifidobacteria, as opposed to bifidobacteria associated with a mature microbiota. In recent years, information has been gleaned regarding how these infant-associated bifidobacteria as well as certain other taxa are able to assimilate HMOs, including the mechanistic strategies enabling their acquisition and consumption. Additionally, complex metabolic interactions occur between microbes facilitated by HMOs, including the utilization of breakdown products released from HMO degradation. Interest in HMO-mediated changes in microbial composition and function has been the focal point of numerous studies, in recent times fueled by the availability of individual biosynthetic HMOs, some of which are now commonly included in infant formula. In this review, we outline the main HMO assimilatory and catabolic strategies employed by infant-associated bifidobacteria, discuss other taxa that exhibit breast milk glycan degradation capacity, and cover HMO-supported cross-feeding interactions and related metabolites that have been described thus far.
Collapse
Affiliation(s)
- Cathy Lordan
- Teagasc Food Research Centre, Fermoy, Co Cork, Ireland
| | - Aoife K. Roche
- APC Microbiome Ireland, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | | | - Arjen Nauta
- FrieslandCampina, Amersfoort, the Netherlands
| | | | - John MacSharry
- APC Microbiome Ireland, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - Paul D. Cotter
- Teagasc Food Research Centre, Fermoy, Co Cork, Ireland
- APC Microbiome Ireland, Cork, Ireland
| | - Douwe van Sinderen
- APC Microbiome Ireland, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| |
Collapse
|
8
|
JanssenDuijghuijsen L, Looijesteijn E, van den Belt M, Gerhard B, Ziegler M, Ariens R, Tjoelker R, Geurts J. Changes in gut microbiota and lactose intolerance symptoms before and after daily lactose supplementation in individuals with the lactase nonpersistent genotype. Am J Clin Nutr 2024; 119:702-710. [PMID: 38159728 DOI: 10.1016/j.ajcnut.2023.12.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 11/29/2023] [Accepted: 12/22/2023] [Indexed: 01/03/2024] Open
Abstract
BACKGROUND Approximately 70%-100% of the Asian adult population is lactase nonpersistent (LNP). The literature shows that many individuals with the LNP-genotype can consume ≤12 g of lactose without experiencing gastrointestinal discomfort. Repetitive consumption of lactose may reduce intolerance symptoms via adaptation of the gut microbiota. OBJECTIVE This study aimed to assess the effects of daily consumption of incremental lactose doses on microbiota composition and function, and intolerance symptoms. METHODS Twenty-five healthy adults of Asian origin, carrying the LNP-genotype were included in this 12-wk before and after intervention trial. Participants consumed gradually increasing lactose doses from 3 to 6 g to 12 g twice daily, each daily dose of 6 g, 12 g, or 24 g being provided for 4 consecutive weeks. Participants handed-in repeated stool samples and underwent a 25 g lactose challenge hydrogen breath test (HBT) before and after the 12-wk intervention. Daily gastrointestinal symptoms and total symptom scores (TSSs) during the lactose challenge were recorded. RESULTS A significant increase from 5.5% ± 7.6% to 10.4% ± 9.6% was observed in Bifidobacterium relative abundance after the intervention (P = 0.009), accompanied by a 2-fold increase (570 ± 269 U/g; P < 0.001) in fecal β-galactosidase activity compared with baseline (272 ± 158 U/g). A 1.5-fold decrease (incremental area under the curve; P = 0.01) in expired hydrogen was observed during the second HBT (38 ± 35 ppm·min), compared with the baseline HBT (57 ± 38 ppm·min). There was a nonsignificant decrease in TSS (10.6 ± 8.3 before compared with 8.1 ± 7.2 after intervention; P = 0.09). Daily consumption of lactose was well tolerated, with mild to no gastrointestinal complaints reported during the intervention. CONCLUSIONS Increased levels of Bifidobacterium indicate an adaptation of the gut microbiota upon repetitive consumption of incremental doses of lactose, which was well tolerated as demonstrated by reduced expired hydrogen concentrations during the second 25-g lactose HBT. Bifidobacteria metabolize lactose without gas production thereby potentially reducing intestinal gas formation in the gut of individuals with the LNP-genotype. This increased lactose tolerance possibly lifts the necessity to remove nutrient-rich dairy foods completely from the diet. The trial is registered at the International Clinical Trials Registry Platform: NL9516. The effect of dietary lactose in lactase nonpersistent individuals on gut microbiota.
Collapse
Affiliation(s)
| | | | - Maartje van den Belt
- Wageningen Food and Biobased Research, Wageningen University & Research, Wageningen, The Netherlands
| | | | | | - Renata Ariens
- Wageningen Food and Biobased Research, Wageningen University & Research, Wageningen, The Netherlands
| | | | - Jan Geurts
- FrieslandCampina, Amersfoort, The Netherlands
| |
Collapse
|
9
|
Yang S, Cai J, Su Q, Li Q, Meng X. Human milk oligosaccharides combine with Bifidobacterium longum to form the "golden shield" of the infant intestine: metabolic strategies, health effects, and mechanisms of action. Gut Microbes 2024; 16:2430418. [PMID: 39572856 PMCID: PMC11587862 DOI: 10.1080/19490976.2024.2430418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 08/04/2024] [Accepted: 11/12/2024] [Indexed: 11/26/2024] Open
Abstract
Human milk oligosaccharides (HMOs) are the third most important nutrient in human milk and are the gold standard for infant nutrition. Due to the lack of an enzyme system capable of utilizing HMOs in the infant intestine, HMOs cannot be directly utilized. Instead, they function as natural prebiotics, participating in the establishment of the intestinal microbiota as a "bifidus factor." A crucial colonizer of the early intestine is Bifidobacterium longum (B. longum), particularly its subspecies B. longum subsp. infantis, which is the most active consumer of HMOs. However, due to the structural diversity of HMOs and the specificity of B. longum strains, studies on their synergy are limited. An in-depth investigation into the mechanisms of HMO utilization by B. longum is essential for applying both as synbiotics to promote early intestinal development in infants. This review describes the colonization advantages of B. longum in the infant intestinal tract and its metabolic strategies for HMOs. It also summarizes recent studies on the effect and mechanism of B. longum and HMOs in infant intestinal development directly or indirectly through the action of metabolites. In conclusion, further structural analysis of HMOs and a deeper understanding of the interactions between B. longum and HMOs, as well as clinical trials, are necessary to lay the foundation for future practical applications as synbiotics.
Collapse
Affiliation(s)
- Shuo Yang
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Junwu Cai
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Qian Su
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Qiaohui Li
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Xiangchen Meng
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, China
| |
Collapse
|
10
|
Gavzy SJ, Kensiski A, Lee ZL, Mongodin EF, Ma B, Bromberg JS. Bifidobacterium mechanisms of immune modulation and tolerance. Gut Microbes 2023; 15:2291164. [PMID: 38055306 PMCID: PMC10730214 DOI: 10.1080/19490976.2023.2291164] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 11/30/2023] [Indexed: 12/07/2023] Open
Abstract
Bifidobacterium is a widely distributed commensal bacterial genus that displays beneficial pro-homeostatic and anti-inflammatory immunomodulatory properties. Depletion or absence of Bifidobacterium in humans and model organisms is associated with autoimmune responses and impaired immune homeostasis. At the cellular level, Bifidobacterium upregulates suppressive regulatory T cells, maintains intestinal barrier function, modulates dendritic cell and macrophage activity, and dampens intestinal Th2 and Th17 programs. While there has been a large volume of literature characterizing the probiotic properties of various Bifidobacterial species, the likely multifactorial mechanisms underlying these effects remain elusive, in particular, its immune tolerogenic effect. However, recent work has shed light on Bifidobacterium surface structural polysaccharide and protein elements, as well as its metabolic products, as commensal mediators of immune homeostasis. This review aims to discuss several mechanisms Bifidobacterium utilizes for immune modulation as well as their indirect impact on the regulation of gut microbiome structure and function, from structural molecules to produced metabolites. These mechanisms are pertinent to an increasingly networked understanding of immune tolerance and homeostasis in health and disease.
Collapse
Affiliation(s)
- Samuel J Gavzy
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Allison Kensiski
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Zachariah L Lee
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Emmanuel F Mongodin
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Bing Ma
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Jonathan S Bromberg
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
11
|
Nogacka AM, Cuesta I, Gueimonde M, de los Reyes-Gavilán CG. 2-Fucosyllactose Metabolism by Bifidobacteria Promotes Lactobacilli Growth in Co-Culture. Microorganisms 2023; 11:2659. [PMID: 38004671 PMCID: PMC10673426 DOI: 10.3390/microorganisms11112659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 11/26/2023] Open
Abstract
Breastfeeding is recognized as the gold standard in infant nutrition, not only because of breastmilk's intrinsic nutritional benefits but also due to the high content of different bioactive components such as 2-fucosyllactose (2'FL) in the mother's milk. It promotes the growth of its two major consumers, Bifidobacterium longum ssp. infantis and Bifidobacterium bifidum, but the effect on other intestinal microorganisms of infant microbiota remains incompletely understood. pH-uncontrolled fecal cultures from infants donors identified as "fast 2'FL -degrader" microbiota phenotype were used for the isolation of 2'FL-associated microorganisms. The use of specific selective agents allowed the successful isolation of B. bifidum IPLA20048 and of Lactobacillus gasseri IPLA20136. The characterization of 2'FL consumption and its moieties has revealed more pronounced growth, pH drop, and lactic acid production after 2'FL consumption when both microorganisms were grown together. The results point to an association between B. bifidum IPLA20048 and L. gasseri IPLA20136 in which L. gasseri is able to use the galactose from the lactose moiety after the hydrolysis of 2'FL by B. bifidum. The additional screening of two groups of bifidobacteria (n = 38), fast and slow degraders of 2'FL, in co-culture with lactobacilli confirmed a potential cross-feeding mechanism based on degradation products released from bifidobacterial 2'FL break-down. Our work suggests that this phenomenon may be widespread among lactobacilli and bifidobacteria in the infant gut. More investigation is needed to decipher how the ability to degrade 2'FL and other human milk oligosaccharides could influence the microbiota establishment in neonates and the evolution of the microbiota in adult life.
Collapse
Affiliation(s)
- Alicja M. Nogacka
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias (IPLA-CSIC), 33300 Villaviciosa, Asturias, Spain; (I.C.); (M.G.); (C.G.d.l.R.-G.)
- Institute of Health Research of the Principality of Asturias (ISPA), 33011 Oviedo, Asturias, Spain
| | - Isabel Cuesta
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias (IPLA-CSIC), 33300 Villaviciosa, Asturias, Spain; (I.C.); (M.G.); (C.G.d.l.R.-G.)
| | - Miguel Gueimonde
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias (IPLA-CSIC), 33300 Villaviciosa, Asturias, Spain; (I.C.); (M.G.); (C.G.d.l.R.-G.)
- Institute of Health Research of the Principality of Asturias (ISPA), 33011 Oviedo, Asturias, Spain
| | - Clara G. de los Reyes-Gavilán
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias (IPLA-CSIC), 33300 Villaviciosa, Asturias, Spain; (I.C.); (M.G.); (C.G.d.l.R.-G.)
- Institute of Health Research of the Principality of Asturias (ISPA), 33011 Oviedo, Asturias, Spain
| |
Collapse
|
12
|
Olaguez-Gonzalez JM, Chairez I, Breton-Deval L, Alfaro-Ponce M. Machine Learning Algorithms Applied to Predict Autism Spectrum Disorder Based on Gut Microbiome Composition. Biomedicines 2023; 11:2633. [PMID: 37893007 PMCID: PMC10604849 DOI: 10.3390/biomedicines11102633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/01/2023] [Accepted: 09/18/2023] [Indexed: 10/29/2023] Open
Abstract
The application of machine learning (ML) techniques stands as a reliable method for aiding in the diagnosis of complex diseases. Recent studies have related the composition of the gut microbiota to the presence of autism spectrum disorder (ASD), but until now, the results have been mostly contradictory. This work proposes using machine learning to study the gut microbiome composition and its role in the early diagnosis of ASD. We applied support vector machines (SVMs), artificial neural networks (ANNs), and random forest (RF) algorithms to classify subjects as neurotypical (NT) or having ASD, using published data on gut microbiome composition. Naive Bayes, k-nearest neighbors, ensemble learning, logistic regression, linear regression, and decision trees were also trained and validated; however, the ones presented showed the best performance and interpretability. All the ML methods were developed using the SAS Viya software platform. The microbiome's composition was determined using 16S rRNA sequencing technology. The application of ML yielded a classification accuracy as high as 90%, with a sensitivity of 96.97% and specificity reaching 85.29%. In the case of the ANN model, no errors occurred when classifying NT subjects from the first dataset, indicating a significant classification outcome compared to traditional tests and data-based approaches. This approach was repeated with two datasets, one from the USA and the other from China, resulting in similar findings. The main predictors in the obtained models differ between the analyzed datasets. The most important predictors identified from the analyzed datasets are Bacteroides, Lachnospira, Anaerobutyricum, and Ruminococcus torques. Notably, among the predictors in each model, there is the presence of bacteria that are usually considered insignificant in the microbiome's composition due to their low relative abundance. This outcome reinforces the conventional understanding of the microbiome's influence on ASD development, where an imbalance in the composition of the microbiota can lead to disrupted host-microbiota homeostasis. Considering that several previous studies focused on the most abundant genera and neglected smaller (and frequently not statistically significant) microbial communities, the impact of such communities has been poorly analyzed. The ML-based models suggest that more research should focus on these less abundant microbes. A novel hypothesis explains the contradictory results in this field and advocates for more in-depth research to be conducted on variables that may not exhibit statistical significance. The obtained results seem to contribute to an explanation of the contradictory findings regarding ASD and its relation with gut microbiota composition. While some research correlates higher ratios of Bacillota/Bacteroidota, others find the opposite. These discrepancies are closely linked to the minority organisms in the microbiome's composition, which may differ between populations but share similar metabolic functions. Therefore, the ratios of Bacillota/Bacteroidota regarding ASD may not be determinants in the manifestation of ASD.
Collapse
Affiliation(s)
- Juan M. Olaguez-Gonzalez
- School of Engineering and Science, Tecnologico de Monterrey, Monterrey 64849, Mexico; (J.M.O.-G.); (I.C.)
| | - Isaac Chairez
- School of Engineering and Science, Tecnologico de Monterrey, Monterrey 64849, Mexico; (J.M.O.-G.); (I.C.)
- Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Monterrey 64849, Mexico
| | - Luz Breton-Deval
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca 62210, Mexico;
- Consejo Nacional de Ciencia y Tecnologia, Mexico City 03940, Mexico
| | - Mariel Alfaro-Ponce
- School of Engineering and Science, Tecnologico de Monterrey, Monterrey 64849, Mexico; (J.M.O.-G.); (I.C.)
- Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Monterrey 64849, Mexico
| |
Collapse
|
13
|
Button JE, Cosetta CM, Reens AL, Brooker SL, Rowan-Nash AD, Lavin RC, Saur R, Zheng S, Autran CA, Lee ML, Sun AK, Alousi AM, Peterson CB, Koh AY, Rechtman DJ, Jenq RR, McKenzie GJ. Precision modulation of dysbiotic adult microbiomes with a human-milk-derived synbiotic reshapes gut microbial composition and metabolites. Cell Host Microbe 2023; 31:1523-1538.e10. [PMID: 37657443 DOI: 10.1016/j.chom.2023.08.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 06/13/2023] [Accepted: 08/07/2023] [Indexed: 09/03/2023]
Abstract
Manipulation of the gut microbiome using live biotherapeutic products shows promise for clinical applications but remains challenging to achieve. Here, we induced dysbiosis in 56 healthy volunteers using antibiotics to test a synbiotic comprising the infant gut microbe, Bifidobacterium longum subspecies infantis (B. infantis), and human milk oligosaccharides (HMOs). B. infantis engrafted in 76% of subjects in an HMO-dependent manner, reaching a relative abundance of up to 81%. Changes in microbiome composition and gut metabolites reflect altered recovery of engrafted subjects compared with controls. Engraftment associates with increases in lactate-consuming Veillonella, faster acetate recovery, and changes in indolelactate and p-cresol sulfate, metabolites that impact host inflammatory status. Furthermore, Veillonella co-cultured in vitro and in vivo with B. infantis and HMO converts lactate produced by B. infantis to propionate, an important mediator of host physiology. These results suggest that the synbiotic reproducibly and predictably modulates recovery of a dysbiotic microbiome.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Martin L Lee
- Prolacta Bioscience, Duarte, CA 91010, USA; Department of Biostatistics, University of California Los Angeles, Fielding School of Public Health, Los Angeles, CA 90095, USA
| | - Adam K Sun
- Prolacta Bioscience, Duarte, CA 91010, USA
| | - Amin M Alousi
- Department of Stem Cell Transplantation, Division of Cancer Medicine, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Christine B Peterson
- Department of Biostatistics, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Andrew Y Koh
- Department of Pediatrics, Division of Hematology/Oncology, The University of Texas Southwestern Medical Center, Dallas, TX 75235, USA; Harold C. Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Microbiology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | | | - Robert R Jenq
- Department of Genomic Medicine, Division of Cancer Medicine, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | | |
Collapse
|
14
|
Martin AJ, Serebrinsky-Duek K, Riquelme E, Saa PA, Garrido D. Microbial interactions and the homeostasis of the gut microbiome: the role of Bifidobacterium. MICROBIOME RESEARCH REPORTS 2023; 2:17. [PMID: 38046822 PMCID: PMC10688804 DOI: 10.20517/mrr.2023.10] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/17/2023] [Accepted: 04/24/2023] [Indexed: 12/05/2023]
Abstract
The human gut is home to trillions of microorganisms that influence several aspects of our health. This dense microbial community targets almost all dietary polysaccharides and releases multiple metabolites, some of which have physiological effects on the host. A healthy equilibrium between members of the gut microbiota, its microbial diversity, and their metabolites is required for intestinal health, promoting regulatory or anti-inflammatory immune responses. In contrast, the loss of this equilibrium due to antibiotics, low fiber intake, or other conditions results in alterations in gut microbiota composition, a term known as gut dysbiosis. This dysbiosis can be characterized by a reduction in health-associated microorganisms, such as butyrate-producing bacteria, enrichment of a small number of opportunistic pathogens, or a reduction in microbial diversity. Bifidobacterium species are key species in the gut microbiome, serving as primary degraders and contributing to a balanced gut environment in various ways. Colonization resistance is a fundamental property of gut microbiota for the prevention and control of infections. This community competes strongly with foreign microorganisms, such as gastrointestinal pathogens, antibiotic-resistant bacteria, or even probiotics. Resistance to colonization is based on microbial interactions such as metabolic cross-feeding, competition for nutrients, or antimicrobial-based inhibition. These interactions are mediated by metabolites and metabolic pathways, representing the inner workings of the gut microbiota, and play a protective role through colonization resistance. This review presents a rationale for how microbial interactions provide resistance to colonization and gut dysbiosis, highlighting the protective role of Bifidobacterium species.
Collapse
Affiliation(s)
- Alberto J.M. Martin
- Laboratorio de Redes Biológicas, Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Facultad de Ingeniería, Arquitectura y Diseño, Universidad San Sebastián, Santiago 8580702, Chile
| | - Kineret Serebrinsky-Duek
- Department of Chemical and Bioprocess Engineering, Pontificia Universidad Católica de Chile, Santiago 833115, Chile
| | - Erick Riquelme
- Department of Respiratory Diseases, School of Medicine, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| | - Pedro A. Saa
- Department of Chemical and Bioprocess Engineering, Pontificia Universidad Católica de Chile, Santiago 833115, Chile
- Institute for Mathematical and Computational Engineering, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| | - Daniel Garrido
- Department of Chemical and Bioprocess Engineering, Pontificia Universidad Católica de Chile, Santiago 833115, Chile
| |
Collapse
|
15
|
Advances and challenges in interaction between heteroglycans and Bifidobacterium: Utilization strategies, intestinal health and future perspectives. Trends Food Sci Technol 2023. [DOI: 10.1016/j.tifs.2023.02.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
|
16
|
Detailed analysis of metabolism reveals growth-rate-promoting interactions between Anaerostipes caccae and Bacteroides spp. Anaerobe 2023; 79:102680. [PMID: 36473601 DOI: 10.1016/j.anaerobe.2022.102680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/30/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Human gut microbiota species which are next-generation probiotics (NGPs) candidates are of high interest as they have shown the potential to treat intestinal inflammation and other diseases. Unfortunately, these species are often not robust enough for large-scale cultivation, especially in maintaining diversity in co-culture production. OBJECTIVES In this study, we describe interactions between human gut microbiota species in the cultivation process with unique substrates. We also demonstrated that it is possible to change the species ratio in co-culture by changing the ratio of carbon sources. METHODS We screened 25 different bacterial species based on their metabolic capabilities. After evaluating unique substrate possibilities, we chose Anaerostipes caccae (A. caccae), Bacteroides thetaiotaomicron (B. thetaiotaomicron), and Bacteroides vulgatus (B. vulgatus) as subjects for further study. D-sorbitol, D-xylose, and D-galacturonic acid were selected as substrates for A. caccae, B. thetaiotaomicron, and B. vulgatus respectively. All three species were cultivated as both monocultures and in co-cultures in serial batch fermentations in an isothermal microcalorimeter. RESULTS Positive interactions were detected between the species in both co-cultures (A. caccae + B. thetaiotaomicron; A. caccae + B. vulgatus) resulting in higher heat production compared to the sum of the monocultures. The same positive cross-feeding interactions took place in larger-scale cultivation experiments. We confirmed acetate and lactate cross-feeding between A. caccae and B. thetaiotaomicron with flux balance analysis (FBA). CONCLUSION Changing the ratio of the selected carbon sources in the medium changed the species ratio accordingly. Such robustness is the basis for developing more efficient industrial co-culture processes including the production of NGPs.
Collapse
|
17
|
Roager HM, Stanton C, Hall LJ. Microbial metabolites as modulators of the infant gut microbiome and host-microbial interactions in early life. Gut Microbes 2023; 15:2192151. [PMID: 36942883 PMCID: PMC10038037 DOI: 10.1080/19490976.2023.2192151] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 03/06/2023] [Indexed: 03/23/2023] Open
Abstract
The development of infant gut microbiome is a pivotal process affecting the ecology and function of the microbiome, as well as host health. While the establishment of the infant microbiome has been of interest for decades, the focus on gut microbial metabolism and the resulting small molecules (metabolites) has been rather limited. However, technological and computational advances are now enabling researchers to profile the plethora of metabolites in the infant gut, allowing for improved understanding of how gut microbial-derived metabolites drive microbiome community structuring and host-microbial interactions. Here, we review the current knowledge on development of the infant gut microbiota and metabolism within the first year of life, and discuss how these microbial metabolites are key for enhancing our basic understanding of interactions during the early life developmental window.
Collapse
Affiliation(s)
- Henrik M. Roager
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Frederiksberg, Denmark
| | - Catherine Stanton
- APC Microbiome Ireland, Teagasc Moorepark Food Research Centre, Fermoy, Co. Cork, Ireland
| | - Lindsay J. Hall
- Gut Microbes & Health, Quadram Institute Biosciences, Norwich, UK
- Intestinal Microbiome, School of Life Sciences, ZIEL – Institute for Food & Health, Technical University of Munich, Freising, Germany
- Norwich Medical School, University of East Anglia, Norwich, UK
| |
Collapse
|
18
|
Mercer EM, Arrieta MC. Probiotics to improve the gut microbiome in premature infants: are we there yet? Gut Microbes 2023; 15:2201160. [PMID: 37122152 PMCID: PMC10153018 DOI: 10.1080/19490976.2023.2201160] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 04/06/2023] [Indexed: 05/02/2023] Open
Abstract
Gut microbiome maturation in infants born prematurely is uniquely influenced by the physiological, clinical, and environmental factors surrounding preterm birth and early life, leading to altered patterns of microbial succession relative to term infants during the first months of life. These differences in microbiome composition are implicated in acute clinical conditions that disproportionately affect preterm infants, including necrotizing enterocolitis (NEC) and late-onset sepsis (LOS). Probiotic supplementation initiated early in life is an effective prophylactic measure for preventing NEC, LOS, and other clinical concerns relevant to preterm infants. In parallel, reported benefits of probiotics on the preterm gut microbiome, metabolome, and immune function are beginning to emerge. This review summarizes the current literature on the influence of probiotics on the gut microbiome of preterm infants, outlines potential mechanisms by which these effects are exerted, and highlights important clinical considerations for determining the best practices for probiotic use in premature infants.
Collapse
Affiliation(s)
- Emily M. Mercer
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
- Department of Pediatrics, University of Calgary, Calgary, Alberta, Canada
- International Microbiome Center, University of Calgary, Calgary, Alberta, Canada
| | - Marie-Claire Arrieta
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
- Department of Pediatrics, University of Calgary, Calgary, Alberta, Canada
- International Microbiome Center, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
19
|
Zhang L, Zhao M, Fu X. Gastric microbiota dysbiosis and Helicobacter pylori infection. Front Microbiol 2023; 14:1153269. [PMID: 37065152 PMCID: PMC10098173 DOI: 10.3389/fmicb.2023.1153269] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 03/14/2023] [Indexed: 04/18/2023] Open
Abstract
Helicobacter pylori (H. pylori) infection is one of the most common causes of gastric disease. The persistent increase in antibiotic resistance worldwide has made H. pylori eradication challenging for clinicians. The stomach is unsterile and characterized by a unique niche. Communication among microorganisms in the stomach results in diverse microbial fitness, population dynamics, and functional capacities, which may be positive, negative, or neutral. Here, we review gastric microecology, its imbalance, and gastric diseases. Moreover, we summarize the relationship between H. pylori and gastric microecology, including non-H. pylori bacteria, fungi, and viruses and the possibility of facilitating H. pylori eradication by gastric microecology modulation, including probiotics, prebiotics, postbiotics, synbiotics, and microbiota transplantation.
Collapse
Affiliation(s)
- Ling Zhang
- Department of Gastroenterology, Clinical Medical College, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
| | - Ming Zhao
- Department of Gastroenterology, Clinical Medical College, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
| | - Xiangsheng Fu
- Department of Gastroenterology, Clinical Medical College, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
| |
Collapse
|
20
|
Jackson PPJ, Wijeyesekera A, Rastall RA. Determining the metabolic fate of human milk oligosaccharides: it may just be more complex than you think? GUT MICROBIOME (CAMBRIDGE, ENGLAND) 2022; 3:e9. [PMID: 39295778 PMCID: PMC11406381 DOI: 10.1017/gmb.2022.8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 05/10/2022] [Accepted: 08/26/2022] [Indexed: 09/21/2024]
Abstract
Human milk oligosaccharides (HMOs) are a class of structurally diverse and complex unconjugated glycans present in breast milk, which act as selective substrates for several genera of select microbes and inhibit the colonisation of pathogenic bacteria. Yet, not all infants are breastfed, instead being fed with formula milks which may or may not contain HMOs. Currently, formula milks only possess two HMOs: 2'-fucosyllactose (2'FL) and lacto-N-neotetraose (LNnT), which have been suggested to be similarly effective as human breast milk in supporting age-related growth. However, the in vivo evidence regarding their ability to beneficially reduce respiratory infections along with altering the composition of an infant's microbiota is limited at best. Thus, this review will explore the concept of HMOs and their metabolic fate, and summarise previous in vitro and in vivo clinical data regarding HMOs, with specific regard to 2'FL and LNnT.
Collapse
Affiliation(s)
| | - Anisha Wijeyesekera
- Department of Food and Nutritional Sciences, University of Reading, Reading, UK
| | | |
Collapse
|
21
|
Pham VT, Greppi A, Chassard C, Braegger C, Lacroix C. Stepwise establishment of functional microbial groups in the infant gut between 6 months and 2 years: A prospective cohort study. Front Nutr 2022; 9:948131. [PMID: 35967780 PMCID: PMC9366138 DOI: 10.3389/fnut.2022.948131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 06/16/2022] [Indexed: 11/13/2022] Open
Abstract
The early intestinal colonization of functional microbial groups plays an essential role in infant gut health, with most studies targeting the initial colonization period from birth to 6 months of age. In a previous report, we demonstrated the metabolic cross-feeding of lactate and identified keystone species specified for lactate utilization in fecal samples of 40 healthy infants. We present here the extension of our longitudinal study for the period from 6 months to 2 years, with a focus on the colonization of functional groups involved in lactate metabolism and butyrate production. We captured the dynamic changes of the gut microbiota and reported a switch in the predominant lactate-producing and lactate-utilizing bacteria, from Veillonella producing propionate in the first year to Anaerobutyrycum hallii producing butyrate in the second year of life. The significant increase in butyrate producers and fecal butyrate concentration was also pinpointed to the weaning period between 6 and 10 months. Correlation analyses further suggested, for the first time, the metabolic cross-feeding of hydrogen in infants. In conclusion, our longitudinal study of 40 Swiss infants provides important insights into the colonization of functional groups involved in lactate metabolism and butyrate production in the first 2 years of life.
Collapse
Affiliation(s)
- Van T Pham
- Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland.,Division of Gastroenterology and Nutrition, University Children's Hospital Zurich, Zurich, Switzerland
| | - Anna Greppi
- Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Christophe Chassard
- Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Christian Braegger
- Division of Gastroenterology and Nutrition, University Children's Hospital Zurich, Zurich, Switzerland
| | - Christophe Lacroix
- Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
22
|
In vitro fermentation of human milk oligosaccharides by individual Bifidobacterium longum-dominant infant fecal inocula. Carbohydr Polym 2022; 287:119322. [DOI: 10.1016/j.carbpol.2022.119322] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/27/2022] [Accepted: 03/03/2022] [Indexed: 12/16/2022]
|
23
|
Human Milk Oligosaccharides and Lactose Differentially Affect Infant Gut Microbiota and Intestinal Barrier In Vitro. Nutrients 2022; 14:nu14122546. [PMID: 35745275 PMCID: PMC9227761 DOI: 10.3390/nu14122546] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 06/17/2022] [Indexed: 02/06/2023] Open
Abstract
Background: The infant gut microbiota establishes during a critical window of opportunity when metabolic and immune functions are highly susceptible to environmental changes, such as diet. Human milk oligosaccharides (HMOs) for instance are suggested to be beneficial for infant health and gut microbiota. Infant formulas supplemented with the HMOs 2′-fucosyllactose (2′-FL) and lacto-N-neotetraose (LNnT) reduce infant morbidity and medication use and promote beneficial bacteria in the infant gut ecosystem. To further improve infant formula and achieve closer proximity to human milk composition, more complex HMO mixtures could be added. However, we currently lack knowledge about their effects on infants’ gut ecosystems. Method: We assessed the effect of lactose, 2′-FL, 2′-FL + LNnT, and a mixture of six HMOs (HMO6: consisting of 2′-FL, LNnT, difucosyllactose, lacto-N-tetraose, 3′- and 6′-sialyllactose) on infant gut microbiota and intestinal barrier integrity using a combination of in vitro models to mimic the microbial ecosystem (baby M-SHIME®) and the intestinal epithelium (Caco-2/HT29-MTX co-culture). Results: All the tested products had bifidogenic potential and increased SCFA levels; however, only the HMOs’ fermented media protected against inflammatory intestinal barrier disruption. 2′-FL/LNnT and HMO6 promoted the highest diversification of OTUs within the Bifidobactericeae family, whereas beneficial butyrate-producers were specifically enriched by HMO6. Conclusion: These results suggest that increased complexity in HMO mixture composition may benefit the infant gut ecosystem, promoting different bifidobacterial communities and protecting the gut barrier against pro-inflammatory imbalances.
Collapse
|
24
|
Gold MS, Quinn PJ, Campbell DE, Peake J, Smart J, Robinson M, O’Sullivan M, Vogt JK, Pedersen HK, Liu X, Pazirandeh-Micol E, Heine RG. Effects of an Amino Acid-Based Formula Supplemented with Two Human Milk Oligosaccharides on Growth, Tolerability, Safety, and Gut Microbiome in Infants with Cow's Milk Protein Allergy. Nutrients 2022; 14:nu14112297. [PMID: 35684099 PMCID: PMC9182596 DOI: 10.3390/nu14112297] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 12/04/2022] Open
Abstract
This open-label, non-randomized, multicenter trial (Registration: NCT03661736) aimed to assess if an amino acid-based formula (AAF) supplemented with two human milk oligosaccharides (HMO) supports normal growth and is well tolerated in infants with a cow's milk protein allergy (CMPA). Term infants aged 1-8 months with moderate-to-severe CMPA were enrolled. The study formula was an AAF supplemented with 2'-fucosyllactose (2'-FL) and lacto-N-neotetraose (LNnT). Infants were fed the study formula for 4 months and were offered to remain on the formula until 12 months of age. Tolerance and safety were assessed throughout the trial. Out of 32 infants (mean age 18.6 weeks; 20 (62.5%) male), 29 completed the trial. During the 4-month principal study period, the mean weight-for-age Z score (WAZ) increased from -0.31 at the baseline to +0.28 at the 4-months' follow-up. Linear and head growth also progressed along the WHO child growth reference, with a similar small upward trend. The formula was well tolerated and had an excellent safety profile. When comparing the microbiome at the baseline to the subsequent visits, there was a significant on-treatment enrichment in HMO-utilizing bifidobacteria, which was associated with a significant increase in fecal short-chain fatty acids. In addition, we observed a significant reduction in the abundance of fecal Proteobacteria, suggesting that the HMO-supplemented study formula partially corrected the gut microbial dysbiosis in infants with CMPA.
Collapse
Affiliation(s)
- Michael S. Gold
- Department of Allergy & Immunology, Women’s and Children’s Hospital, University of Adelaide, Adelaide, SA 5006, Australia;
- Correspondence:
| | - Patrick J. Quinn
- Department of Allergy & Immunology, Women’s and Children’s Hospital, University of Adelaide, Adelaide, SA 5006, Australia;
| | - Dianne E. Campbell
- Department of Allergy & Clinical Immunology, Children’s Hospital at Westmead, University of Sydney, Sydney, NSW 2145, Australia;
| | - Jane Peake
- Queensland Paediatric Immunology and Allergy Service, Queensland Children’s Hospital, University of Queensland, South Brisbane, QLD 4101, Australia;
| | - Joanne Smart
- Paediatric Allergy Services, Epworth Hospital, Richmond, VIC 3121, Australia;
| | - Marnie Robinson
- Melbourne Allergy Centre & Children’s Specialists Medical Group, Parkville, VIC 3152, Australia;
| | - Michael O’Sullivan
- Department of Immunology, Perth Children’s Hospital, Nedlands, WA 6009, Australia
| | | | | | - Xiaoqiu Liu
- Biostatistics and Data Science Division, The George Institute for Global Health, University of New South Wales, Sydney, NSW 2042, Australia;
| | | | - Ralf G. Heine
- Nestlé Health Science, CH-1800 Vevey, Switzerland; (E.P.-M.); (R.G.H.)
| |
Collapse
|
25
|
Button JE, Autran CA, Reens AL, Cosetta CM, Smriga S, Ericson M, Pierce JV, Cook DN, Lee ML, Sun AK, Alousi AM, Koh AY, Rechtman DJ, Jenq RR, McKenzie GJ. Dosing a synbiotic of human milk oligosaccharides and B. infantis leads to reversible engraftment in healthy adult microbiomes without antibiotics. Cell Host Microbe 2022; 30:712-725.e7. [PMID: 35504279 DOI: 10.1016/j.chom.2022.04.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 03/11/2022] [Accepted: 04/07/2022] [Indexed: 11/30/2022]
Abstract
Predictable and sustainable engraftment of live biotherapeutic products into the human gut microbiome is being explored as a promising way to modulate the human gut microbiome. We utilize a synbiotic approach pairing the infant gut microbe Bifidobacterium longum subspecies infantis (B. infantis) and human milk oligosaccharides (HMO). B. infantis, which is typically absent in adults, engrafts into healthy adult microbiomes in an HMO-dependent manner at a relative abundance of up to 25% of the bacterial population without antibiotic pretreatment or adverse effects. Corresponding changes in metabolites are detected. Germ-free mice transplanted with dysbiotic human microbiomes also successfully engraft with B. infantis in an HMO-dependent manner, and the synbiotic augments butyrate levels both in this in vivo model and in in vitro cocultures of the synbiotic with specific Firmicutes species. Finally, the synbiotic inhibits the growth of enteropathogens in vitro. Our findings point to a potential safe mechanism for ameliorating dysbioses characteristic of numerous human diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Adam K Sun
- Prolacta Bioscience, Duarte, CA 91010, USA
| | - Amin M Alousi
- Department of Stem Cell Transplantation, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Andrew Y Koh
- Department of Pediatrics, Division of Hematology/Oncology, The University of Texas Southwestern Medical Center, Dallas, TX 75235, USA; Harold C. Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Microbiology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | | | - Robert R Jenq
- Department of Genomic Medicine, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | |
Collapse
|
26
|
Cheema AS, Trevenen ML, Turlach BA, Furst AJ, Roman AS, Bode L, Gridneva Z, Lai CT, Stinson LF, Payne MS, Geddes DT. Exclusively Breastfed Infant Microbiota Develops over Time and Is Associated with Human Milk Oligosaccharide Intakes. Int J Mol Sci 2022; 23:2804. [PMID: 35269946 PMCID: PMC8910998 DOI: 10.3390/ijms23052804] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 02/22/2022] [Accepted: 02/28/2022] [Indexed: 12/11/2022] Open
Abstract
Temporal development of maternal and infant microbiomes during early life impacts short- and long-term infant health. This study aimed to characterize bacterial dynamics within maternal faecal, human milk (HM), infant oral, and infant faecal samples during the exclusive breastfeeding period and to document associations between human milk oligosaccharide (HMO) intakes and infant oral and faecal bacterial profiles. Maternal and infant samples (n = 10) were collected at 2−5, 30, 60, 90 and 120 days postpartum and the full-length 16S ribosomal RNA (rRNA) gene was sequenced. Nineteen HMOs were quantitated using high-performance liquid chromatography. Bacterial profiles were unique to each sample type and changed significantly over time, with a large degree of intra- and inter-individual variation in all sample types. Beta diversity was stable over time within infant faecal, maternal faecal and HM samples, however, the infant oral microbiota at day 2−5 significantly differed from all other time points (all p < 0.02). HMO concentrations and intakes significantly differed over time, and HMO intakes showed differential associations with taxa observed in infant oral and faecal samples. The direct clinical relevance of this, however, is unknown. Regardless, future studies should account for intakes of HMOs when modelling the impact of HM on infant growth, as it may have implications for infant microbiota development.
Collapse
Affiliation(s)
- Ali Sadiq Cheema
- School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia; (A.S.C.); (Z.G.); (C.T.L.); (L.F.S.)
| | - Michelle Louise Trevenen
- Centre for Applied Statistics, The University of Western Australia, Crawley, WA 6009, Australia; (M.L.T.); (B.A.T.)
| | - Berwin Ashoka Turlach
- Centre for Applied Statistics, The University of Western Australia, Crawley, WA 6009, Australia; (M.L.T.); (B.A.T.)
| | - Annalee June Furst
- Larsson-Rosenquist Foundation Mother-Milk-Infant Center of Research Excellence, University of California San Diego, La Jolla, CA 92093, USA; (A.J.F.); (A.S.R.); (L.B.)
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA
| | - Ana Sophia Roman
- Larsson-Rosenquist Foundation Mother-Milk-Infant Center of Research Excellence, University of California San Diego, La Jolla, CA 92093, USA; (A.J.F.); (A.S.R.); (L.B.)
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA
| | - Lars Bode
- Larsson-Rosenquist Foundation Mother-Milk-Infant Center of Research Excellence, University of California San Diego, La Jolla, CA 92093, USA; (A.J.F.); (A.S.R.); (L.B.)
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA
| | - Zoya Gridneva
- School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia; (A.S.C.); (Z.G.); (C.T.L.); (L.F.S.)
| | - Ching Tat Lai
- School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia; (A.S.C.); (Z.G.); (C.T.L.); (L.F.S.)
| | - Lisa Faye Stinson
- School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia; (A.S.C.); (Z.G.); (C.T.L.); (L.F.S.)
| | - Matthew Scott Payne
- Division of Obstetrics and Gynaecology, School of Medicine, The University of Western Australia, Subiaco, WA 6008, Australia;
- Women and Infants Research Foundation, Subiaco, WA 6008, Australia
| | - Donna Tracy Geddes
- School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia; (A.S.C.); (Z.G.); (C.T.L.); (L.F.S.)
| |
Collapse
|
27
|
Sprenger N, Tytgat HL, Binia A, Austin S, Singhal A. Biology of human milk oligosaccharides: from Basic Science to Clinical Evidence. J Hum Nutr Diet 2022; 35:280-299. [PMID: 35040200 PMCID: PMC9304252 DOI: 10.1111/jhn.12990] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 01/05/2022] [Indexed: 11/28/2022]
Abstract
Human milk oligosaccharides (HMOs) have been researched by scientists for over 100 years, driven by the substantial evidence for the nutritional and health benefits of mother's milk. Yet research has truly bloomed during the last decade, thanks to the progress in biotechnology, which allowed the production of large amounts of bona fide HMOs. The availability of HMOs has been particularly crucial for the renewed interest in HMO research because of the low abundance or even absence of HMOs in farmed animal milk. This interest is reflected in the increasing number of original research publications and reviews on HMOs. Here, we provide an overview and critical discussion on structure function relations of HMOs that highlight why they are such interesting and important components of human milk. Clinical observations in breastfed infants backed by basic research from animal models provide guidance as to what physiological roles for HMOs are to be expected. From an evidence-based nutrition viewpoint, we discuss the current data supporting clinical relevance of specific HMOs based on randomized placebo controlled clinical intervention trials in formula-fed infants. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Norbert Sprenger
- Nestlé Institute of Health Sciences, Nestlé Research, Société des Produits Nestlé S.A., Lausanne, Switzerland
| | - Hanne Lp Tytgat
- Nestlé Institute of Health Sciences, Nestlé Research, Société des Produits Nestlé S.A., Lausanne, Switzerland
| | - Aristea Binia
- Nestlé Institute of Health Sciences, Nestlé Research, Société des Produits Nestlé S.A., Lausanne, Switzerland
| | - Sean Austin
- Nestlé Institute of Food Safety and Analytical Sciences, Nestlé Research, Société des Produits Nestlé S.A., Lausanne, Switzerland
| | - Atul Singhal
- Institute of Child Health, University College London, London, WC1N 1EH, United Kingdom
| |
Collapse
|
28
|
Fecal Microbiota Signatures Are Not Consistently Related to Symptom Severity in Irritable Bowel Syndrome. Dig Dis Sci 2022; 67:5137-5148. [PMID: 35624331 PMCID: PMC9587953 DOI: 10.1007/s10620-022-07543-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 03/01/2022] [Indexed: 01/05/2023]
Abstract
BACKGROUND Irritable bowel syndrome (IBS) is the most prevalent functional bowel disorder, but its pathophysiology is still unknown. Although a microbial signature associated with IBS severity has been suggested, its association with IBS severity still remains largely unknown. AIMS This study aims to assess longitudinal dynamics of fecal microbiota and short-chain fatty acids (SCFAs) in different IBS severity groups and study the association with stool pattern, diet, depression, anxiety, and quality of life (QoL). METHODS A longitudinal study was performed, including n = 91 IBS patients and n = 28 matched controls. All participants collected fecal samples for microbiota composition and SCFA analysis and completed validated questionnaires regarding IBS severity, stool pattern, depression, anxiety, and IBS-QoL at two timepoints with four weeks in-between. Diet was assessed at the first timepoint. RESULTS Over time, 36% of IBS patients changed in severity group, and 53% changed in predominant stool pattern. The largest proportion of microbiota variation was explained by the individual (R2 = 70.07%). Microbiota alpha diversity and composition, and SCFAs did not differ between IBS severity groups, nor between IBS and controls. Relative abundances of Bifidobacterium, Terrisporobacter, and Turicibacter consistently differed between IBS and controls, but not between IBS severity groups. Large dynamics over time were observed in the association of microbiota composition with questionnaire data where IBS symptom severity was associated at T1 but not at T2. CONCLUSIONS Fecal microbiota and SCFA signatures were not consistently associated with IBS severity over time, indicating the importance of repeated sampling in IBS research.
Collapse
|
29
|
Henderickx JGE, d’Haens EJ, Hemels MAC, Schoorlemmer ME, Giezen A, van Lingen RA, Knol J, Belzer C. From Mum to Bum: An Observational Study Protocol to Follow Digestion of Human Milk Oligosaccharides and Glycoproteins from Mother to Preterm Infant. Nutrients 2021; 13:3430. [PMID: 34684428 PMCID: PMC8538091 DOI: 10.3390/nu13103430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 09/21/2021] [Accepted: 09/24/2021] [Indexed: 11/21/2022] Open
Abstract
The nutritional requirements of preterm infants are challenging to meet in neonatal care, yet crucial for their growth, development and health. Aberrant maturation of the gastrointestinal tract and the microbiota could affect the digestion of human milk and its nutritional value considerably. Therefore, the main objective of the proposed research is to investigate how the intestinal microbiota of preterm and full-term infants differ in their ability to extract energy and nutrients from oligosaccharides and glycoproteins in human milk. This pilot study will be an observational, single-center study performed at the Neonatal Intensive Care Unit at Isala Women and Children's Hospital (Zwolle, The Netherlands). A cohort of thirty mother-infant pairs (preterm ≤30 weeks of gestation, n = 15; full-term 37-42 weeks of gestation, n = 15) will be followed during the first six postnatal weeks with follow-up at three- and six-months postnatal age. We will collect human milk of all mothers, gastric aspirates of preterm infants and fecal samples of all infants. A combination of 16S rRNA amplicon sequencing, proteomics, peptidomics, carbohydrate analysis and calorimetric measurements will be performed. The role of the microbiota in infant growth and development is often overlooked yet offers opportunities to advance neonatal care. The 'From Mum to Bum' study is the first study in which the effect of a preterm gut microbiota composition on its metabolic capacity and subsequent infant growth and development is investigated. By collecting human milk of all mothers, gastric aspirates of preterm infants and fecal samples of all infants at each timepoint, we can follow digestion of human milk from the breast of the mother throughout the gastrointestinal tract of the infant, or 'From Mum to Bum'.
Collapse
Affiliation(s)
- Jannie G. E. Henderickx
- Laboratory of Microbiology, Wageningen University and Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands; (J.G.E.H.); (J.K.)
| | - Esther J. d’Haens
- Department of Neonatology, Isala Women and Children’s Hospital, Dokter van Heesweg 2, 8025 AB Zwolle, The Netherlands; (E.J.d.H.); (M.A.C.H.); (M.E.S.); (A.G.); (R.A.v.L.)
| | - Marieke A. C. Hemels
- Department of Neonatology, Isala Women and Children’s Hospital, Dokter van Heesweg 2, 8025 AB Zwolle, The Netherlands; (E.J.d.H.); (M.A.C.H.); (M.E.S.); (A.G.); (R.A.v.L.)
| | - Mariëtte E. Schoorlemmer
- Department of Neonatology, Isala Women and Children’s Hospital, Dokter van Heesweg 2, 8025 AB Zwolle, The Netherlands; (E.J.d.H.); (M.A.C.H.); (M.E.S.); (A.G.); (R.A.v.L.)
| | - Astrid Giezen
- Department of Neonatology, Isala Women and Children’s Hospital, Dokter van Heesweg 2, 8025 AB Zwolle, The Netherlands; (E.J.d.H.); (M.A.C.H.); (M.E.S.); (A.G.); (R.A.v.L.)
| | - Richard A. van Lingen
- Department of Neonatology, Isala Women and Children’s Hospital, Dokter van Heesweg 2, 8025 AB Zwolle, The Netherlands; (E.J.d.H.); (M.A.C.H.); (M.E.S.); (A.G.); (R.A.v.L.)
| | - Jan Knol
- Laboratory of Microbiology, Wageningen University and Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands; (J.G.E.H.); (J.K.)
- Danone Nutricia Research, Uppsalalaan 12, 3584 CT Utrecht, The Netherlands
| | - Clara Belzer
- Laboratory of Microbiology, Wageningen University and Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands; (J.G.E.H.); (J.K.)
| |
Collapse
|
30
|
Hill DR, Chow JM, Buck RH. Multifunctional Benefits of Prevalent HMOs: Implications for Infant Health. Nutrients 2021; 13:3364. [PMID: 34684364 PMCID: PMC8539508 DOI: 10.3390/nu13103364] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/20/2021] [Accepted: 09/22/2021] [Indexed: 12/13/2022] Open
Abstract
Breastfeeding is the best source of nutrition during infancy and is associated with a broad range of health benefits. However, there remains a significant and persistent need for innovations in infant formula that will allow infants to access a wider spectrum of benefits available to breastfed infants. The addition of human milk oligosaccharides (HMOs) to infant formulas represents the most significant innovation in infant nutrition in recent years. Although not a direct source of calories in milk, HMOs serve as potent prebiotics, versatile anti-infective agents, and key support for neurocognitive development. Continuing improvements in food science will facilitate production of a wide range of HMO structures in the years to come. In this review, we evaluate the relationship between HMO structure and functional benefits. We propose that infant formula fortification strategies should aim to recapitulate a broad range of benefits to support digestive health, immunity, and cognitive development associated with HMOs in breastmilk. We conclude that acetylated, fucosylated, and sialylated HMOs likely confer important health benefits through multiple complementary mechanisms of action.
Collapse
Affiliation(s)
| | | | - Rachael H. Buck
- Abbott Nutrition, 3300 Stelzer Road, Columbus, OH 43219, USA; (D.R.H.); (J.M.C.)
| |
Collapse
|
31
|
Turroni F, Milani C, Ventura M, van Sinderen D. The human gut microbiota during the initial stages of life: insights from bifidobacteria. Curr Opin Biotechnol 2021; 73:81-87. [PMID: 34333445 DOI: 10.1016/j.copbio.2021.07.012] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 07/13/2021] [Indexed: 12/18/2022]
Abstract
Current scientific literature has identified the infant gut microbiota as a multifaceted organ influencing a range of aspects of host-health and development. Many scientific studies have focused on characterizing the main microbial taxa that constitute the resident bacterial population of the infant gut. This has generated a wealth of information on the bacterial composition of the infant gut microbiota, and on the functional role/s exerted by their key microbial members. In this context, one of the most prevalent, abundant and investigated microbial taxon in the human infant gut is the genus Bifidobacterium, due to the purported beneficial activities is bestows upon its host. This review discusses the most recent findings regarding the infant gut microbiota with a particular focus on the molecular mechanisms by which bifidobacteria impact on host health and well-being.
Collapse
Affiliation(s)
- Francesca Turroni
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy; Microbiome Research Hub, University of Parma, Parma, Italy.
| | - Christian Milani
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy; Microbiome Research Hub, University of Parma, Parma, Italy
| | - Marco Ventura
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy; Microbiome Research Hub, University of Parma, Parma, Italy
| | - Douwe van Sinderen
- APC Microbiome Institute and School of Microbiology, Bioscience Institute, National University of Ireland, Cork, Ireland.
| |
Collapse
|