1
|
Basavarajappa DS, Niazi SK, Bepari A, Assiri RA, Hussain SA, Muzaheed, Nayaka S, Hiremath H, Rudrappa M, Chakraborty B, Hugar A. Efficacy of Penicillium limosum Strain AK-7 Derived Bioactive Metabolites on Antimicrobial, Antioxidant, and Anticancer Activity against Human Ovarian Teratocarcinoma (PA-1) Cell Line. Microorganisms 2023; 11:2480. [PMID: 37894138 PMCID: PMC10609037 DOI: 10.3390/microorganisms11102480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 09/25/2023] [Accepted: 09/28/2023] [Indexed: 10/29/2023] Open
Abstract
Natural metabolites from beneficial fungi were recognized for their potential to inhibit multidrug-resistant human and plant fungal pathogens. The present study describes the isolation, metabolite profiling, antibacterial, and antifungal, antioxidant, and anticancer activities of soil fungi. Among the 17 isolates, the AK-7 isolate was selected based on the primary screening. Further, the identification of isolate AK-7 was performed by 18S rRNA sequencing and identified as Penicillium limosum (with 99.90% similarity). Additionally, the ethyl acetate extract of the Penicillium limosum strain AK-7 (AK-7 extract) was characterized by Fourier Transform Infrared Spectroscopy (FTIR) and a Gas Chromatography-Mass Spectroscopy (GC-MS) analysis, and the results showed different functional groups and bioactive metabolites. Consequently, a secondary screening of antibacterial activity by the agar well diffusion method showed significant antibacterial activity against Gram-negative and Gram-positive bacterial pathogens. The AK-7 extract exhibited notable antifungal activity by a food poisoning method and showed maximum inhibition of 77.84 ± 1.62%, 56.42 ± 1.27%, and 37.96 ± 1.84% against Cercospora canescens, Fusarium sambucinum and Sclerotium rolfsii phytopathogens. Consequently, the AK-7 extract showed significant antioxidant activity against DPPH and ABTS•+ free radicals with IC50 values of 59.084 μg/mL and 73.36 μg/mL. Further, the anticancer activity of the AK-7 extract against the human ovarian teratocarcinoma (PA-1) cell line was tested by MTT and Annexin V flow cytometry. The results showed a dose-dependent reduction in cell viability and exhibited apoptosis with an IC50 value of 82.04 μg/mL. The study highlights the potential of the Penicillium limosum strain AK-7 as a source of active metabolites and natural antibacterial, antifungal, antioxidant, and anticancer agent, and it could be an excellent alternative for pharmaceutical and agricultural sectors.
Collapse
Affiliation(s)
| | - Shaik Kalimulla Niazi
- Department of Preparatory Health Sciences, Riyadh Elm University, Riyadh 12611, Saudi Arabia
| | - Asmatanzeem Bepari
- Department of Basic Medical Sciences, College of Medicine, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia; (A.B.); (R.A.A.)
| | - Rasha Assad Assiri
- Department of Basic Medical Sciences, College of Medicine, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia; (A.B.); (R.A.A.)
| | - Syed Arif Hussain
- Respiratory Care Department, College of Applied Sciences, Almaarefa University, Riyadh 13713, Saudi Arabia;
| | - Muzaheed
- Department of Clinical Laboratory Science, College of Applied Medical Sciences, Imam Abdulrahman bin Faisal University, Dammam 31441, Saudi Arabia;
| | - Sreenivasa Nayaka
- P.G. Department of Studies in Botany, Karnatak University, Dharwad 580003, Karnataka, India; (D.S.B.); (H.H.); (M.R.); (B.C.); (A.H.)
| | - Halaswamy Hiremath
- P.G. Department of Studies in Botany, Karnatak University, Dharwad 580003, Karnataka, India; (D.S.B.); (H.H.); (M.R.); (B.C.); (A.H.)
| | - Muthuraj Rudrappa
- P.G. Department of Studies in Botany, Karnatak University, Dharwad 580003, Karnataka, India; (D.S.B.); (H.H.); (M.R.); (B.C.); (A.H.)
| | - Bidhayak Chakraborty
- P.G. Department of Studies in Botany, Karnatak University, Dharwad 580003, Karnataka, India; (D.S.B.); (H.H.); (M.R.); (B.C.); (A.H.)
| | - Anil Hugar
- P.G. Department of Studies in Botany, Karnatak University, Dharwad 580003, Karnataka, India; (D.S.B.); (H.H.); (M.R.); (B.C.); (A.H.)
| |
Collapse
|
2
|
Flieger J, Flieger W, Baj J, Maciejewski R. Antioxidants: Classification, Natural Sources, Activity/Capacity Measurements, and Usefulness for the Synthesis of Nanoparticles. MATERIALS (BASEL, SWITZERLAND) 2021; 14:4135. [PMID: 34361329 PMCID: PMC8347950 DOI: 10.3390/ma14154135] [Citation(s) in RCA: 125] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/15/2021] [Accepted: 07/23/2021] [Indexed: 02/06/2023]
Abstract
Natural extracts are the source of many antioxidant substances. They have proven useful not only as supplements preventing diseases caused by oxidative stress and food additives preventing oxidation but also as system components for the production of metallic nanoparticles by the so-called green synthesis. This is important given the drastically increased demand for nanomaterials in biomedical fields. The source of ecological technology for producing nanoparticles can be plants or microorganisms (yeast, algae, cyanobacteria, fungi, and bacteria). This review presents recently published research on the green synthesis of nanoparticles. The conditions of biosynthesis and possible mechanisms of nanoparticle formation with the participation of bacteria are presented. The potential of natural extracts for biogenic synthesis depends on the content of reducing substances. The assessment of the antioxidant activity of extracts as multicomponent mixtures is still a challenge for analytical chemistry. There is still no universal test for measuring total antioxidant capacity (TAC). There are many in vitro chemical tests that quantify the antioxidant scavenging activity of free radicals and their ability to chelate metals and that reduce free radical damage. This paper presents the classification of antioxidants and non-enzymatic methods of testing antioxidant capacity in vitro, with particular emphasis on methods based on nanoparticles. Examples of recent studies on the antioxidant activity of natural extracts obtained from different species such as plants, fungi, bacteria, algae, lichens, actinomycetes were collected, giving evaluation methods, reference antioxidants, and details on the preparation of extracts.
Collapse
Affiliation(s)
- Jolanta Flieger
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4A, 20-093 Lublin, Poland
| | - Wojciech Flieger
- Chair and Department of Anatomy, Medical University of Lublin, Jaczewskiego 4, 20-090 Lublin, Poland; (W.F.); (J.B.); (R.M.)
| | - Jacek Baj
- Chair and Department of Anatomy, Medical University of Lublin, Jaczewskiego 4, 20-090 Lublin, Poland; (W.F.); (J.B.); (R.M.)
| | - Ryszard Maciejewski
- Chair and Department of Anatomy, Medical University of Lublin, Jaczewskiego 4, 20-090 Lublin, Poland; (W.F.); (J.B.); (R.M.)
| |
Collapse
|
3
|
Chandra P, Sharma RK, Arora DS. Antioxidant compounds from microbial sources: A review. Food Res Int 2020; 129:108849. [DOI: 10.1016/j.foodres.2019.108849] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 11/18/2019] [Accepted: 11/20/2019] [Indexed: 01/05/2023]
|