1
|
Rodrigues LDS, Felix TF, Minutentag IW, Reis PP, Bertanha M. Deciphering Key microRNA Regulated Pathways in Tissue-Engineered Blood Vessels: Implications for Vascular Scaffold Production. Int J Mol Sci 2024; 25:6762. [PMID: 38928467 PMCID: PMC11203763 DOI: 10.3390/ijms25126762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/10/2024] [Accepted: 06/16/2024] [Indexed: 06/28/2024] Open
Abstract
MicroRNAs (miRNAs) are non-coding RNAs involved in the regulation of gene expression associated with cell differentiation, proliferation, adhesion, and important biological functions such as inflammation. miRNAs play roles associated with the pathogenesis of chronic degenerative disorders including cardiovascular diseases. Understanding the influence of miRNAs and their target genes can effectively streamline the identification of key biologically active pathways that are important in the development of vascular grafts through the tissue engineering of blood vessels. To determine miRNA expression levels and identify miRNA target genes and pathways with biological roles in scaffolds that have been repopulated with adipose-derived stem cells (ASCs) generated through tissue engineering for the construction of blood vessels. miRNA quantification assays were performed in triplicate to determine miRNA expression in a total of 20 samples: five controls (natural inferior vena cava), five scaffolds recellularized with ASCs and differentiated into the endothelium (luminal layer), five samples of complete scaffolds seeded with ASCs differentiated into the endothelium (luminal layer) and smooth muscle (extraluminal layer), and five samples of ASC without cell differentiation. Several differentially expressed miRNAs were identified and predicted to modulate target genes with roles in key pathways associated with angiogenesis, vascular system control, and endothelial and smooth muscle regulation, including migration, proliferation, and growth. These findings underscore the involvement of these pathways in the regulatory mechanisms that are essential for vascular scaffold production through tissue engineering. Our research contributes to the knowledge of miRNA-regulated mechanisms, which may impact the design of vascular substitutes, and provide valuable insights for enhancing clinical practice. The molecular pathways regulated by miRNAs in tissue engineering of blood vessels (TEBV) allowed us to elucidate the main phenomena involved in cellular differentiation to constitute a blood vessel, with the main pathways being essential for angiogenesis, cellular differentiation, and differentiation into vascular smooth muscle.
Collapse
Affiliation(s)
- Lenize da Silva Rodrigues
- Department of Surgery and Orthopedics, Botucatu Medical School, São Paulo State University (UNESP), Botucatu 18618-687, SP, Brazil;
- Applied Biotechnology Laboratory, Clinical Hospital of Botucatu Medical School, São Paulo State University (UNESP), Botucatu 18618-687, SP, Brazil
- Experimental Research Unit, Botucatu Medical School, São Paulo State University (UNESP), Botucatu 18618-687, SP, Brazil; (T.F.F.); (I.W.M.); (P.P.R.)
| | - Tainara Francini Felix
- Experimental Research Unit, Botucatu Medical School, São Paulo State University (UNESP), Botucatu 18618-687, SP, Brazil; (T.F.F.); (I.W.M.); (P.P.R.)
| | - Iael Weissberg Minutentag
- Experimental Research Unit, Botucatu Medical School, São Paulo State University (UNESP), Botucatu 18618-687, SP, Brazil; (T.F.F.); (I.W.M.); (P.P.R.)
| | - Patricia Pintor Reis
- Experimental Research Unit, Botucatu Medical School, São Paulo State University (UNESP), Botucatu 18618-687, SP, Brazil; (T.F.F.); (I.W.M.); (P.P.R.)
| | - Matheus Bertanha
- Department of Surgery and Orthopedics, Botucatu Medical School, São Paulo State University (UNESP), Botucatu 18618-687, SP, Brazil;
- Applied Biotechnology Laboratory, Clinical Hospital of Botucatu Medical School, São Paulo State University (UNESP), Botucatu 18618-687, SP, Brazil
- Experimental Research Unit, Botucatu Medical School, São Paulo State University (UNESP), Botucatu 18618-687, SP, Brazil; (T.F.F.); (I.W.M.); (P.P.R.)
| |
Collapse
|
2
|
Banu SA, Pawde AM, Sharun K, Kalaiselvan E, Shivaramu S, Mathesh K, Chandra V, Kumar R, Maiti SK, Verma MR, Singh KP, Amarpal. Evaluation of bone marrow-derived mesenchymal stem cells with eggshell membrane for full-thickness wound healing in a rabbit model. Cell Tissue Bank 2024; 25:493-508. [PMID: 37542003 DOI: 10.1007/s10561-023-10105-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 07/22/2023] [Indexed: 08/06/2023]
Abstract
Biomaterials capable of managing wounds should have essential features like providing a natural microenvironment for wound healing and as support material for stimulating tissue growth. Eggshell membrane (ESM) is a highly produced global waste due to increased egg consumption. The unique and fascinating properties of ESM allow their potential application in tissue regeneration. The wound healing capacity of bone marrow-derived mesenchymal stem cells (BM-MSCs), ESM, and their combination in rabbits with full-thickness skin defect (2 × 2 cm2) was evaluated. Twenty-five clinically healthy New Zealand White rabbits were divided into five groups of five animals each, with group A receiving no treatment (control group), group B receiving only fibrin glue (FG), group C receiving FG and ESM as a dressing, group D receiving FG and BM-MSCs, and group E receiving a combination of FG, ESM, and BM-MSCs. Wound healing was assessed using clinical, macroscopical, photographic, histological, histochemical, hematological, and biochemical analysis. Macroscopic examination of wounds revealed that healing was exceptional in group E, followed by groups D and C, compared to the control group. Histopathological findings revealed improved quality and a faster rate of healing in group E compared to groups A and B. In addition, healing in group B treated with topical FG alone was nearly identical to that in control group A. However, groups C and D showed improved and faster recovery than control groups A and B. The macroscopic, photographic, histological, and histochemical evaluations revealed that the combined use of BM-MSCs, ESM, and FG had superior and faster healing than the other groups.
Collapse
Affiliation(s)
- S Amitha Banu
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India.
| | - Abhijit M Pawde
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India.
| | - Khan Sharun
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - E Kalaiselvan
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Shivaraju Shivaramu
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Karikalan Mathesh
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Vikas Chandra
- Division of Physiology and Climatology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Rohit Kumar
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Swapan Kumar Maiti
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Med Ram Verma
- Division of Livestock Economics, Statistics and Information Technology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Karam Pal Singh
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Amarpal
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| |
Collapse
|
3
|
Gugjoo MB, Sakeena Q, Wani MY, Abdel-Baset Ismail A, Ahmad SM, Shah RA. Mesenchymal stem cells: A promising antimicrobial therapy in veterinary medicine. Microb Pathog 2023; 182:106234. [PMID: 37442216 DOI: 10.1016/j.micpath.2023.106234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/18/2023] [Accepted: 07/04/2023] [Indexed: 07/15/2023]
Abstract
Growing antimicrobial resistance (AMR) is a threat to human and animal populations citing the limited available options. Alternative antimicrobial options or functional enhancement of currently available antimicrobials remains only options. One of the potential options seems stem cells especially the mesenchymal stem cells (MSCs) that show antimicrobial properties. These cells additionally have pro-healing effects that may plausibly improve healing outcomes. MSCs antimicrobial actions are mediated either through direct cell-cell contact or their secretome that enhances innate immune mediated antimicrobial activities. These cells synergistically enhance efficacy of currently available antimicrobials especially against the biofilms. Reciprocal action from antimicrobials on the MSCs functionality remains poorly understood. Currently, the main limitation with MSCs based therapy is their limited efficacy. This demands further understanding and can be enhanced through biotechnological interventions. One of the interventional options is the 'priming' to enhance MSCs resistance and specific expression potential. The available literature shows potential antimicrobial actions of MSCs both ex vivo as well as in vivo. The studies on veterinary species are very promising although limited by number and extensiveness in details for their utility as standard therapeutic agents. The current review aims to discuss the role of animals in AMR and the potential antimicrobial actions of MSCs in veterinary medicine. The review also discusses the limitations in their utilization as standard therapeutics.
Collapse
Affiliation(s)
| | - Qumaila Sakeena
- Division of Veterinary Surgery & Radiology, FVSc & AH, Shuhama, J&K, 190006, India
| | - Mohd Yaqoob Wani
- Directorate of Extension Education, SKUAST-K, Shalimar, J&K, 190025, India
| | - Ahmed Abdel-Baset Ismail
- Department of Surgery, Anaesthesiology and Radiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Sharkia, 44511, Egypt
| | - Syed Mudasir Ahmad
- Division of Animal Biotechnology, FVSc & AH, Shuhama, J&K, 190006, India
| | - Riaz Ahmad Shah
- Division of Animal Biotechnology, FVSc & AH, Shuhama, J&K, 190006, India
| |
Collapse
|
4
|
Abo-Aziza FAM, Wasfy BM, Wahba SMR, Abd-Elhalem SS. Mesenchymal Stem Cells and Myeloid-Derived Suppressor Cells Interplay in Adjuvant-Induced Arthritis Rat Model. Int Immunopharmacol 2023; 120:110300. [PMID: 37192553 DOI: 10.1016/j.intimp.2023.110300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 04/27/2023] [Accepted: 05/05/2023] [Indexed: 05/18/2023]
Abstract
There has not been much researchs on the biological relationship between myeloid-derived suppressor cells (MDSCs) and mesenchymal stem cells (MSCs). The goal of the current work is to examine how these cells cooperate with one another in a rat model of adjuvant-induced arthritis (AIA). Three groups of equal numbers of rats were created; the first group served as the control. Complete Freund's adjuvant (CFA) was injected into the second group to induce AIA. The third group underwent MSCstreatment. Three weeks later, ANA, IL-1β, IL-4, IL-6, IL-10, TNF-α, IFN-γ, M-CSF, iNOS and Arg-1 were determined using ELISA. Flowcytometric studies for MDSCs using CD11bc + and His48 + antibodies were performed. Current results showed significantly higher levels of WBCs, ANA, IL-1, IL-4, IL-6, IL-10, TNF-α, M-CSF, iNOS and Arg-1 along with a significant rise in MDSCs % in the AIA group compared to the control group. As opposed to AIA animals, MSCs administration resulted in a considerable improvement in cytokine levels, supporting the immunomodulation function of MSCs. Histological examination of the joints in the AIA group revealed articular cartilage degradation as well as infiltration of inflammatory cells and fibroplasia. These several evidences suggested that MDSCs may perform various roles in autoimmunity. Understanding how MDSCs and MSCs contribute to arthritis may help their prospective application in immunotherapy. Therefore, the reciprocal collaboration of MSCs and MDSCs must therefore be the subject of new investigations, which can offer new platforms for the development of more effective and individualized therapies for the treatment of immunological illnesses.
Collapse
Affiliation(s)
- Faten A M Abo-Aziza
- Department of Parasitology and Animal Diseases, Veterinary Research Institute, National Research Centre, 12622 Cairo, Egypt.
| | - Basma M Wasfy
- Department of Zoology, Faculty of Women for Arts, Science and Education, Ain Shams University, 11757 Cairo, Egypt
| | - Sanaa M R Wahba
- Department of Zoology, Faculty of Women for Arts, Science and Education, Ain Shams University, 11757 Cairo, Egypt
| | - Sahar S Abd-Elhalem
- Department of Zoology, Faculty of Women for Arts, Science and Education, Ain Shams University, 11757 Cairo, Egypt
| |
Collapse
|
5
|
Sivanarayanan TB, Bhat IA, Sharun K, Palakkara S, Singh R, Remya, Parmar MS, Bhardwaj R, Chandra V, Munuswamy P, Kinjavdekar P, Pawde AM, Amarpal, Sharma GT. Allogenic bone marrow-derived mesenchymal stem cells and its conditioned media for repairing acute and sub-acute peripheral nerve injuries in a rabbit model. Tissue Cell 2023; 82:102053. [PMID: 36907044 DOI: 10.1016/j.tice.2023.102053] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023]
Abstract
The present study evaluated healing potential of bone marrow-derived mesenchymal stem cells (BM-MSCs) and BM-MSCs-conditioned medium (BM-MSCs-CM) for acute and subacute injuries in the rabbit peripheral nerve injury model. The regenerative capacity of MSCs was evaluated in 40 rabbits divided into eight groups, four groups each for acute and subacute injury models. BM-MSCs and BM-MSCS-CM were prepared by isolating allogenic bone marrow from the iliac crest. After inducing sciatic nerve crush injury, different treatments consisting of PBS, Laminin, BM-MSCs + laminin, and BM-MSCS-CM + laminin were used on the day of injury in the acute injury model and after ten days of crush injury in the subacute groups. The parameters studied included: pain, total neurological score, gastrocnemius muscle weight and volume ratio, histopathology of the sciatic nerve and gastrocnemius muscle, and scanning electron microscopy (SEM). Findings indicate that BM-MSCs and BM-MSCS-CM have augmented the regenerative capacity in acute and subacute injury groups with a slightly better improvement in the subacute groups than the animals in acute injury groups. Histopathology data revealed different levels of regenerative process undergoing in the nerve. Neurological observations, gastrocnemius muscle evaluation, muscle histopathology, and the SEM results depicted better healing in animals treated with BM-MSCs and BM-MSCS-CM. With this data, it could be concluded that BM-MSCs support the healing of injured peripheral nerves, and the BM-MSCS-CM does accelerate the healing of acute and subacute peripheral nerve injuries in rabbits. However, stem cell therapy may be indicated during the subacute phase for better results.
Collapse
Affiliation(s)
- T B Sivanarayanan
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Irfan Ahmad Bhat
- Division of Physiology and Climatology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Khan Sharun
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Sangeetha Palakkara
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Rashmi Singh
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Remya
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Mehtab Singh Parmar
- Division of Physiology and Climatology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Rahul Bhardwaj
- Division of Physiology and Climatology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Vikash Chandra
- Division of Physiology and Climatology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Palanivelu Munuswamy
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Prakash Kinjavdekar
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - A M Pawde
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Amarpal
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India.
| | - G Taru Sharma
- National Institute of Animal Biotechnology, Hyderabad 500032, India.
| |
Collapse
|
6
|
Piovesana TR, Rodrigues LDS, Bovolato ALDC, Rodríguez-Sánchez DN, Rinaldi JC, Santos NJ, Mori JC, Lourenção PLTDA, Birch L, Bertanha M. Urinary Bladder Patch Made with Decellularized Vein Scaffold Seeded with Adipose-Derived Mesenchymal Stem Cells: Model in Rabbits. Biomedicines 2022; 10:2814. [PMID: 36359335 PMCID: PMC9687924 DOI: 10.3390/biomedicines10112814] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/25/2022] [Accepted: 10/31/2022] [Indexed: 12/01/2023] Open
Abstract
BACKGROUND To evaluate tissue regeneration of the urinary bladder after the implantation of a decellularized vein sown with autologous adipose-derived mesenchymal stem cells (ASC) on luminal surfaces. METHODS New Zealand rabbits (n = 10) were distributed in two groups: Group Bioscaffold alone (G1)-decellularized vena cava (1 cm2) was implanted, and Group Bioscaffold plus ACSs (G2)-decellularized vena cava (1 cm2) containing ASCs were implanted. ASCs were expanded, characterized, and maintained for one week in culture with a decellularized vein scaffold. The implants were performed under general anesthesia using a continuous suture pattern. Afterward, 21 d (day) specimens were collected and analyzed by hematoxylin and eosin (HE) histology and scanning electron microscopy (SEM). RESULTS The integrity of the urinary bladder was maintained in both groups. A superior regenerative process was observed in the G2 group, compared to the G1 group. We observed a greater urothelial epithelialization and maturity of the mucosa and submucosa fibroblasts. Furthermore, SEM demonstrated a notable amount of urothelial villus in the G2 group. CONCLUSION Decellularized vena cava scaffolds were able to maintain the integrity of the urinary bladder in the proposed model. In addition, ASCs accelerated the regenerative process development, observed primarily by the new urothelial epithelization and the maturity of mucosa and submucosa fibroblasts.
Collapse
Affiliation(s)
- Tadeu Ravazi Piovesana
- Department of Surgery and Orthopedics, Botucatu Medical School, São Paulo State University-UNESP, Botucatu 18618-687, Brazil
| | - Lenize da Silva Rodrigues
- Department of Surgery and Orthopedics, Botucatu Medical School, São Paulo State University-UNESP, Botucatu 18618-687, Brazil
- Applied Biotechnology Laboratory, Clinical Hospital of Botucatu Medical School, São Paulo State University-UNESP, Botucatu 18618-687, Brazil
| | - Ana Livia de Carvalho Bovolato
- Applied Biotechnology Laboratory, Clinical Hospital of Botucatu Medical School, São Paulo State University-UNESP, Botucatu 18618-687, Brazil
| | - Diego Noé Rodríguez-Sánchez
- Applied Biotechnology Laboratory, Clinical Hospital of Botucatu Medical School, São Paulo State University-UNESP, Botucatu 18618-687, Brazil
| | - Jaqueline Carvalho Rinaldi
- Postgraduate Program in Biosciences and Physiopathology, State University of Maringa, Maringá 87020-900, Brazil
| | - Nilton José Santos
- Department of Structural and Functional Biology, Institute of Bioscience of Botucatu, São Paulo State University—UNESP, Botucatu 18618-687, Brazil
- Department of Structural and Functional Biology, University of Campinas–UNICAMP, Campinas 13083-862, Brazil
| | - Julia Calvi Mori
- Postgraduate Program in Biosciences and Physiopathology, State University of Maringa, Maringá 87020-900, Brazil
| | | | - Lynn Birch
- Department of Urology, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Matheus Bertanha
- Department of Surgery and Orthopedics, Botucatu Medical School, São Paulo State University-UNESP, Botucatu 18618-687, Brazil
- Applied Biotechnology Laboratory, Clinical Hospital of Botucatu Medical School, São Paulo State University-UNESP, Botucatu 18618-687, Brazil
| |
Collapse
|
7
|
Abo-Aziza FAM, Albarrak SM, Zaki AKA, El-Shafey SE. Tumor necrosis factor-alpha antibody labeled-polyethylene glycol-coated nanoparticles: A mesenchymal stem cells-based drug delivery system in the rat model of cisplatin-induced nephrotoxicity. Vet World 2022; 15:2475-2490. [DOI: 10.14202/vetworld.2022.2475-2490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 09/12/2022] [Indexed: 11/16/2022] Open
Abstract
Background and Aim: A delivery system consisting of bone marrow mesenchymal stem cells (MSCs) loaded with polyethylene glycol (PEG) coated superparamagnetic iron oxide nanoparticles (SPIONs) was constructed to treat a rat model of cisplatin (Cis)-induced nephrotoxicity with 1/10 of the common dose of anti-tumor necrosis factor-alpha (TNF-α) antibodies (infliximab).
Materials and Methods: Morphology, size, crystallinity, molecular structure, and magnetic properties of uncoated and PEG-coated SPIONs were analyzed. A delivery system consisting of MSCs containing infliximab-labeled PEG-coated SPIONs (Infliximab-PEG-SPIONs-MSCs) was generated and optimized before treatment. Fifty female Wistar rats were divided into five equal groups: Group 1: Untreated control; Group 2 (Cis): Rats were administered Cis through intraperitoneal (i.p.) injection (8 mg/kg) once a week for 4 weeks; Group 3 (Infliximab): Rats were injected once with infliximab (5 mg/kg), i.p. 3 days before Cis administration; Group 4 (Cis + MSCs): Rats were injected with Cis followed by an injection of 2 × 106 MSCs into the tail vein twice at a 1-week interval; and Group 5 (Cis + Infliximab (500 μg/kg)-PEG-SPIONs-MSCs): Rats were injected with the delivery system into the tail vein twice at a 1-week interval. Besides histological examination of the kidney, the Doppler ultrasound scanner was used to scan the kidney with the Gray-color-spectral mode.
Results: In vivo, intra-renal iron uptake indicates the traffic of the delivery system from venous blood to renal tissues. Cis-induced nephrotoxicity resulted in a significant increase in TNF-α and malondialdehyde (MDA) (p < 0.05), bilirubin, creatinine, and uric acid (p < 0.01) levels compared with the untreated control group. The different treatments used in this study resulted in the amelioration of some renal parameters. However, TNF-α levels significantly decreased in Cis + Infliximab and Cis + MSCs (p < 0.05) groups. The serum levels of MDA significantly decreased in Cis + Infliximab (p < 0.05), Cis + MSCs (p < 0.05), and Cis + Infliximab-PEG-SPIONs-MSCs (p < 0.01). Furthermore, the serum activities of antioxidant enzymes were significantly elevated in the Cis + MSCs and Cis + Infliximab-PEG-SPIONs-MSCs groups (p < 0.05) compared to the Cis-induced nephrotoxicity rat model.
Conclusion: With the support of the constructed MSCs-SPIONs infliximab delivery system, it will be possible to track and monitor cell homing after therapeutic application. This infliximab-loading system may help overcome some challenges regarding drug delivery to the target organ, optimize therapeutics' efficacy, and reduce the dose. The outcomes of the current study provide a better understanding of the potential of combining MSCs and antibodies-linked nanoparticles for the treatment of nephrotoxicity. However, further investigation is recommended using different types of other drugs. For new approaches development, we should evaluate whether existing toxicity analysis and risk evaluation strategies are reliable and enough for the variety and complexity of nanoparticles.
Collapse
Affiliation(s)
- Faten A. M. Abo-Aziza
- Department of Parasitology and Animal Diseases, Veterinary Research Institute, National Research Centre, Cairo, Egypt
| | - Saleh M. Albarrak
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah, Saudi Arabia
| | - Abdel-Kader A. Zaki
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah, Saudi Arabia; Department of Physiology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | | |
Collapse
|
8
|
Adipose Tissue- and Bone Marrow-Derived Mesenchymal Stem Cells from Sheep: Culture Characteristics. Animals (Basel) 2021; 11:ani11082153. [PMID: 34438611 PMCID: PMC8388491 DOI: 10.3390/ani11082153] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/17/2021] [Accepted: 07/18/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Mesenchymal stem cells (MSCs) are available in minuscule numbers in the body or placental tissues. These cells have mostly been harvested from bone marrow and adipose tissue. To broaden the currently available knowledge, the current study provides (a) information on the feasibility of isolation of MSCs at different ambient temperatures, (b) details of MSCs’ culture characteristics with respect to the physiological status of the donor, and (c) information on the viability of cryopreserved cells. Bone marrow harbors a higher mononuclear cell fraction than that of the adipose tissue, although percent adherent cells are comparably more in adipose tissue. MSCs from a pregnant donor show enhanced proliferation and differentiation potential, although further studies are desired. The cryopreserved cells have comparable characteristics to that of the fresh cells. In conclusion, donor animals’ tissue type and physiological status may affect MSCs’ characteristics and should be taken into consideration while applying in clinical settings. Abstract The current study demonstrates the culture characteristics of adipose tissue and bone marrow-derived mesenchymal stem cells (MSC). The study evaluates the effect of ambient temperature, physiological status of the donor and the tissue source on sheep (Ovis aries) mesenchymal stem cells. The tissue samples were harvested from full term pregnant female sheep (n = 9) and male sheep (n = 10). Adipose tissue was harvested from n = 9 sheep and bone marrow from n = 10 sheep. The samples (adipose tissue, n = 2; bone marrow, n = 3) transported at cold ambient temperature (<10 °C) failed to yield MSCs while those (n = 14) at higher (>20 °C) ambient temperature successfully yielded MSCs. Bone marrow mononuclear cell (MNC) fraction was higher than the adipose tissue-derived stromal vascular fraction (SVF), but the percent adherent cells (PAC) was higher in the later cell fraction. Adipose tissue-derived MSCs from the full term female sheep had a significantly (p < 0.05) higher proliferation potential as compared to those of the male sheep-derived MSCs. Female sheep MSCs also had rapid differentiation potential. The cryopreserved MSCs had morphological features comparable to that of the fresh cells. In conclusion, the tissue type and physiological status of donor animal may affect MSCs’ characteristics and should be taken into consideration while applying in clinical settings.
Collapse
|
9
|
V R, Kumar N, Saxena S, Shrivastava S, Sharma AK, Kutty M, Singh K, Maiti SK, Mondal DB, Singh KP. Mesenchymal stem cell tailored bioengineered scaffolds derived from bubaline diaphragm and aortic matrices for reconstruction of abdominal wall defects. J Tissue Eng Regen Med 2020; 14:1763-1778. [PMID: 32931632 DOI: 10.1002/term.3132] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/01/2020] [Accepted: 09/01/2020] [Indexed: 12/11/2022]
Abstract
Bioengineered scaffolds derived from the decellularized extracellular matrix (ECM) obtained from discarded animal organs and tissues are attractive candidates for regenerative medicine applications. Tailoring these scaffolds with stem cells enhances their regeneration potential making them a suitable platform for regenerating damaged tissues. Thus, the study was designed to investigate the potential of mesenchymal stem cells tailored acellular bubaline diaphragm and aortic ECM for the repair of full-thickness abdominal wall defects in a rabbit model. Tissues obtained from bubaline diaphragm and aorta were decellularized and bioengineered by seeding with rabbit bone marrow derived mesenchymal stem cells (r-BMSC). Full-thickness abdominal wall defects of 3 cm × 4 cm size were created in a rabbit model and repaired using five different prostheses, namely, polypropylene sheet, nonseeded diaphragm ECM, nonseeded aorta ECM, r-BMSC bioengineered diaphragm ECM, and r-BMSC bioengineered aorta ECM. Results from the study revealed that biological scaffolds are superior in comparison to synthetic polymer mesh for regeneration in terms of collagen deposition, maturation, neovascularization, and lack of any significant (P > 0.05) adhesions with the abdominal viscera. Seeding with r-BMSC significantly increased (P < 0.05) the collagen deposition and biomechanical strength of the scaffolds. The bioengineered r-BMSC seeded acellular bubaline diaphragm showed even superior biomechanical strength as compared to synthetic polymer mesh. Tailoring of the scaffolds with the r-BMSC also resulted in significant reduction (P < 0.01) in antibody and cell mediated immune reactions to the xenogeneic scaffolds in rabbit model.
Collapse
Affiliation(s)
- Remya V
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India
| | - Naveen Kumar
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India
| | - Sonal Saxena
- Division of Veterinary Biotechnology, ICAR-ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India
| | - Sameer Shrivastava
- Division of Veterinary Biotechnology, ICAR-ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India
| | - A K Sharma
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India
| | - Muhammed Kutty
- Division of Biochemistry, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India
| | - Kiranjeet Singh
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India
| | - S K Maiti
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India
| | - D B Mondal
- Division of Medicine, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India
| | - K P Singh
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India
| |
Collapse
|
10
|
Bovine tongue epithelium-derived cells: A new source of bovine mesenchymal stem cells. Biosci Rep 2020; 40:222523. [PMID: 32232387 PMCID: PMC7167252 DOI: 10.1042/bsr20181829] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 02/28/2020] [Accepted: 03/31/2020] [Indexed: 12/12/2022] Open
Abstract
Mesenchymal stem cells (MSCs) possess the ability to differentiate into multiple cell lineages, and thus, confer great potential for use in regenerative medicine and biotechnology. In the present study, we attempted to isolate and characterize bovine tongue tissue epithelium-derived MSCs (boT-MSCs) and investigate the culture conditions required for long-term culturing of boT-MSCs. boT-MSCs were successfully isolated by the collagenase digestion method and their proliferative capacity was maintained for up to 20 or more passages. We observed a significant increase in the proliferation of boT-MSCs during the 20 consecutive passages under low-glucose Dulbecco’s modified Eagle’s medium culture condition among the three culture conditions. These boT-MSCs presented pluripotency markers (octamer-binding transcription factor 3/4 (Oct3/4) and sex determining region Y-box2 (Sox2)) and cell surface markers, which included CD13, CD29, CD44, CD73, CD90, CD105, CD166, and major histocompatibility complex (MHC) class I (MHC-I) but not CD11b, CD14, CD31, CD34, CD45, CD80, CD86, CD106, CD117, and MHC-II at third passage. Moreover, these boT-MSCs could differentiate into mesodermal (adipocyte, osteocyte, and chondrocyte) cell lineages. Thus, the present study suggests that the tongue of bovines could be used as a source of bovine MSCs.
Collapse
|
11
|
Gugjoo MB, Amarpal, Abdelbaset-Ismail A, Aithal HP, Kinjavdekar P, Kumar GS, Sharma GT. Allogeneic mesenchymal stem cells and growth factors in gel scaffold repair osteochondral defect in rabbit. Regen Med 2020; 15:1261-1275. [PMID: 32154762 DOI: 10.2217/rme-2018-0138] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Aim: An attempt was made to improve osteochondral healing with allogeneic mesenchymal stem cells (MSCs) along with certain growth factors. Materials & methods: Induced knee osteochondral defects were filled as: phosphate buffer saline (group A); MSCs in collagen gel (group B); group B plus insulin like growth factor-1 (group C); group C plus transforming growth factor β-1 (group D). Results: Gross and scanning electron microscopy showed superior morphology and surface architecture of the healed tissue in groups D and C. Histologically, group D revealed hyaline cartilage characteristic features followed in order by group C and group B. In all treatment groups, chondrogenic matrix, collagen II2B (col II 2B) and aggrecan were secreted. Conclusion: Combined use of MSCs and growth factors could accelerate osteochondral healing.
Collapse
Affiliation(s)
- Mudasir Bashir Gugjoo
- Division of Surgery, Indian Veterinary Research Institute (IVRI), Izzatnagar, India.,Division of Veterinary Clinical Complex, Faculty of Veterinary Sciences & Animal Husbandry, SKUAST-K, Shuhama, India
| | - Amarpal
- Division of Surgery, Indian Veterinary Research Institute, Izzatnagar, India
| | - Ahmed Abdelbaset-Ismail
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA.,Radiology & Anesthesiology Department, Faculty of Veterinary Medicine, Zagazig University, El-Sharkia, Zagazig, Egypt
| | - Hari Prasad Aithal
- Division of Surgery, Indian Veterinary Research Institute, Izzatnagar, India
| | - Prakash Kinjavdekar
- Division of Surgery, Indian Veterinary Research Institute, Izzatnagar, India
| | - Gutulla Sai Kumar
- Division of Pathology, Indian Veterinary Research Institute, Izzatnagar, India
| | - Gutulla Taru Sharma
- Division of Physiology & Climatology, Indian Veterinary Research Institute, Izzatnagar, India
| |
Collapse
|
12
|
Gugjoo MB, Fazili MUR, Gayas MA, Ahmad RA, Dhama K. Animal mesenchymal stem cell research in cartilage regenerative medicine - a review. Vet Q 2020; 39:95-120. [PMID: 31291836 PMCID: PMC8923021 DOI: 10.1080/01652176.2019.1643051] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Healing of articular cartilage is a major clinical challenge as it also lacks a direct vasculature and nerves, and carries a limited number of resident chondrocytes that do not proliferate easily. Damaged articular cartilages are usually replaced by fibrocartilages, which are mechanically and structurally weaker and less resilient. Regenerative medicine involving stem cells is considered to have a definitive potential to overcome the limitations associated with the currently available surgical methods of cartilage repair. Among various stem cell types, mesenchymal stem cells (MSCs) are preferred for clinical applications. These cells can be readily derived from various sources and have the ability to trans-differentiate into various tissue-specific cells, including those of the cartilage by the process of chondrogenesis. Compared to embryonic or induced pluripotent stem cells (iPSCs), no ethical or teratogenic issues are associated with MSCs. These stem cells are being extensively evaluated for the treatment of joint affections and the results appear promising. Unlike human medicine, in veterinary medicine, the literature on stem cell research for cartilage regeneration is limited. This review, therefore, aims to comprehensively discuss the available literature and pinpoint the achievements and limitations associated with the use of MSCs for articular cartilage repair in animal species.
Collapse
Affiliation(s)
| | | | | | - Raja Aijaz Ahmad
- Division of Veterinary Clinical Complex, FVSc and AH, SKUAST , Srinagar , India
| | - Kuldeep Dhama
- Division of Pathology, Indian Veterinary Research Institute , Bareilly, India
| |
Collapse
|
13
|
Gugjoo MB, Amarpal A, Sharma GT. Mesenchymal stem cell basic research and applications in dog medicine. J Cell Physiol 2019; 234:16779-16811. [PMID: 30790282 DOI: 10.1002/jcp.28348] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 01/25/2019] [Accepted: 01/28/2019] [Indexed: 12/13/2022]
Abstract
The stem cells, owing to their special characteristics like self-renewal, multiplication, homing, immunomodulation, anti-inflammatory, and dedifferentiation are considered to carry an "all-in-one-solution" for diverse clinical problems. However, the limited understanding of cellular physiology currently limits their definitive therapeutic use. Among various stem cell types, currently mesenchymal stem cells are extensively studied for dog clinical applications owing to their readily available sources, easy harvesting, and ability to differentiate both into mesodermal, as well as extramesodermal tissues. The isolated, culture expanded, and characterized cells have been applied both at preclinical as well as clinical settings in dogs with variable but mostly positive results. The results, though positive, are currently inconclusive and demands further intensive research on the properties and their dependence on the applications. Further, numerous clinical conditions of dog resemble to that of human counterparts and thus, if proved rewarding in the former may act as basis of therapy for the latter. The current review throws some light on dog mesenchymal stem cell properties and their potential therapeutic applications.
Collapse
Affiliation(s)
- Mudasir Bashir Gugjoo
- Division of Veterinary Clinical Complex, Faculty of Veterinary Sciences and Animal Husbandry, SKUAST-K, Jammu and Kashmir, India
| | - Amarpal Amarpal
- Division of Surgery, Indian Veterinary Research Institute, Izatnagar, India
| | - Gutulla Taru Sharma
- Division of Physiology and Climatology, Indian Veterinary Research Institute, Izatnagar, India
| |
Collapse
|
14
|
Gugjoo MB, Amarpal, Fazili MR, Shah RA, Sharma GT. Mesenchymal stem cell: Basic research and potential applications in cattle and buffalo. J Cell Physiol 2018; 234:8618-8635. [PMID: 30515790 DOI: 10.1002/jcp.27846] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 11/13/2018] [Indexed: 12/11/2022]
Abstract
Characteristic features like self-renewal, multilineage differentiation potential, and immune-modulatory/anti-inflammatory properties, besides the ability to mobilize and home distant tissues make stem cells (SCs) a lifeline for an individual. Stem cells (SCs) if could be harvested and expanded without any abnormal change may be utilized as an all-in-one solution to numerous clinical ailments. However, slender understanding of their basic physiological properties, including expression potential, behavioral alternations during culture, and the effect of niche/microenvironment has currently restricted the clinical application of SCs. Among various types of SCs, mesenchymal stem cells (MSCs) are extensively studied due to their easy availability, straightforward harvesting, and culturing procedures, besides, their less likelihood to produce teratogens. Large ruminant MSCs have been harvested from various adult tissues and fetal membranes and are well characterized under in vitro conditions but unlike human or other domestic animals in vivo studies on cattle/buffalo MSCs have mostly been aimed at improving the animals' production potential. In this document, we focused on the status and potential application of MSCs in cattle and buffalo.
Collapse
Affiliation(s)
- Mudasir Bashir Gugjoo
- Division of Veterinary Clinical Complex, FVSc & AH, SKUAST Kashmir, Srinagar, J&K, India.,Division of Surgery, Indian Veterinary Research Institute, Bareilly, UP, India
| | - Amarpal
- Division of Surgery, Indian Veterinary Research Institute, Bareilly, UP, India
| | - Mujeeb R Fazili
- Division of Veterinary Clinical Complex, FVSc & AH, SKUAST Kashmir, Srinagar, J&K, India
| | - Riaz A Shah
- Division of Animal Biotechnology, FVSc & AH, SKUAST Kashmir, Srinagar, J&K, India
| | - Gutulla Taru Sharma
- Division of Physiology & Climatology, Indian Veterinary Research Institute, Bareilly, UP, India
| |
Collapse
|
15
|
Gugjoo MB, Amarpal, Makhdoomi DM, Sharma GT. Equine Mesenchymal Stem Cells: Properties, Sources, Characterization, and Potential Therapeutic Applications. J Equine Vet Sci 2018; 72:16-27. [PMID: 30929778 DOI: 10.1016/j.jevs.2018.10.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 09/06/2018] [Accepted: 10/05/2018] [Indexed: 02/07/2023]
Abstract
Properties like sustained multiplication and self-renewal, and homing and multilineage differentiation to undertake repair of the damaged tissues make stem cells the lifeline for any living system. Therefore, stem cell therapy is regarded to carry immense therapeutic potential. Though the dearth of understanding about the basic biological properties and pathways involved in therapeutic benefits currently limit the application of stem cells in humans as well as animals, there are innumerable reports that suggest clinical benefits of stem cell therapy in equine. Among various stem cell sources, currently adult mesenchymal stem cells (MSCs) are preferred for therapeutic application in horse owing to their easy availability, capacity to modulate inflammation, and promote healing. Also the cells carry very limited teratogenic risk compared to the pluripotent stem cells. Mesenchymal stem cells were earlier considered mainly for musculoskeletal tissues, but now may also be utilized in other diverse clinical problems in horse, and the results may be extrapolated even for human medicine. The current review highlights biological properties, sources, mechanisms, and potential therapeutic applications of stem cells in equine practice.
Collapse
Affiliation(s)
- Mudasir Bashir Gugjoo
- Division of Surgery, Indian Veterinary Research Institute-Izatnagar, Bareilly, UP, India.
| | - Amarpal
- Division of Surgery, Indian Veterinary Research Institute-Izatnagar, Bareilly, UP, India
| | - Dil Mohammad Makhdoomi
- Division of Surgery, Faculty of Veterinary Sciences and Animal Husbandry, Shuhama, SKUAST-Kashmir, Srinagar, J&K, India
| | - Gutulla Taru Sharma
- Division of Physiology and Climatology, Indian Veterinary Research Institute-Izatnagar, Bareilly, UP, India
| |
Collapse
|
16
|
Zamani Mazdeh D, Mirshokraei P, Emami M, Mirshahi A, Karimi I. 17β-estradiol improves the efficacy of exploited autologous bone marrow-derived mesenchymal stem cells in non-union radial defect healing: A rabbit model. Res Vet Sci 2017; 118:11-18. [PMID: 29334646 DOI: 10.1016/j.rvsc.2017.12.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 11/14/2017] [Accepted: 12/27/2017] [Indexed: 12/11/2022]
Abstract
Exploiting mesenchymal stem cells (MSCs) appears to be an appealing alternative to the traditional clinical approach in the treatment of non-union bone defects. It has been shown that 17β-estradiol improves the osteogenesis and proliferation potential of the MSCs via estrogen receptors. We investigated the effect of 17β-estradiol on exploiting autologous BMSCs (bone marrow-derived MSCs) for the purpose of healing of radial non-union segmental defect in rabbit. Twenty rabbits were divided into 4 experimental groups: 1. Control group; 2. MSC treatment group; 3. 17β-estradiol (E2) treatment group; and 4. E2+MSC treatment group. Isolated BMSCs were seeded in a critical-sized defect on radial mid-diaphysis that was filled with autologous fibrin clot differently in 4 groups: 1. intact fibrin clot (control); 2. Fibrin clot containing MSCs; 3. Estradiol; and 4. E2 and MSCs. Defect healing was assessed by radiological (week 0, 2, 4, 6, 8 and 10) and histopathological evaluation (week 10). Radiological evaluation data demonstrated that quantities for the E2+MSC group were significantly the greatest in comparison with the other groups at week 4 to 10 inclusive. Moreover, Histopathological evaluation indicated that the E2+MSC group had the highest score which was significantly greater than the E2 group and the control group (P<0.05). In-vivo application of in situ 17β-estradiol provides the seeded BMSCs with improved osteogenic capacity in tandem with an accelerated rate of bone healing. This obviously more qualified approach that yields in a shorter time appears to be promising for the future cell-based clinical treatments of the non-union bone fractures. Exploiting mesenchymal stem cells (MSCs) appears to be an appealing alternative to the traditional clinical approach in the treatment of non-union bone defects. It has been shown that 17β-estradiol improves the osteogenesis and proliferation potential of the MSCs via estrogen receptors. We investigated the effect of 17β-estradiol on exploiting autologous BMSCs (bone marrow-derived MSCs) for the purpose of healing of radial non-union segmental defect in rabbit. Twenty rabbits were divided into 4 experimental groups: 1. Control group; 2. MSC treatment group; 3. 17β-estradiol (E2) treatment group; and 4. E2+MSC treatment group. Isolated BMSCs were seeded in a critical-sized defect on the radial mid-diaphysis that was filled with autologous fibrin clot differently in 4 groups: 1. intact fibrin clot (control); 2. Fibrin clot containing MSCs; 3. Estradiol; and 4. E2 and MSCs. Defect healing was assessed by radiological (week 0, 2, 4, 6, 8 and 10) and histopathological evaluation (week 10). Radiological evaluation data demonstrated that quantities for the E2+MSC group were significantly the greatest in comparison with the other groups at week 4 to 10 inclusive. Moreover, Histopathological evaluation indicated that the E2+MSC group had the highest score which was significantly greater than the E2 group and the control group (P<0.05). In-vivo application of in situ 17β-estradiol provides the seeded BMSCs with improved osteogenic capacity in tandem with an accelerated rate of bone healing. This obviously more efficient approach that yields in a shorter time appears to be promising for future cell-based clinical treatments of the non-union bone fractures.
Collapse
Affiliation(s)
- Delaram Zamani Mazdeh
- Department of Clinical Sciences, School of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Pezhman Mirshokraei
- Department of Clinical Sciences, School of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran; Center of Excellence in Ruminant Abortion and Neonatal Mortality, School of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran.
| | - Mohammadreza Emami
- Department of Clinical Sciences, School of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Ali Mirshahi
- Department of Clinical Sciences, School of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Iraj Karimi
- Department of Clinical Sciences, School of Veterinary Medicine, Shahrekord University, Shahrekord, Iran
| |
Collapse
|
17
|
Gugjoo MB, Abdelbaset-Ismail A, Aithal HP, Kinjavdekar P, Pawde AM, Kumar GS, Sharma GT. Mesenchymal stem cells with IGF-1 and TGF- β1 in laminin gel for osteochondral defects in rabbits. Biomed Pharmacother 2017; 93:1165-1174. [PMID: 28738525 DOI: 10.1016/j.biopha.2017.07.032] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 06/30/2017] [Accepted: 07/06/2017] [Indexed: 02/02/2023] Open
Abstract
OBJECTIVE Healing of articular cartilage is still a challenge due to its limited potential to regenerate. In the present study, we evaluated allogenic bone marrow mesenchymal stem cells (BM-MSCs) alone or in combination with growth factors, insulin-like growth factor-1 (IGF-1) and transforming growth factor-β1 (TGF-β1) in laminin scaffolds for healing of osteochondral defects. DESIGN Osteochondral defects of 4mm (diameter) x 5mm (depth) were induced in the rabbit knee joints and treated with phosphate-buffered saline (PBS; control), BM-MSCs, BM-MSCs in laminin, BM-MSCs in laminin with IGF-1, or BM-MSCs in laminin with IGF-1 and TGF-β1 in 10 animals each. Gross, radiographic, scanning electron microscopic (SEM) and histologic examinations besides chondrocyte-specific genes expression by quantitative real time qPCR were carried out at 8 and 12 weeks. RESULTS Gross and SEM examination revealed superior morphology and surface architecture of the healing site in animals that received MSCs with IGF-1 or IGF-1 and TGF-β1. The application of laminin composites containing MSCs with IGF-1 and TGF-β1 significantly enhanced hyaline cartilage formation with improved cellular arrangement, proteoglycan deposition, clear tidemark zone and subchondral bone formation. However, regenerated tissue in defects that received only MSCs had poor tidemark zone and proteoglycans deposition Aggrecan and Coll2 expression was significantly higher in case of MSCs with growth factors. CONCLUSION The treatment with BM-MSCs combined with IGF-1/TGF-β1 into laminin gel scaffold might enhance the restoration of hyaline cartilage in osteochondral defect.
Collapse
Affiliation(s)
- Mudasir Bashir Gugjoo
- Division of Surgery, Indian Veterinary Research Institute (IVRI), Izatnagar, India; Clinical Veterinary Services Complex, Faculty of Veterinary Sciences and Animal Husbandry, Shuhama, SKUAST-K, India.
| | - Ahmed Abdelbaset-Ismail
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA; Surgery, Radiology and Anesthesiology Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig, El-Sharkia, Egypt.
| | - Hari Prasad Aithal
- Division of Surgery, Indian Veterinary Research Institute (IVRI), Izatnagar, India.
| | - Prakash Kinjavdekar
- Division of Surgery, Indian Veterinary Research Institute (IVRI), Izatnagar, India.
| | | | - Gutulla Sai Kumar
- Division of Pathology, Indian Veterinary Research Institute (IVRI), Izatnagar, India.
| | - Gutulla Taru Sharma
- Division of Physiology and Climatology, Indian Veterinary Research Institute (IVRI), Izatnagar, India.
| |
Collapse
|