1
|
Katiyar R, Gonmei C, Deori S, Singh M, Abedin SN, Rautela R, Singh NS, Chakravarty H, Das M, Choudhury BU, Mishra VK. Effect of heat stress on pig production and its mitigation strategies: a review. Trop Anim Health Prod 2025; 57:139. [PMID: 40117038 DOI: 10.1007/s11250-025-04387-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 03/07/2025] [Indexed: 03/23/2025]
Abstract
Heat stress (HS) poses a significant challenge to pig production worldwide, with far-reaching consequences for productivity, reproduction, and overall animal welfare. Stress, broadly defined as the nonspecific physiological response to environmental demands, disrupts homeostasis, leading to health imbalances, behavioral changes, and reduced productive efficiency. Pigs are particularly susceptible to HS due to their limited thermoregulatory capacity, influenced by a low density of functional sweat glands and a thick subcutaneous fat layer. Rising global temperatures have exacerbated HS-induced economic losses in the swine industry, manifesting as decreased growth rates, poor reproductive performance, reduced feed efficiency, increased morbidity, and mortality. HS impairs pig production by diminishing feed intake and nutrient availability, which leads to reduced growth, suboptimal carcass quality, and compromised reproduction. Sows experience increased anestrus, extended weaning-to-estrus intervals, and smaller litter sizes, while boars exhibit reduced semen quality and fertility. The genetic selection for higher productivity has inadvertently lowered heat tolerance, as metabolic heat production increases with improved production traits. Furthermore, inadequate environmental management in pig housing exacerbates the impact of HS. Variations in heat tolerance among pigs underscore the importance of understanding genetic, physiological, and environmental factors influencing their response to HS. Research reveals genetic differences in thermotolerance, offering potential avenues for selective breeding to improve resilience. Effective management strategies, including nutritional adjustments, environmental modifications, and genetic selection, are crucial for mitigating the negative effects of HS and enhancing pig productivity. This review highlights the multifaceted impacts of HS on swine production, explores the physiological and reproductive consequences, and discusses adaptive and ameliorative measures to address these challenges, with a focus on maintaining sustainable pig production in the face of climatic changes.
Collapse
Affiliation(s)
- Rahul Katiyar
- ICAR Research Complex for NEH Region, Umiam, Meghalaya, India.
| | | | - Sourabh Deori
- ICAR Research Complex for NEH Region, Umiam, Meghalaya, India.
| | - Mahak Singh
- ICAR Research Complex for NEH Region, Nagaland Centre, Medziphema, Nagaland, India.
| | | | - Rupali Rautela
- ICAR-Central Institute for Research on Buffaloes, Hisar, Haryana, India
| | | | | | - Meena Das
- ICAR Research Complex for NEH Region, Umiam, Meghalaya, India
| | - B U Choudhury
- ICAR Research Complex for NEH Region, Tripura Centre, Lembucherra, Tripura, India
| | | |
Collapse
|
2
|
Mendonca LC, Carvalho WA, Campos MM, Souza GN, de Oliveira SA, Meringhe GKF, Negrao JA. Heat stress affects milk yield, milk quality, and gene expression profiles in mammary cells of Girolando cows. J Dairy Sci 2025; 108:1039-1049. [PMID: 39343218 DOI: 10.3168/jds.2024-25498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 09/05/2024] [Indexed: 10/01/2024]
Abstract
Heat stress during lactation affects the physiological responses, hormonal release, health, and productivity of dairy cows. However, the adverse effects of heat stress on milk synthesis, immune response, and cellular apoptosis in mammary cells remains unknown in Bos indicus cows. This study aimed to understand the relationship between milk yield, milk quality, and the expression of genes related to milk synthesis, cell apoptosis, and immune response in mammary cells of Girolando cows. A total of 24 Girolando cows (3/4 Holstein and 1/4 Gir) were subjected to control (CT; with a temperature-humidity index ranging from 60 to 74, n = 12) or heat stress treatments (HS; with a temperature-humidity index ranging from 60 to 85, n = 12), from 111 to 120 d of lactation. Heat stress significantly increased the expression of heat shock proteins (HSPD1 and HSPD90AA1), insulin receptors (INSR), and prolactin receptor (PRLRsf) genes, and decreased the expression of glucocorticoid receptor (NR3C1) gene in mammary cells of the HS cows when compared with the CT cows. The HS cows exhibited significantly higher vaginal temperatures and cortisol release compared with the CT cows. Moreover, the HS cows had significantly lower DMI and milk yield than CT cows. Although, HS cows showed higher percentage of lymphocytes in milk when compared with that from CT cows. We found no effect of heat stress on other leukocyte counts, somatic cell counts, bacterial counts in milk, or milk composition. Finally, this study demonstrated that Girolando cows are susceptible to heat stress, which decreases milk yield and affects the expression of genes linked to milk synthesis in the mammary cells.
Collapse
Affiliation(s)
- L C Mendonca
- Faculty of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, SP 14884-900 Brazil; Brazilian Agricultural Research Corporation (Embrapa Dairy Cattle), Juiz de Fora, MG 36038-330, Brazil
| | - W A Carvalho
- Brazilian Agricultural Research Corporation (Embrapa Dairy Cattle), Juiz de Fora, MG 36038-330, Brazil
| | - M M Campos
- Brazilian Agricultural Research Corporation (Embrapa Dairy Cattle), Juiz de Fora, MG 36038-330, Brazil
| | - G N Souza
- Brazilian Agricultural Research Corporation (Embrapa Dairy Cattle), Juiz de Fora, MG 36038-330, Brazil
| | - S A de Oliveira
- Department of Basic Sciences, Faculty of Animal Science and Food Engineering (FZEA), University of São Paulo (USP), Pirassununga, SP 13635-900 Brazil
| | - G K F Meringhe
- Department of Basic Sciences, Faculty of Animal Science and Food Engineering (FZEA), University of São Paulo (USP), Pirassununga, SP 13635-900 Brazil
| | - J A Negrao
- Department of Basic Sciences, Faculty of Animal Science and Food Engineering (FZEA), University of São Paulo (USP), Pirassununga, SP 13635-900 Brazil.
| |
Collapse
|
3
|
Kalaignazhal G, Sejian V, Velayudhan SM, Mishra C, Rebez EB, Chauhan SS, DiGiacomo K, Lacetera N, Dunshea FR. Applications of Next-Generation Sequencing Technologies and Statistical Tools in Identifying Pathways and Biomarkers for Heat Tolerance in Livestock. Vet Sci 2024; 11:616. [PMID: 39728955 DOI: 10.3390/vetsci11120616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/17/2024] [Accepted: 11/29/2024] [Indexed: 12/28/2024] Open
Abstract
The climate change-associated abnormal weather patterns negatively influences the productivity and performance of farm animals. Heat stress is the major detrimental factor hampering production, causing substantial economic loss to the livestock industry. Therefore, it is important to identify heat-tolerant breeds that can survive and produce optimally in any given environment. To achieve this goal, a clearer understanding of the genetic differences and the underlying molecular mechanisms associated with climate change impacts and heat tolerance are a prerequisite. Adopting next-generation biotechnological and statistical tools like whole transcriptome analysis, whole metagenome sequencing, bisulphite sequencing, genome-wide association studies (GWAS), and selection signatures provides an opportunity to achieve this goal. Through these techniques, it is possible to identify permanent genetic markers for heat tolerance, and by incorporating those markers in marker-assisted breeding selection, it is possible to achieve the target of breeding for heat tolerance in livestock. This review gives an overview of the recent advancements in assessing heat tolerance in livestock using such 'omics' approaches and statistical models. The salient findings from this research highlighted several candidate biomarkers that have the potential to be incorporated into future heat-tolerance studies. Such approaches could revolutionise livestock production in the changing climate scenario and support the food demands of the growing human population.
Collapse
Affiliation(s)
- Gajendirane Kalaignazhal
- Rajiv Gandhi Institute of Veterinary Education and Research, Kurumbapet 605009, Puducherry, India
- Department of Animal Breeding and Genetics, College of Veterinary Science and Animal Husbandry, Odisha University of Agriculture and Technology, Bhubaneshwar 751003, Odisha, India
| | - Veerasamy Sejian
- Rajiv Gandhi Institute of Veterinary Education and Research, Kurumbapet 605009, Puducherry, India
| | | | - Chinmoy Mishra
- Department of Animal Breeding and Genetics, College of Veterinary Science and Animal Husbandry, Odisha University of Agriculture and Technology, Bhubaneshwar 751003, Odisha, India
| | - Ebenezer Binuni Rebez
- Rajiv Gandhi Institute of Veterinary Education and Research, Kurumbapet 605009, Puducherry, India
| | - Surinder Singh Chauhan
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Kristy DiGiacomo
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Nicola Lacetera
- Department of Agriculture and Forest Sciences, University of Tuscia, 01100 Viterbo, Italy
| | - Frank Rowland Dunshea
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Melbourne, VIC 3010, Australia
- Faculty of Biological Sciences, The University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
4
|
Kaushik R, Goel A, Rout PK. Gene expression analysis of Aquaporin genes in ruminants during growth phase in response to heat stress. Int J Biol Macromol 2024; 281:136262. [PMID: 39366612 DOI: 10.1016/j.ijbiomac.2024.136262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 09/19/2024] [Accepted: 10/01/2024] [Indexed: 10/06/2024]
Abstract
Aquaporins (AQPs) are trans-membrane protein involved in water transport and different cellular functions such as cell adhesion, signalling and proliferation. These membrane proteins are essential for key physiological functions such as organ development, osmoregulation, tissue regeneration and metabolism. The regulation of AQP5 gene expression in ruminants during growth phase has not been analysed in-vivo. Therefore, the gene expression pattern was analysed in Jamunapari goats during 3 months to 12 month of age and adult age group in response to heat stress. The genotyping of the AQP5 gene was carried out by High-Resolution Melting (HRM) in four different goat breeds, which indicated four distinct genotypes in the population. The nucleotide diversity for the AQP5 gene ranged from 0.315 and 0.524 across the breeds. Additionally, a close evolutionary relationship between AQP5 and the HSP70 gene was observed, indicating a shared pathway for heat stress regulation. The m-RNA expression level of AQP5 at 3, 9, 12 month and adult age group exhibited 47.24, 1140, 43.17 and 12.55-fold higher expression than control. The m-RNA expression level of the AQP5 gene was up-regulated and significantly higher (P < 0.05) at 9-month age as compared to the other age groups. Heat stress phenotypes were classified based on respiration rate and heart rate, and the m-RNA expression of AQP5 was higher in heat stress-susceptible (HSS) individuals than heat stress-tolerant (HST) individuals at 3, 9, and 12 months of age. The AQP5 plays a significant role in thermoregulation during growth phases in response to heat stress in goats, however, it is required to understand the role of aquaporins at cellular level as well as to establish the association with production performance in ruminant system in-vivo.
Collapse
Affiliation(s)
- Rakesh Kaushik
- Animal Genetics and Breeding Division, ICAR- Central Institute for Research on Goats, Makhdoom, Farah, Mathura 281122, U.P., India; Department of Biotechnology, GLA University, Chaumuhan, Mathura 281406, U.P., India.
| | - Anjana Goel
- Department of Biotechnology, GLA University, Chaumuhan, Mathura 281406, U.P., India
| | - P K Rout
- Animal Genetics and Breeding Division, ICAR- Central Institute for Research on Goats, Makhdoom, Farah, Mathura 281122, U.P., India.
| |
Collapse
|
5
|
Shashank CG, Prashant RG, Kumar P, Kulkarni NA, Tiwari M, Jayakumar S, Sejian V. Comparative assessment of growth performance of indigenous and cross-bred calves subjected to combined stressors (heat and nutritional). INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2023; 67:1435-1450. [PMID: 37418176 DOI: 10.1007/s00484-023-02511-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/31/2023] [Accepted: 06/21/2023] [Indexed: 07/08/2023]
Abstract
This study evaluated the impact of combined stressors (heat and nutritional stresses) on the growth and adaptive capability of Sahiwal (SW) and Karan Fries (KF) calves during the summer season. Calves in each breed were randomly divided into four groups. In SW breed the groupings were as follows: SWC (n = 4; Sahiwal Control); SWHS (n = 4; Sahiwal Heat Stress); SWNS (n = 4; Sahiwal Nutritional Stress) and SWCS (n = 4; Sahiwal Combined Stresses). Likewise, in the KF breed, KFC (n = 4; Karan Fries Control); KFHS (n = 4; Karan Fries Heat Stress); KFNS (n = 4; Karan Fries Nutritional Stress), and KFCS (n = 4; Karan Fries Combined Stresses). Control (C) and Heat Stress (HS) calves were fed ad libitum while Nutritional Stress (NS) and Combined Stresses (CS) calves were fed restricted feed (50% of C calves of respective breed) to induce nutritional stress in both the breeds. SWHS, SWCS, KFHS, and KFCS were exposed to summer heat stress from 1000 to 1600 h. All growth and adaptation variables were recorded at fortnightly intervals. Respiration rate, pulse rate, and rectal temperature during the afternoon were significantly (P < 0.01) higher in the CS group in both breeds. Further, CS had significantly (P < 0.05) higher plasma growth hormone and cortisol levels. Insulin-like growth factor-1, Triiodothyronine, and Thyroxine levels significantly decreased (P < 0.05) in the CS group in both breeds. Interestingly, heat stress didn't affect SWHS and KFHS bodyweight, however, a significant (P < 0.05) decrease in body weight of SWCS and KFCS was observed when compared with C. Hepatic mRNA expression of growth hormone, insulin-like growth factor-1, and growth hormone receptor significantly (P < 0.05) varied when compared between C and CS groups in both the breeds. The overall magnitude of stress was more pronounced in KF compared to the SW breed. This study concludes that when two stressors occur concurrently, they may have a greater influence on the adaptive capability of calves. Further, SW had better tolerance levels than KF, confirming the indigenous breed's superiority over cross-bred.
Collapse
Affiliation(s)
- C G Shashank
- ICAR- National Dairy Research Institute, Karnal, 132001, Haryana, India.
| | - R G Prashant
- ICAR- National Dairy Research Institute, Karnal, 132001, Haryana, India
| | - Parveen Kumar
- ICAR- National Dairy Research Institute, Karnal, 132001, Haryana, India
| | - Nitish A Kulkarni
- ICAR- National Dairy Research Institute, Karnal, 132001, Haryana, India
| | - Manish Tiwari
- ICAR- National Dairy Research Institute, Karnal, 132001, Haryana, India
| | - S Jayakumar
- ICAR-National National Bureau of Animal Genetics Resources, Karnal, 132001, Haryana, India
| | - V Sejian
- ICAR-National Institute of Animal Nutrition and Physiology, Audugodi, Bangalore, 560030, Karnataka, India
| |
Collapse
|
6
|
Zamorano-Algandar R, Medrano JF, Thomas MG, Enns RM, Speidel SE, Sánchez-Castro MA, Luna-Nevárez G, Leyva-Corona JC, Luna-Nevárez P. Genetic Markers Associated with Milk Production and Thermotolerance in Holstein Dairy Cows Managed in a Heat-Stressed Environment. BIOLOGY 2023; 12:biology12050679. [PMID: 37237493 DOI: 10.3390/biology12050679] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/28/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023]
Abstract
Dairy production in Holstein cows in a semiarid environment is challenging due to heat stress. Under such conditions, genetic selection for heat tolerance appears to be a useful strategy. The objective was to validate molecular markers associated with milk production and thermotolerance traits in Holstein cows managed in a hot and humid environment. Lactating cows (n = 300) exposed to a heat stress environment were genotyped using a medium-density array including 53,218 SNPs. A genome-wide association study (GWAS) detected six SNPs associated with total milk yield (MY305) that surpassed multiple testing (p < 1.14 × 10-6). These SNPs were further validated in 216 Holstein cows from two independent populations that were genotyped using the TaqMan bi-allelic discrimination method and qPCR. In these cows, only the SNPs rs8193046, rs43410971, and rs382039214, within the genes TLR4, GRM8, and SMAD3, respectively, were associated (p < 0.05) with MY305, rectal temperature (RT), and respiratory rate. Interestingly, these variables improved as the number of favorable genotypes of the SNPs increased from 0 to 3. In addition, a regression analysis detected RT as a significant predictor (R2 = 0.362) for MY305 in cows with >1 favorable genotype, suggesting this close relationship was influenced by genetic markers. In conclusion, SNPs in the genes TLR4, GRM8, and SMAD3 appear to be involved in the molecular mechanism that regulates milk production in cows under heat-stressed conditions. These SNPs are proposed as thermotolerance genetic markers for a selection program to improve the milk performance of lactating Holstein cows managed in a semiarid environment.
Collapse
Affiliation(s)
| | - Juan F Medrano
- Department of Animal Science, University of California, Davis, CA 95616, USA
| | | | - R Mark Enns
- Department of Animal Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Scott E Speidel
- Department of Animal Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | | | - Guillermo Luna-Nevárez
- Departamento de Ciencias Agronómicas y Veterinarias, Instituto Tecnológico de Sonora, Ciudad Obregón 85000, Mexico
| | - José C Leyva-Corona
- Departamento de Ciencias Agronómicas y Veterinarias, Instituto Tecnológico de Sonora, Ciudad Obregón 85000, Mexico
| | - Pablo Luna-Nevárez
- Departamento de Ciencias Agronómicas y Veterinarias, Instituto Tecnológico de Sonora, Ciudad Obregón 85000, Mexico
| |
Collapse
|
7
|
Short-term physiological responses to moderate heat stress in grazing dairy cows in temperate climate. Animal 2023; 17:100718. [PMID: 36827848 DOI: 10.1016/j.animal.2023.100718] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 01/13/2023] [Accepted: 01/17/2023] [Indexed: 01/26/2023] Open
Abstract
Even in temperate climate regions, an increase in ambient temperature and exposure to solar radiation can cause heat stress in lactating dairy cows. We hypothesised that grazing dairy cows exhibit short-term physiological changes due to increasing heat load under moderate climate conditions. Over two consecutive summers, 38 lactating Holstein dairy cows were studied in a full-time grazing system. Data were collected in 10 experimental periods of up to three consecutive days with a moderate comprehensive climate index (CCI). The individual animals' vaginal temperature (VT), heart rate, and locomotor activity data were automatically monitored with sensors. Blood samples and proportional whole milk samples were collected at afternoon milking. The concentrations of beta-hydroxybutyrate, glucose, non-esterified fatty acids, urea nitrogen, plasma thyroxine and triiodothyronine were analysed in blood plasma, and fat, protein, lactose, urea nitrogen, cortisol, Na+, K+, and Cl- concentrations were analysed in milk. The daily distribution of VT recordings greater than 39 °C showed a circadian rhythm with a proportion of recordings of 2% and lower during the night and a percentage of 10% or higher in the afternoon. The cows' maximal daily vaginal temperature (VTMAX) between 0830 and 1430 h was positively related to the mean daily CCI in the same time period (CCIMEAN; mean and SD 23.6 ± 5.4 °C). Cows with greater VTMAX had an increased mean heart rate, plasma glucose and milk cortisol concentrations and decreased concentrations of plasma thyroxine and triiodothyronine. The concentration of Na+ in milk was lower, and the concentration of K+ in milk tended to be higher in cows with increased VTMAX. For beta-hydroxybutyrate, non-esterified fatty acids and urea nitrogen concentrations in plasma and fat and lactose concentrations in milk no relationships were found in terms of increasing VT. For milk urea nitrogen and protein concentrations, the proportion of total variance explained by inter-individual or -period variance was high. In conclusion, changes observed in milk and blood likely reflected short-term physiological responses to moderate heat stress. In particular, milk cortisol and Na+ may be useful traits for timely monitoring of heat stress in individual cows because their inter-individual variances were relatively small and samples can be collected non-invasively.
Collapse
|
8
|
Oladokun S, Adewole DI. Biomarkers of heat stress and mechanism of heat stress response in Avian species: Current insights and future perspectives from poultry science. J Therm Biol 2022; 110:103332. [DOI: 10.1016/j.jtherbio.2022.103332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 09/09/2022] [Accepted: 09/13/2022] [Indexed: 11/28/2022]
|
9
|
Pires BV, Freitas AC, Klein JL, de Melo TP, Stafuzza NB, de Paz CCP. Meta-analysis and meta-regression of core body temperature in taurine and zebuine cattle under different environmental conditions. Livest Sci 2022. [DOI: 10.1016/j.livsci.2022.105104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
10
|
Grape seed extract supplementation in heat-stressed preweaning dairy calves: II. Effects on growth performance, blood metabolites, hormonal responses, and fecal fermentation parameters. Anim Feed Sci Technol 2022. [DOI: 10.1016/j.anifeedsci.2022.115422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
11
|
Du D, Feng L, Chen P, Jiang W, Zhang Y, Liu W, Zhai R, Hu Z. Effects of Saccharomyces Cerevisiae Cultures on Performance and Immune Performance of Dairy Cows During Heat Stress. Front Vet Sci 2022; 9:851184. [PMID: 35300221 PMCID: PMC8921483 DOI: 10.3389/fvets.2022.851184] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 02/07/2022] [Indexed: 12/17/2022] Open
Abstract
The dairy farming industry is facing massive economic losses as heat stress continues to rise. The purpose of this study was to see how feeding Saccharomyces cerevisiae culture (SC) influences productive performance, lactation performance, serum biochemical indexes, hormonal level, antioxidant capacity, and immune function in mid-lactating cows during heat stress. Forty-five healthy mid-lactation dairy cows with comparable milk yield, lactation days, and parity were randomly divided into 3 groups (15 cows in each group). The control group (CON) was fed the basal diet, while the treatment groups were fed the basal diet + first Saccharomyces cerevisiae culture 100 g/d (SC-1) and the basal diet + second Saccharomyces cerevisiae culture 30 g/d (SC-2), respectively. The SC-1 and SC-2 groups with SC added in the treatment groups reduced rectal temperature and respiratory rate in heat-stressed cows (P < 0.05). The milk yield of SC-1 and SC-2 treatment groups was significantly higher than that of CON (P < 0.05). Except for somatic cell count, which was significantly lower in SC-1 and SC-2 than in CON (P < 0.05), there were no significant differences in the milk components. The addition of SC: (i) increased serum urea levels (P < 0.05), but there was no significant difference in glucose, total cholesterol, alanine transaminase, aspartate aminotransferase, total protein, albumin and alkaline phosphatase levels (P > 0.05); (ii) increased serum levels of immunoglobulin-A, immunoglobulin-G, immunoglobulin M, interleukin-4, interleukin-10 and heat shock protein-70 (P < 0.05), while decreasing serum levels of interleukin-1β, interleukin-6, interleukin-2, interferon-γ and tumor necrosis factor-α (P < 0.05); (iii) increased total antioxidant capacity, glutathione peroxidase and superoxide dismutase in serum (P < 0.05), while decreasing malondialdehyde; (iv) increased serum levels of glucocorticoids, insulin, cortisol and prolactin (P < 0.05), while decreasing the serum levels of triiodothyronine and thyroxine (P < 0.05). In conclusion, under the current experimental conditions, the addition of SC can reduce rectal temperature and respiratory rate in heat-stressed mid-lactation cows, reduce the number of somatic cells in milk and improve the mid-lactation cow performance. In addition, SC addition to the diet can raise serum urea levels, regulate serum hormone levels, boost antioxidant capacity in mid-lactation cows, and boost overall immunity.
Collapse
Affiliation(s)
- Dewei Du
- Ruminant Nutrition and Physiology Laboratory, College of Animal Science and Technology, Shandong Agricultural University, Taian, China
| | - Lei Feng
- Ruminant Nutrition and Physiology Laboratory, College of Animal Science and Technology, Shandong Agricultural University, Taian, China
| | - Peng Chen
- Beijing Enhalor International Tech Co., Ltd., Beijing, China
| | - Wenbo Jiang
- Ruminant Nutrition and Physiology Laboratory, College of Animal Science and Technology, Shandong Agricultural University, Taian, China
| | - Yu Zhang
- Ruminant Nutrition and Physiology Laboratory, College of Animal Science and Technology, Shandong Agricultural University, Taian, China
| | - Wei Liu
- Ruminant Nutrition and Physiology Laboratory, College of Animal Science and Technology, Shandong Agricultural University, Taian, China
| | - Ruina Zhai
- College of Animal Science, Xinjiang Agricultural University, Urumqi, China
- *Correspondence: Ruina Zhai
| | - Zhiyong Hu
- Ruminant Nutrition and Physiology Laboratory, College of Animal Science and Technology, Shandong Agricultural University, Taian, China
- Zhiyong Hu
| |
Collapse
|
12
|
|
13
|
Luna-Nevárez G, Pendleton AL, Luna-Ramirez RI, Limesand SW, Reyna-Granados JR, Luna-Nevárez P. Genome-wide association study of a thermo-tolerance indicator in pregnant ewes exposed to an artificial heat-stressed environment. J Therm Biol 2021; 101:103095. [PMID: 34879913 DOI: 10.1016/j.jtherbio.2021.103095] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 09/07/2021] [Accepted: 09/14/2021] [Indexed: 11/26/2022]
Abstract
Environmental heat stress negatively influences sheep production in warm semi-arid regions. An animal's ability to tolerate warm weather is difficult to measure naturally due to environmental variability and genetic variation between animals. In this study we developed a thermo-tolerance indicator (TTI) to define heat stress tolerance in pregnant sheep in a controlled environment. Next, we performed a genome-wide association study (GWAS) to identify genomic regions and target genes associated with thermo-tolerance in sheep. Pregnant Columbia-Rambouillet crossbred ewes (n = 127) were heat-stressed inside a climate-controlled chamber for 57 days by increasing the temperature-humidity index to ≥30. Rectal temperature (RT) and feed intake (FI) data were collected daily and used for the predictive TTI analysis. After the tenth day of heat stress, the regression analyses revealed that FI was stable; however, when the ewe's RT exceeded 39.8 °C their FI was less than thermo-tolerant ewes. This average predicted temperature was used to classify each ewe as heat stress tolerant (≤39.8 °C) and non-heat stress tolerant (>39.8 °C). A GWAS analysis was performed and genomic regions were compared between heat stress tolerant and non-tolerant ewes. The single-marker genomic analysis detected 16 single nucleotide polymorphisms (SNP) associated with heat stress tolerance (P < 0.0001), whereas the multi-marker Bayesian analysis identified 8 overlapped 1-Mb chromosomal regions accounting for 11.39% of the genetic variation associated with tolerance to heat stress. Four intragenic SNP showed a remarkable contribution to thermo-tolerance, and these markers were within the genes FBXO11 (rs407804467), PHC3 (rs414179061), TSHR (rs418575898) and STAT1 (rs417581105). In conclusion, genomic regions harboring four intragenic SNP were associated with heat stress tolerance, and these candidate genes are proposed to influence heat tolerance in pregnant ewes subjected to an artificially induced warm climate. Moreover, these genetic markers could be suitable for use in further genetic selection programs in sheep managed in semi-arid regions.
Collapse
Affiliation(s)
- Guillermo Luna-Nevárez
- Departamento de Ciencias Agronómicas y Veterinarias, Instituto Tecnológico de Sonora, Ciudad Obregón, Sonora, 85000, México
| | - Alexander L Pendleton
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, Arizona, 85721, USA
| | - Rosa I Luna-Ramirez
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, Arizona, 85721, USA
| | - Sean W Limesand
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, Arizona, 85721, USA
| | - Javier R Reyna-Granados
- Departamento de Ciencias Agronómicas y Veterinarias, Instituto Tecnológico de Sonora, Ciudad Obregón, Sonora, 85000, México
| | - Pablo Luna-Nevárez
- Departamento de Ciencias Agronómicas y Veterinarias, Instituto Tecnológico de Sonora, Ciudad Obregón, Sonora, 85000, México.
| |
Collapse
|
14
|
Zhang H, Yang G, Li H, Wang L, Fu T, Li G, Gao T. Effects of dietary supplementation with alpha-lipoic acid on apparent digestibility and serum metabolome alterations of sheep in summer. Trop Anim Health Prod 2021; 53:505. [PMID: 34622337 DOI: 10.1007/s11250-021-02917-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 09/10/2021] [Indexed: 10/20/2022]
Abstract
To investigate the effects of alpha-lipoic acid (LA) on the nutrition metabolism of sheep (36.72 ± 1.44 kg) in the summer, twenty-one sheep were randomly assigned to three treatments addressing LA supplementation: 0.00 (CTL), 600 (LA-L), and 900 (LA-H) mg/kg of dry matter (DM) per day for each sheep. Whole feces and urine collection methods were used to analyze apparent digestibility; ELISA kits to determine the hormones, antioxidant, and immune parameters in the blood; and serum metabolomics to detect and analyze small molecular substances. The results showed the DM intakes in the LA-L and LA-H groups were significantly increased by 8.22% and 8.02%, respectively, compared to that in the CTL group, and there was no significant effect on average daily gain, feed conversion ratio, nitrogen digestibility, calcium digestibility, and phosphorus digestibility. Regarding hormones, antioxidant, and immune indicators, the concentrations of triiodothyronine, superoxide dismutase, glutathione reductase, HSP70, and IgA significantly increased after LA supplementation, while adrenaline and malondialdehyde levels significantly decreased. With the pairwise comparison of the three groups, metabolomics analysis identified 22 differential metabolites in the positive/negative modes, respectively, which suggested LA supplementation can significantly affect sheep's lipid, amino acid, and nucleic acid metabolism. Additionally, 3-indolepropionic acid, cinnamoylglycine, butyric acid, dodecanedioic acid, indoxyl sulfate, and pantothenic acid were the common differential metabolites with higher concentrations after LA supplementation. In summary, dietary supplementation of LA can increase the sheep's DMI, energy digestibility, antioxidant capacity, and immunity. These changes provide evidence to support the use of LA supplementation for livestock.
Collapse
Affiliation(s)
- Hongrui Zhang
- College of Animal Science and Technology, Henan Agricultural University, NO. 15, Longzihu University Area, Zhengdong New District, Zhengzhou, 450046, People's Republic of China
| | - Gaiqing Yang
- Modern Experimental Techniques and Managing Centre, Henan Agricultural University, Zhengzhou, 450002, People's Republic of China
| | - Hao Li
- College of Animal Science and Technology, Henan Agricultural University, NO. 15, Longzihu University Area, Zhengdong New District, Zhengzhou, 450046, People's Republic of China
| | - Linfeng Wang
- College of Animal Science and Technology, Henan Agricultural University, NO. 15, Longzihu University Area, Zhengdong New District, Zhengzhou, 450046, People's Republic of China.
| | - Tong Fu
- College of Animal Science and Technology, Henan Agricultural University, NO. 15, Longzihu University Area, Zhengdong New District, Zhengzhou, 450046, People's Republic of China
| | - Gaiying Li
- College of Animal Science and Technology, Henan Agricultural University, NO. 15, Longzihu University Area, Zhengdong New District, Zhengzhou, 450046, People's Republic of China
| | - Tengyun Gao
- College of Animal Science and Technology, Henan Agricultural University, NO. 15, Longzihu University Area, Zhengdong New District, Zhengzhou, 450046, People's Republic of China.
| |
Collapse
|
15
|
Expression of candidate genes for residual feed intake in tropically adapted Bos taurus and Bos indicus bulls under thermoneutral and heat stress environmental conditions. J Therm Biol 2021; 99:102998. [PMID: 34420630 DOI: 10.1016/j.jtherbio.2021.102998] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/14/2021] [Accepted: 05/16/2021] [Indexed: 01/17/2023]
Abstract
The objectives of this study were to measure the relative expression of the ATP1A1, NR3C1, POMC, NPY, and LEP genes in Caracu (Bos taurus) and Nelore (Bos indicus) bulls submitted to feed efficiency tests at high environmental temperatures, and to evaluate differences in adaptability to tropical conditions between breeds. Thirty-five Caracu and 30 Nelore bulls were submitted to a feed efficiency test using automated feeding stations. At the end of the test, the animals were subjected to thermoneutral (TN) and heat stress (HS) conditions. Blood samples were collected after the exposure to the TN and HS conditions and the relative expression of genes was measured by qPCR. The bulls exhibited lower expression of ATP1A1 in the HS condition than in the TN condition (1.98 ± 0.27 and 2.86 ± 0.26, P = 0.02), while the relative expression of NR3C1, POMC, and LEP did not differ (P > 0.05) between climatic conditions. The breed and feed intake influenced NPY and LEP expression levels (P < 0.05). Different climate conditions associated with residual feed intake can modify the gene expression patterns of ATP1A1 and NPY. The association observed among all genes studied shows that they are involved in appetite control. Bos taurus and Bos indicus bulls exhibited similar adaptability to tropical climate conditions.
Collapse
|
16
|
Bayssa M, Yigrem S, Betsha S, Tolera A. Production, reproduction and some adaptation characteristics of Boran cattle breed under changing climate: A systematic review and meta-analysis. PLoS One 2021; 16:e0244836. [PMID: 34048433 PMCID: PMC8162631 DOI: 10.1371/journal.pone.0244836] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 05/12/2021] [Indexed: 12/05/2022] Open
Abstract
Introduction Climate change affects livestock production and productivity, which could threaten livestock-based food security in pastoral and agro-pastoral production systems of the tropics and sub-tropics. Boran cattle breed is one of the hardiest Zebu cattle reared by Borana Oromo pastoralists for milk and meat production. However, there is limited comprensive information on production, reproduction and adaption traits of the Boran cattle in Ethiopia. Thus, this paper aims to compile the main production, reproduction and some adaptation traits of Boran cattle based on systematic review and meta-analysis of peer reviewed published and unpublished literature. Methodology A combination of systematic review and meta-analysis based on PRISMA guideline was employed. Accordingly, out of 646 recorded articles identified through database searching, 64 were found to be eligible for production, reproduction and adaptation characteristics of the Boran cattle, 28 articles were included in qualitative systematic review while 36 articles were used for quantitative meta-analysis. Result The Boran cattle breed has the ability to survive, produce and reproduce under high ambient temperature, utilize low quality forage resources, and resist water shortage or long watering intervals and tick infestations. The review revealed that the breed employs various adaptation responses (morphological, physiological, biochemical, metabolic, cellular and molecular responses) to cope with harsh environmental conditions including climate change, rangeland degradation, seasonal feed and water shortages and high incidences of tick infestations. The meta-analysis using a random-effects model allowed provision of pooled estimates of heritability and genetic correlations for reproduction and production traits, which could be used to solve genetic prediction equations under a population level in purebred Boran cattle. In addition, heritability and genetic-correlation estimates found in the present study suggest that there is high genetic variability for most traits in Boran cattle, and that genetic progress is possible for all studied traits in this breed. Conclusion The Boran cattle breed has the ability to survive, produce and reproduce under high ambient temperature, utilize low quality forage resources, and resist water shortage or long watering intervals and tick infestations. However, currently there are several challenges such as recurrent droughts, pasture deterioration and lack of systematic selection and breeding programs that play to undermine the realization of the potential of the breed. Thus, we recommend systematic selection for enhancing the reproductive and production performances without compromising the adaptation traits of the breed coupled with improved management of rangelands.
Collapse
Affiliation(s)
- Merga Bayssa
- College of Agriculture, Hawassa University, Hawassa, Ethiopia
- * E-mail:
| | | | - Simret Betsha
- College of Agriculture, Hawassa University, Hawassa, Ethiopia
| | - Adugna Tolera
- College of Agriculture, Hawassa University, Hawassa, Ethiopia
| |
Collapse
|
17
|
Karthik D, Suresh J, Reddy YR, Sharma G, Ramana J, Gangaraju G, Reddy PPR, Reddy YPK, Yasaswini D, Adegbeye M, Reddy PRK. Adaptive profiles of Nellore sheep with reference to farming system and season: physiological, hemato-biochemical, hormonal, oxidative-enzymatic and reproductive standpoint. Heliyon 2021; 7:e07117. [PMID: 34136691 PMCID: PMC8176311 DOI: 10.1016/j.heliyon.2021.e07117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 04/21/2021] [Accepted: 05/17/2021] [Indexed: 11/23/2022] Open
Abstract
This paper outlines the effect of farming systems with reference to season on the body condition score (BCS) and adaptive profile (physiological, hemato-biochemical, hormonal, enzymatic and reproductive parameters) of Nellore sheep. In trial 1, sixty ewe-lambs were allotted to extensive, semi-intensive, and intensive rearing systems (n = 20) and evaluated for BCS at puberty, mating, 2 weeks pre-lambing and 2, 4, 8, and 12 weeks post-lambing. In trial 2, eighteen rams were distributed evenly to three farming systems (n = 6) and evaluated for physiological, hemato-biochemical, hormonal, enzymatic, and reproductive parameters concerning three seasons. Although the scores did not differ among the groups, the Kruskal-Wallis ranks of BCS revealed a higher energy status of intensive ewes at different physiological conditions. The sheep reared under extensive and semi-intensive systems displayed higher temperature, pulse rate and respiratory rate with predominant effects in summer season. Similarly, both systems exhibited higher WBC and lower haemoglobin, PCV, and RBC contents without affecting MVC, MCH, MCHC, and differential leucocyte count. The percent haemoglobin and RBC count were higher in winter compared to summer months, whereas WBC count followed an exactly opposite pattern. The sheep reared in intensive system showed higher glucose, total protein, albumin, cholesterol, T3, T4, calcium, and phosphorus; however, the globulin, creatinine, uric acid, aspartate amino transferase (AST), alanine amino transferase (ALT), superoxide dismutase (SOD), malondialdehyde (MDA), glutathione peroxidase, and catalase levels were elevated in extensive and semi-intensive systems. The dartos muscle extension (DME) and scrotum sweating rate (SSR) were higher for the sheep reared under extensive system, especially during summer season; while the seminal parameters viz., total sperm count, progressive sperm motility, and plasma membrane integrity were lower for extensive and semi-intensive sheep. No interactions were noticed for any of the parameters, except for cortisol, DME, and SSR, which showed significant interactions for rearing system vs. season. Our results showed dynamic adaptive mechanisms of the Nellore sheep in relation to different stressors like grazing for long distances, inadequate nutrition, and heat stress, revealing the heat resilient ability in harsh environmental conditions. Further, the analyzed vector plot showed that the AST, GPx, Cortisol, SOD, Catalase, WBC, PR, T4, total abnormalities, and major abnormalities were the major contributors for adapting during combined stressors.
Collapse
Affiliation(s)
- D. Karthik
- Department of Livestock Production Management, College of Veterinary Science, Sri Venkateswara Veterinary University, Tirupati, India
| | - J. Suresh
- Center for Continuing Veterinary Education & Communication, College of Veterinary Science, Sri Venkateswara Veterinary University, Tirupati, India
| | - Y. Ravindra Reddy
- Department of Livestock Production Management, College of Veterinary Science, Sri Venkateswara Veterinary University, Tirupati, India
| | - G.R.K. Sharma
- Department of Veterinary and Animal Husbandry Extension Education, College of Veterinary Science, Sri Venkateswara Veterinary University, Tirupati, India
| | - J.V. Ramana
- Controller of Examination, College of Veterinary Science, Sri Venkateswara Veterinary University, Tirupati, India
| | - G. Gangaraju
- Livestock Research Station, Sri Venkateswara Veterinary University, Palamaner, India
| | - P. Pandu Ranga Reddy
- Department of Animal Genetics and Breeding, College of Veterinary Science, Sri Venkateswara Veterinary University, Proddatur, India
| | - Y. Pradeep Kumar Reddy
- Center for Continuing Veterinary Education & Communication, College of Veterinary Science, Sri Venkateswara Veterinary University, Tirupati, India
| | - D. Yasaswini
- Department of Veterinary Medicine, College of Veterinary Science, Sri Venkateswara Veterinary University, Tirupati, India
| | - M.J. Adegbeye
- Department of Animal Science and Livestock Production, College of Agriculture and Natural Sciences, Joseph Ayo Babalola University, Ikeji-Arakeji, P.M.B 5006, Ilesha, Osun State, Nigeria
| | - P. Ravi Kanth Reddy
- Veterinary Assistant Surgeon, Animal Husbandry Department, Veterinary Dispensary, Taticherla, Prakasam District, Andhra Pradesh, India
| |
Collapse
|
18
|
Li H, Zhang Y, Li R, Wu Y, Zhang D, Xu H, Zhang Y, Qi Z. Effect of seasonal thermal stress on oxidative status, immune response and stress hormones of lactating dairy cows. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2021; 7:216-223. [PMID: 33997350 PMCID: PMC8110863 DOI: 10.1016/j.aninu.2020.07.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 05/28/2020] [Accepted: 07/08/2020] [Indexed: 01/29/2023]
Abstract
This study aimed to assess the impact of seasonal thermal stress on oxidative stress, immune response, and stress hormones of lactating dairy cows in subtropical regions with different levels of temperature-humidity index (THI). A total of 32 healthy lactating Holstein dairy cows experienced 4 seasons (8 cows/season). The physiological parameters were categorized into low THI (LTHI, THI = 42.97 ± 0.95) in winter, moderate THI (MTHI, THI = 61.84 ± 0.42) in spring and autumn, and high THI period (HTHI, THI = 86.09 ± 0.23) in summer. The blood samples were collected twice in each season to measure oxidative stress, inflammatory and hormonal parameters. Our results showed THI had a positive correlation with the rectal temperature (R 2 = 0.821, P < 0.001) and respiratory rate (R 2 = 0.816, P < 0.001). Dry matter intake, milk yield and fat percentage also significantly differed among groups (P < 0.05). Compared with the MTHI group, the LTHI group exhibited a significant increase in malondialdehyde (MDA) level (P < 0.001), and the HTHI group displayed a significant increase in levels of cortisol, interleukin (IL)-10, IL-1β and tumor necrosis factor-α (P < 0.001). Opposite changes in serum endotoxin and immunoglobulin G levels were observed with the increasing THI (P < 0.001). LTHI notably increased the triiodothyronine level, although the thyroxine level was reduced by LTHI and HTHI compared with the MTHI group. In conclusion, LTHI and HTHI conditions may induce different degrees of oxidative stress, inflammation response, and stress hormone imbalances on lactating dairy cows, therefore environmental management is necessary for the health of dairy cows in extreme weather conditions.
Collapse
Affiliation(s)
- Han Li
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yifeng Zhang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Rong Li
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yan Wu
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Dingran Zhang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Hongrun Xu
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yangdong Zhang
- Institute of Animal and Veterinary Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Zhili Qi
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
19
|
Heat stress in dairy animals and current milk production trends, economics, and future perspectives: the global scenario. Trop Anim Health Prod 2021; 53:70. [PMID: 33398462 DOI: 10.1007/s11250-020-02541-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 12/22/2020] [Indexed: 10/22/2022]
Abstract
Animal's well-being, growth, and production are modulated by environmental conditions, and managemental practices and can be deleteriously affected by global warming phenomenon. In the recent years, unprecedented climatic fluctuations like sustained higher temperatures and humidity, heat waves, and solar flares have led to economic losses in $ billions to both milk and meat industry. It is estimated that by 2050, the US dairy industry alone will borne more than $1.7 billion loss. As human dependency on animal products like milk, meat, and eggs for nutrition is exponentially rising, there is urgency for maximum production. The high yielding animals are already under tremendous metabolic pressure making them more susceptible to adverse climatic conditions. When exposed to heat stress, livestock display a variety of behavioral and physiological acclimatization as essential survival strategies, but at the cost of decreased milk, meat, or egg production. Most of the studies have explored the heat stress in animals and its effect on different milk productions in a specific region or country. A clear understanding of the impact of global warming on dairy enterprise is yet to be comprehended. So this exploratory study will analyze impact of global warming on current milk production trends, economics, and future perspectives.
Collapse
|
20
|
Omics Insights into Animal Resilience and Stress Factors. Animals (Basel) 2020; 11:ani11010047. [PMID: 33383711 PMCID: PMC7824193 DOI: 10.3390/ani11010047] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/22/2020] [Accepted: 12/23/2020] [Indexed: 12/26/2022] Open
Abstract
Resilience is conceived as a dynamic developmental process involving the achievement of positive adaptation within the context of significant adversity. Resilience is not a unique ability but rather a set of capacities of a system put in place to absorb a disturbance and to reorganize while trying to retain the same function, structure, and identity. This review describes the characteristics and the molecular mechanisms of resilience to understand the core elements of resilience and its indicators. The objectives of this review are: (1) to define some of the leading environmental stressors and clarify the mechanism of vulnerability or resilience outcomes; (2) to clarify some of the prominent epigenetic modulations mediating resilience or vulnerability as a stress response; (3) to highlight the neural mechanisms related to stress resilience since the central nervous system is a highly dynamic structure characterized by an everlasting plasticity feature, which therefore has the opportunity to modify resilience. The review aims to introduce the reader to the concept of resilience seen as an ability acquired in life and not only inherited from birth.
Collapse
|
21
|
The impact of temperature-humidity index on blood morphology and β-hydroxybutyrate in different sheep breeds. ACTA VET BRNO 2020. [DOI: 10.2754/avb202089030247] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Climatic variations directly affect the animals, changing their physiology. Several factors such as species, breed, sex, age, nutrition, diseases, physiological stage, and seasonal variations can affect the pattern of haematological values. Quantitative and morphological changes in blood cells are associated with higher temperatures and humidity. Sixty-seven sheep (3 years old, not pregnant, clinically healthy) were used in the study to determine the effect of the temperature-humidity index (THI) and breed on morphological blood indices and β-hydroxybutyrate (BHB). The sheep were divided into groups by the breed (4 breeds) and the THI (2 classes). The blood samples from each animal were collected monthly. Significant differences between the values of leukocytes (WBC), neutrophils (NEU), erythrocytes (RBC), haemoglobin (HGB), haematocrit (HCT), mean corpuscular volume (MCV), mean corpuscular haemoglobin (MCH), mean corpuscular haemoglobin concentration (MCHC), lymphocytes (LYM), monocytes (MON) and platelet count (PLT) in THI groups were observed. In THI 1, the mean values of MCHC (5.68%, P < 0.05), MCH (0.52%), and HCT (4.90%, P < 0.05) were higher compared to those in THI 2. Multivariate test showed a significant effect of breed on NEU (P < 0.05), RBC (P < 0.05), HGB (P < 0.05) and MCHC (P < 0.05). The concentration of BHB in group THI 2 was by 12.9% higher (P < 0.05), compared to group THI 1. A significant effect of the breed (P < 0.05) and THI class (P < 0.05) on BHB was determined, whereas the impact of breed interaction with the THI was found to be non-significant. The observations reported in this study suggest that the response to temperature is dependent on animal breed. It was found that both morphological blood indices and BHB were affected by the temperature-humidity index.
Collapse
|
22
|
Debbarma S, Ashutosh, Saini S, Gowda SB. Seasonal effect in expression of AQP1, AQP3 and AQP5 in skin of Murrah buffaloes. J Therm Biol 2020; 93:102727. [PMID: 33077138 DOI: 10.1016/j.jtherbio.2020.102727] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/08/2020] [Accepted: 09/09/2020] [Indexed: 12/01/2022]
Abstract
Aquaporins are transmembrane protein channels which are known to help the passage of water and solutes across the cell membranes. AQP1, AQP3 and AQP5 are isoforms of aquaporin known to aid in transepithelial water movement. AQP3 is also known to aid in glycerol transport. The present study was conducted to investigate the role of AQP1, AQP3 and AQP5 in thermoregulation of buffaloes by probing the expression of the genes in skin of buffaloes during different season viz. winter, spring and summer. The skin tissue samples were collected from the neck region of Murrah buffaloes (n = 12) and analyzed for gene expression by RT-PCR and immunolocalization. The physiological responses including respiration rate, rectal temperature and neck skin temperature observed during summer were significantly higher than winter and spring seasons. The study revealed the expression of AQP1, AQP3 and AQP5 genes in skin samples. The relative mRNA expressions of AQP1, AQP3 and AQP5 in skin relative to spring season were 1.41 ± 0.47, 1.95 ± 0.22 and 6.77 ± 1.02 folds during summer which were significantly higher than other seasons. The up-regulation of the expression of the studied AQPs were concomitant with the increase in physiological responses including skin temperature and sweating rate during summer. During summer season, AQP1 were mostly immunolocalized in the walls of skin blood capillaries, while AQP3 were observed mostly in the epidermal layer of the skin. The immunolocalization of AQP5 were mostly observed in the secretory glands of skin. The up-regulation of AQP1, AQP3 and AQP5 in skin during summer season indicates their role in thermoregulation of buffaloes.
Collapse
Affiliation(s)
- Sushanta Debbarma
- Division of Physiology, ICAR- National Dairy Research Institute, India, 132001.
| | - Ashutosh
- Division of Physiology, ICAR- National Dairy Research Institute, India, 132001
| | - Sudha Saini
- Division of Physiology, ICAR- National Dairy Research Institute, India, 132001
| | - Suprith B Gowda
- Division of Physiology, ICAR- National Dairy Research Institute, India, 132001
| |
Collapse
|
23
|
Tejaswi V, Balamurugan B, Samad HA, Sarkar M, Maurya VP, Singh G. Short communication: Differential endocrine and antioxidant responses to heat stress among native and crossbred cattle. J Vet Behav 2020. [DOI: 10.1016/j.jveb.2020.06.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
24
|
Rovelli G, Ceccobelli S, Perini F, Demir E, Mastrangelo S, Conte G, Abeni F, Marletta D, Ciampolini R, Cassandro M, Bernabucci U, Lasagna E. The genetics of phenotypic plasticity in livestock in the era of climate change: a review. ITALIAN JOURNAL OF ANIMAL SCIENCE 2020. [DOI: 10.1080/1828051x.2020.1809540] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Giacomo Rovelli
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, University of Perugia, Perugia, Italy
| | - Simone Ceccobelli
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università Politecnica delle Marche, Ancona, Italy
| | - Francesco Perini
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, University of Perugia, Perugia, Italy
| | - Eymen Demir
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, University of Perugia, Perugia, Italy
- Department of Animal Science, Faculty of Agriculture, Akdeniz University, Antalya, Turkey
| | - Salvatore Mastrangelo
- Dipartimento di Scienze Agrarie, Alimentari e Forestali, University of Palermo, Palermo, Italy
| | - Giuseppe Conte
- Dipartimento di Scienze Agrarie, Alimentari e Agro-Ambientali, University of Pisa, Pisa, Italy
| | - Fabio Abeni
- Centro di ricerca Zootecnia e Acquacoltura, Consiglio per la ricerca in agricoltura e l’analisi dell’economia agraria (CREA), Lodi, Italy
| | - Donata Marletta
- Dipartimento di Agricoltura, Alimentazione e Ambiente, University of Catania, Catania, Italy
| | | | - Martino Cassandro
- Dipartimento di Agronomia, Animali, Alimenti, Risorse naturali e Ambiente, University of Padova, Legnaro, Italy
| | - Umberto Bernabucci
- Dipartimento di Scienze Agrarie e Forestali, Università della Tuscia, Viterbo, Italy
| | - Emiliano Lasagna
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, University of Perugia, Perugia, Italy
| |
Collapse
|
25
|
Khalid AR, Yasoob TB, Zhang Z, Yu D, Feng J, Zhu X, Hang S. Supplementation of Moringa oleifera leaf powder orally improved productive performance by enhancing the intestinal health in rabbits under chronic heat stress. J Therm Biol 2020; 93:102680. [PMID: 33077107 DOI: 10.1016/j.jtherbio.2020.102680] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 05/23/2020] [Accepted: 08/03/2020] [Indexed: 12/16/2022]
Abstract
Heat stress jeopardizes animal's growth and health mainly through induction of oxidative stress and inflammation. The current study investigated the effects of Moringa oleifera leaf powder (MOLP) supplementation on productive performance and intestinal health of rabbits under chronic heat stress (HS). Young New Zealand White rabbits (male) at the age of 32 weeks (n = 21, mean body weight of 3318 ± 171 g) for four weeks' period were reared on commercial pelleted diet and divided into three groups: control (CON, 25 °C), HS (35 ± 1 °C) and HS (35 ± 1 °C) with MOLP (HSM) supplemented orally (200 mg/kg body weight). The results demonstrated that rabbits in the HSM group had reduced rectal temperature, respiration rate and improved FCR due to improved daily gain and better crude fiber (NDF) digestibility (P < 0.05) compared with HS group. MOLP improved intestinal integrity and function as indicated by lower serum diamine oxidase level and increased jejunal weight, length, villus height and ratio of villus height to crypt depth than heat-stressed rabbits. MOLP reversed the increased levels of serum cortisol, metabolic indicators i.e. glucose, insulin, and reduced concentrations of serum triiodothyronine. MOLP supplementation also significantly down-regulated the mRNA expression of tumor necrosis factor alpha (α), heat shock protein A2, glutathione peroxidase-1, interleukin (IL)-1α and increased the expression of IL-6. In conclusion, MOLP supplementation could enhance intestinal health along with production and metabolic indicators by alleviating the oxidative stress and inflammatory response in small intestine of hyper-thermic rabbits.
Collapse
Affiliation(s)
- Abdur Rauf Khalid
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, 210095, China; Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Talat Bilal Yasoob
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, 210095, China; Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Zhen Zhang
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, 210095, China; Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Defu Yu
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, 210095, China; Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Jiangyin Feng
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, 210095, China; Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Xiaofeng Zhu
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, 210095, China; Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Suqin Hang
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, 210095, China; Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
26
|
Broucek J, Ryba S, Dianova M, Uhrincat M, Soch M, Sistkova M, Mala G, Novak P. Effect of evaporative cooling and altitude on dairy cows milk efficiency in lowlands. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2020; 64:433-444. [PMID: 31758318 DOI: 10.1007/s00484-019-01828-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 10/30/2019] [Accepted: 11/02/2019] [Indexed: 06/10/2023]
Abstract
The objective of this current work was to determinate the effect of high temperatures on milk production of dairy cows in southern Slovakia in the year 2015. The hypotheses that milk production is influenced by the altitude and cooling were tested. Production data included 227,500 test-day records belonging to 34 Holstein breed herds situated in lowlands, 115 to 150 m above sea level (ASL) and kept in free-stall housing. Dairy farms were classified into groups based on cooling system. The first group of cows (19 herds) was cooled evaporative (foggers) and forced ventilation, and the second group (15 herds) was using cooled only forced ventilation (automatically controlled fans in housing and feeding areas). During the period from May to September, 36 summer and 22 tropical days were recorded, 37 days had a mean thermal humidity index value above 72.0, and on 34 days we recorded mean values above 78.0. The highest milk yields were recorded at the altitude 1 (115 m ASL) (9219.0 kg year-1; 10327.0 kg year-1) and the lowest at the altitude 2 (126 m ASL) (7598.7 kg year-1; 8470.21 kg year-1) (P < 0.001). Dairy cows cooled evaporative milked significantly more milk than cows cooled only with forced air flow (9650.4 kg vs. 8528.0 kg; P < 0.001). Fat and protein production differed also significantly (364.0 kg vs. 329.5 kg, P < 0.001; 312.2 kg vs. 279.7 kg, P < 0.001). It can be concluded that not only heat stress but also location farm above sea level can affect milk production. Evaporative cooling associated with increased air velocity is the appropriate protection against high temperatures.
Collapse
Affiliation(s)
- Jan Broucek
- National Agricultural and Food Centre, Research Institute of Animal Production Nitra, Hlohovecka 2, 951 41, Luzianky, Slovakia.
| | - Stefan Ryba
- Ministry of Agriculture and Rural Development of the Slovak Republic, Bratislava, Slovakia
| | - Marta Dianova
- The Breeding Services of the Slovak Republic, Bratislava, Slovakia
| | - Michal Uhrincat
- National Agricultural and Food Centre, Research Institute of Animal Production Nitra, Hlohovecka 2, 951 41, Luzianky, Slovakia
| | - Miloslav Soch
- South Bohemia University, Ceske Budejovice, Czech Republic
| | - Marie Sistkova
- South Bohemia University, Ceske Budejovice, Czech Republic
| | - Gabriela Mala
- Research Institute of Animal Production, Praha-Uhrineves, Czech Republic
| | - Pavel Novak
- Research Institute of Animal Production, Praha-Uhrineves, Czech Republic
| |
Collapse
|
27
|
Ellamie AM, Fouda WA, Ibrahim WM, Ramadan G. Dietary supplementation of brown seaweed (Sargassum latifolium) alleviates the environmental heat stress-induced toxicity in male Barki sheep (Ovis aries). J Therm Biol 2020; 89:102561. [PMID: 32364993 DOI: 10.1016/j.jtherbio.2020.102561] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 02/06/2020] [Accepted: 02/24/2020] [Indexed: 01/31/2023]
Abstract
Heat stress (HS) is the most potent environmental stressors for livestock in tropical and subtropical regions. HS induced splanchnic tissue hypoxia and intestinal oxidative damage, leading to endotoxemia and systemic inflammation. The present study evaluated and compared the modulatory effects of feeding Barki male sheep (Ovis aries) on a standard concentrated diet containing 2% or 4% of the brown seaweed (Sargassum latifolium) followed by roughage for 40 consecutive days on the toxicity-induced by exposure to severe environmental HS (temperature-humidity index = 28.55 ± 1.62). The present study showed that the diet containing Sargassum latifolium (especially 4%) modulated significantly (P < 0.05-0.001) almost all changes shown in the HS-exposed sheep including the increase in the thermo-respiratory responses (skin and rectal temperatures, and respiration rate) and the resulted dyslipidemia, anemia, and systemic inflammation (blood leukocytosis, the elevation in the erythrocyte sedimentation rate, and the increase in serum proinflammatory cytokines and heat shock protein-70 concentrations). In addition, Sargassum latifolium improved significantly (P < 0.05-0.001) the body-weight gain, kidney functions (especially at the high dose), and blood antioxidant defense system (total antioxidant capacity, and the activities of catalase and superoxide dismutase) in the HS-exposed sheep, as well as protected the animals from oxidative tissue damage and the risk of atherosclerosis. In conclusion, feeding sheep with the diet containing 4% of Sargassum latifolium was safe and suitable for animal nutrition, as well as efficiently alleviated the harmful effects of the environmental HS in Barki sheep through improving the animal antioxidant defense system, and regulating the thermo-respiratory and inflammatory responses.
Collapse
Affiliation(s)
- Ashgan M Ellamie
- Physiology of Animal and Poultry Department, Animal and Poultry Production Division, Desert Research Center, Cairo, Egypt
| | - Wafaa A Fouda
- Physiology of Animal and Poultry Department, Animal and Poultry Production Division, Desert Research Center, Cairo, Egypt
| | - Wael M Ibrahim
- Botany Department, Faculty of Science, Damanhour University, Damanhour, Egypt
| | - Gamal Ramadan
- Zoology Department, Faculty of Science, Ain Shams University, Cairo, Egypt.
| |
Collapse
|
28
|
Rashamol VP, Sejian V, Pragna P, Lees AM, Bagath M, Krishnan G, Gaughan JB. Prediction models, assessment methodologies and biotechnological tools to quantify heat stress response in ruminant livestock. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2019; 63:1265-1281. [PMID: 31129758 DOI: 10.1007/s00484-019-01735-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 04/30/2019] [Accepted: 05/16/2019] [Indexed: 06/09/2023]
Abstract
Livestock industries have an important role in ensuring global food security. This review discusses the importance of quantifying the heat stress response of ruminants, with an emphasis on identifying thermo-tolerant breeds. There are numerous heat stress prediction models that have attempted to quantify the response of ruminant livestock to hot climatic conditions. This review highlights the importance of investigating prediction models beyond the temperature-humidity index (THI). Furthermore, this review highlights the importance of incorporating other climatic variables when developing prediction indices to ensure the accurate prediction of heat stress in ruminants. Prediction models, particularly the heat load index (HLI) were developed to overcome the limitations of the THI by incorporating ambient temperature (AT), relative humidity (RH), solar radiation (SR) and wind speed (WS). Furthermore refinements to existing prediction models have been undertaken to account for the interactions between climatic variables and physiological traits of livestock. Specifically, studies have investigated the relationships between coat characteristics, respiration rate (RR), body temperature (BT), sweating rate, vasodilation, body weight (BW), body condition score (BCS), fatness and feed intake with climatic conditions. While advancements in prediction models have been occurring, there has also been substantial advancement in the methodologies used to quantify animal responses to heat stress. The most recent development in this field is the application of radio frequency identification (RFID) technology to record animal behaviour and various physiological responses. Rumen temperature measurements using rumen boluses and skin temperature recording using infrared thermography (IRT) are making inroads to redefine the quantification of the heat stress response of ruminants. Further, this review describes several advanced biotechnological tools that can be used to identify climate resilient breeds of ruminant livestock.
Collapse
Affiliation(s)
- V P Rashamol
- ICAR-National Institute of Animal Nutrition and Physiology, Adugodi, Hosur Road, Bangalore, Karnataka, 560030, India
- Academy of Climate Change Education and Research, Kerala Agricultural University, Vellanikkara, Thrissur, Kerala, India
| | - V Sejian
- ICAR-National Institute of Animal Nutrition and Physiology, Adugodi, Hosur Road, Bangalore, Karnataka, 560030, India.
- Animal Physiology Division, National Institute of Animal Nutrition and Physiology, Adugodi, Bangalore, 560030, India.
| | - P Pragna
- ICAR-National Institute of Animal Nutrition and Physiology, Adugodi, Hosur Road, Bangalore, Karnataka, 560030, India
- Academy of Climate Change Education and Research, Kerala Agricultural University, Vellanikkara, Thrissur, Kerala, India
| | - A M Lees
- Agriculture & Food, Commonwealth Scientific and Industrial Research Organization, Armidale, New South Wales, 2350, Australia
| | - M Bagath
- ICAR-National Institute of Animal Nutrition and Physiology, Adugodi, Hosur Road, Bangalore, Karnataka, 560030, India
| | - G Krishnan
- ICAR-National Institute of Animal Nutrition and Physiology, Adugodi, Hosur Road, Bangalore, Karnataka, 560030, India
| | - J B Gaughan
- School of Agriculture and Food Sciences, The University of Queensland, Gatton, Queensland, 4343, Australia
| |
Collapse
|
29
|
Affiliation(s)
- Mokshata Gupta
- Division of Animal Nutrition, ICAR- Indian Veterinary Research Institute, Izatnagar, India
| | - Tanmay Mondal
- Division of Physiology & Climatology, ICAR- Indian Veterinary Research Institute, Izatnagar, India
| |
Collapse
|
30
|
Sejian V, Bagath M, Krishnan G, Rashamol V, Pragna P, Devaraj C, Bhatta R. Genes for resilience to heat stress in small ruminants: A review. Small Rumin Res 2019. [DOI: 10.1016/j.smallrumres.2019.02.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
31
|
Ahmad M, Bhatti JA, Abdullah M, Ullah R, Ul Ain Q, Hasni MS, Mahboob Ali, Rashid A, Qaisar I, Rashid G, Uddin R. Different ambient management intervention techniques and their effect on milk production and physiological parameters of lactating NiliRavi buffaloes during hot dry summer of subtropical region. Trop Anim Health Prod 2018; 51:911-918. [PMID: 30565187 DOI: 10.1007/s11250-018-1774-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 12/06/2018] [Indexed: 02/07/2023]
Abstract
In tropical countries, one of the major threats for diary animal production is climate change. Ambient management interventions are beneficial and are the dire need of animal production in tropics. Ambient management intervention and its effect on physiological performance of lactating NiliRavi buffaloes were investigated during the hot dry months (April to June) of Pakistan. Fifteen lactating NiliRavi water buffaloes of similar size, age, and same parity were randomly stratified into three groups, comprising of five animals in each group, designated as group S, SF, and SFS. Animals of group S (control) were kept just under the shade while the animals in group SF were provided shade plus fan, animals in group SFS were provided the shade, fan as well as sprinklers during the hot day hours between 10:00 AM to 6:00 PM. Shed conditions were same for all animals, isonitrogenous and isocaloric feed was provided to all animals. Milk production decreased with the increase in ambient temperature. Average dry matter intake in group S, SF, and SFS were 75%, 80%, and 90% of the total feed offered to the experimental animals, respectively. The mean rectal temperatures (°F) were 101.69, 101.19, and 100.85 in group S, SF, and SFS, respectively. Heat stress had pronounced effect on blood glucose level as indicated by the mean glucose concentration in group S and SFS being recorded at 78.04 mg/dl and 90.47 mg/dl, respectively. It is concluded that the buffaloes should be provided with sprinklers and fans to minimize heat load and maximize the production during hot dry season.
Collapse
Affiliation(s)
- Mehtab Ahmad
- Department of Livestock Production, University of Veterinary and Animal Sciences, Out Fall Road, Lahore, Pakistan.
| | - Jalees Ahmed Bhatti
- Department of Livestock Production, University of Veterinary and Animal Sciences, Out Fall Road, Lahore, Pakistan
| | - Muhammad Abdullah
- Department of Livestock Production, University of Veterinary and Animal Sciences, Out Fall Road, Lahore, Pakistan
| | - Rahman Ullah
- Department of Dairy Technology, University of Veterinary and Animal Sciences, Out Fall Road, Lahore, Pakistan
| | - Qurat Ul Ain
- Livestock and Dairy Development Department, Quetta, Balochistan, Pakistan
| | - Muhammad Sajid Hasni
- Department of Epidemiology, University of Veterinary and Animal Sciences, Out Fall Road, Lahore, Pakistan
| | - Mahboob Ali
- Livestock and Dairy Development Department, Quetta, Balochistan, Pakistan
| | - Abdul Rashid
- Livestock and Dairy Development Department, Quetta, Balochistan, Pakistan
| | - Imran Qaisar
- Livestock and Dairy Development Department, Quetta, Balochistan, Pakistan
| | - Ghazunfar Rashid
- Livestock and Dairy Development Department, Quetta, Balochistan, Pakistan
| | - Rafi Uddin
- Livestock and Dairy Development Department, Quetta, Balochistan, Pakistan
| |
Collapse
|
32
|
|
33
|
Pragna P, Sejian V, Soren NM, Bagath M, Krishnan G, Beena V, Devi PI, Bhatta R. Summer season induced rhythmic alterations in metabolic activities to adapt to heat stress in three indigenous (Osmanabadi, Malabari and Salem Black) goat breeds. BIOL RHYTHM RES 2017. [DOI: 10.1080/09291016.2017.1386891] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Prathap Pragna
- ICAR-National Institute of Animal Nutrition and Physiology, Bangalore, India
| | - V. Sejian
- ICAR-National Institute of Animal Nutrition and Physiology, Bangalore, India
| | - N. M. Soren
- ICAR-National Institute of Animal Nutrition and Physiology, Bangalore, India
| | - M. Bagath
- ICAR-National Institute of Animal Nutrition and Physiology, Bangalore, India
| | - G. Krishnan
- ICAR-National Institute of Animal Nutrition and Physiology, Bangalore, India
| | - V. Beena
- ICAR-National Institute of Animal Nutrition and Physiology, Bangalore, India
| | - P. Indira Devi
- ICAR-National Institute of Animal Nutrition and Physiology, Bangalore, India
| | - Raghavendra Bhatta
- ICAR-National Institute of Animal Nutrition and Physiology, Bangalore, India
| |
Collapse
|