1
|
Bacterial Biological Factories Intended for the Desulfurization of Petroleum Products in Refineries. FERMENTATION-BASEL 2023. [DOI: 10.3390/fermentation9030211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
The removal of sulfur by deep hydrodesulfurization is expensive and environmentally unfriendly. Additionally, sulfur is not separated completely from heterocyclic poly-aromatic compounds. In nature, several microorganisms (Rhodococcus erythropolis IGTS8, Gordonia sp., Bacillus sp., Mycobacterium sp., Paenibacillus sp. A11-2 etc.) have been reported to remove sulfur from petroleum fractions. All these microbes remove sulfur from recalcitrant organosulfur compounds via the 4S pathway, showing potential for some organosulfur compounds only. Activity up to 100 µM/g dry cell weights is needed to meet the current demand for desulfurization. The present review describes the desulfurization capability of various microorganisms acting on several kinds of sulfur sources. Genetic engineering approaches on Gordonia sp. and other species have revealed a variety of good substrate ranges of desulfurization, both for aliphatic and aromatic organosulfur compounds. Whole genome sequence analysis and 4S pathway inhibition by a pTeR group inhibitor have also been discussed. Now, emphasis is being placed on how to commercialize the microbes for industrial-level applications by incorporating biodesulfurization into hydrodesulfurization systems. Thus, this review summarizes the potentialities of microbes for desulfurization of petroleum. The information included in this review could be useful for researchers as well as the economical commercialization of bacteria in petroleum industries.
Collapse
|
2
|
Ng YK, Ikeno S, Kadhim Almansoori AK, Muhammad I, Abdul Rahim R. Characterization of Sphingobacterium sp. Ab3 Lipase and Its Coexpression with LEA Peptides. Microbiol Spectr 2022; 10:e0142221. [PMID: 36314920 PMCID: PMC9769720 DOI: 10.1128/spectrum.01422-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 09/23/2022] [Indexed: 12/24/2022] Open
Abstract
Sphingobacterium sp. is a yellowish Gram-negative bacterium that is usually characterized by high concentrations of sphingophospholipids as lipid components. As microbial enzymes have been in high demand in industrial fields in the past few decades, this study hopes to provide significant information on lipase activities of Sphingobacterium sp., since limited studies have been conducted on the Sphingobacterium sp. lipase. A microbe from one collected Artic soil sample, ARC4, was identified as psychrotolerant Sphingobacterium sp., and it could grow in temperatures ranging from 0°C to 24°C. The expression of Sphingobacterium sp. lipase was successfully performed through an efficient approach of utilizing mutated group 3 late embryogenesis abundant (G3LEA) proteins developed from Polypedilum vanderplanki. Purified enzyme was characterized using a few parameters, such as temperature, pH, metal ion cofactors, organic solvents, and detergents. The expressed enzyme is reported to be cold adapted and has the capability to work efficiently under neutral pH (pH 5.0 to 7.0), cofactors like Na+ ion, and the water-like solvent methanol. Addition of nonionic detergents greatly enhanced the activity of purified enzyme. IMPORTANCE The mechanism of action of LEA proteins has remained unknown to many; in this study we reveal their presence and improved protein expression due to the molecular shielding effect reported by others. This paper should be regarded as a useful example of using such proteins to influence an existing expression system to produce difficult-to-express proteins.
Collapse
Affiliation(s)
- You Kiat Ng
- School of Biological Sciences, Universiti Sains Malaysia, Penang, Malaysia
| | - Shinya Ikeno
- Department of Biological Functions and Engineering, Graduate School of Life Science and System Engineering, Kyushu Institute of Technology, Kitakyushu, Japan
| | | | - Ibrahim Muhammad
- School of Biological Sciences, Universiti Sains Malaysia, Penang, Malaysia
- Department of Science Lab. Technology, Ramat Polytechnic Maiduguri, Maiduguri, Nigeria
| | | |
Collapse
|
3
|
Kumar A, Singh AK, Bilal M, Chandra R. Extremophilic Ligninolytic Enzymes: Versatile Biocatalytic Tools with Impressive Biotechnological Potential. Catal Letters 2022. [DOI: 10.1007/s10562-021-03800-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
4
|
Vivek K, Sandhia GS, Subramaniyan S. Extremophilic lipases for industrial applications: A general review. Biotechnol Adv 2022; 60:108002. [PMID: 35688350 DOI: 10.1016/j.biotechadv.2022.108002] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 05/09/2022] [Accepted: 06/02/2022] [Indexed: 01/10/2023]
Abstract
With industrialization and development in modern science enzymes and their applications increased widely. There is always a hunt for new proficient enzymes with novel properties to meet specific needs of various industrial sectors. Along with the high efficiency, the green and eco-friendly side of enzymes attracts human attention, as they form a true answer to counter the hazardous and toxic conventional industrial catalyst. Lipases have always earned industrial attention due to the broad range of hydrolytic and synthetic reactions they catalyse. When these catalytic properties get accompanied by features like temperature stability, pH stability, and solvent stability lipases becomes an appropriate tool for use in many industrial processes. Extremophilic lipases offer the same, thermostable: hot and cold active thermophilic and psychrophilic lipases, acid and alkali resistant and active acidophilic and alkaliphilic lipases, and salt tolerant halophilic lipases form excellent biocatalyst for detergent formulations, biofuel synthesis, ester synthesis, food processing, pharmaceuticals, leather, and paper industry. An interesting application of these lipases is in the bioremediation of lipid waste in harsh environments. The review gives a brief account on various extremophilic lipases with emphasis on thermophilic, psychrophilic, halophilic, alkaliphilic, and acidophilic lipases, their sources, biochemical properties, and potential applications in recent decades.
Collapse
Affiliation(s)
- K Vivek
- Postgraduate Department of Botany and Research Centre (University of Kerala), University College, Thiruvananthapuram 695034, India
| | - G S Sandhia
- Postgraduate Department of Botany and Research Centre (University of Kerala), University College, Thiruvananthapuram 695034, India
| | - S Subramaniyan
- Postgraduate Department of Botany and Research Centre (University of Kerala), University College, Thiruvananthapuram 695034, India.
| |
Collapse
|
5
|
Talhi I, Dehimat L, Jaouani A, Cherfia R, Berkani M, Almomani F, Vasseghian Y, Chaouche NK. Optimization of thermostable proteases production under agro-wastes solid-state fermentation by a new thermophilic Mycothermus thermophilus isolated from a hydrothermal spring Hammam Debagh, Algeria. CHEMOSPHERE 2022; 286:131479. [PMID: 34315081 DOI: 10.1016/j.chemosphere.2021.131479] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/01/2021] [Accepted: 07/06/2021] [Indexed: 06/13/2023]
Abstract
The present work investigates for the first time the presence and isolation of the thermophilic fungi from hydrothermal spring situated at the locality of Guelma, in the Northeast of Algeria. The production of the thermostable proteases and the optimization of culture conditions under agro-wastes solid-state fermentation to achieve optimal production capacity were explored. A statistical experimental approach consisting of two designs was used to determine the optimum culture conditions and to attain the greatest enzyme production. Besides, different agricultural wastes were initially evaluated as a substrate, whereby wheat bran was selected for enzyme production by the isolate under solid-state conditions. The isolate thermophilic fungi were identified as Mycothermus thermophilus by sequencing the ITS region of the rDNA (NCBI Accession No: MK770356.1). Among the various screened variables: the temperature, the inoculum size, and the moisture were proved to have the most significant effects on protease activity. Employing two-level fractional Plackett-Burman and a Box-Behnken designs statistical approach helped in identifying optimum values of screened factors and their interactions. The analysis showed up 6.17-fold improvement in the production of proteases (~1187.03 U/mL) was achieved under the optimal conditions of moisture content 47%, inoculum 5 × 105 spores/g, and temperature at 42 °C. These significant findings highlight the importance of the statistical design in isolation of Mycothermus thermophilus species from a specific location as well as identifying the optimal culture conditions for maximum yield.
Collapse
Affiliation(s)
- Imen Talhi
- Laboratoire de Mycologie, de Biotechnologie et de l'Activité Microbienne (LaMyBAM), Département de Biologie Appliquée, Université des Frères Mentouri, Constantine 1, BP, 325 Route de Aïn El Bey, Constantine 25017, Algeria
| | - Laid Dehimat
- Laboratoire de Mycologie, de Biotechnologie et de l'Activité Microbienne (LaMyBAM), Département de Biologie Appliquée, Université des Frères Mentouri, Constantine 1, BP, 325 Route de Aïn El Bey, Constantine 25017, Algeria
| | - Atef Jaouani
- Laboratoire de Microorganismes et Biomolécules Actives (LMBA) Faculté des Sciences de Tunis, Université Tunis El Manar, Campus Universitaire 2092 El Manar, Tunisie
| | - Radia Cherfia
- Laboratoire de Mycologie, de Biotechnologie et de l'Activité Microbienne (LaMyBAM), Département de Biologie Appliquée, Université des Frères Mentouri, Constantine 1, BP, 325 Route de Aïn El Bey, Constantine 25017, Algeria
| | - Mohammed Berkani
- Laboratoire Biotechnologies, Ecole Nationale Supérieure de Biotechnologie, Ville Universitaire Ali Mendjeli, BP E66, 25100 Constantine, Algeria.
| | - Fares Almomani
- Department of Chemical Engineering, College of Engineering, Qatar University, P. O. Box, Doha, 2713, Qatar.
| | - Yasser Vasseghian
- Department of Chemical Engineering, Quchan University of Technology, Quchan, Iran.
| | - Noreddine Kacem Chaouche
- Laboratoire de Mycologie, de Biotechnologie et de l'Activité Microbienne (LaMyBAM), Département de Biologie Appliquée, Université des Frères Mentouri, Constantine 1, BP, 325 Route de Aïn El Bey, Constantine 25017, Algeria
| |
Collapse
|
6
|
Goryainova DA, Nikolaeva AY, Kryukova MV, Petrovskaya LE, Korzhenevsky DA, Kryukova EA, Dolgikh DA, Boyko KM. Three-Dimensional Structure of Single-Point Mutant of Esterase PMGL2. CRYSTALLOGR REP+ 2021. [DOI: 10.1134/s1063774521050060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Metagenomics and Culture-Based Diversity Analysis of the Bacterial Community in the Zharkent Geothermal Spring in Kazakhstan. Curr Microbiol 2021; 78:2926-2934. [PMID: 34047830 DOI: 10.1007/s00284-021-02545-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 05/19/2021] [Indexed: 10/21/2022]
Abstract
Diversity of the microbial community in the Zharkent geothermal hot spring, located in the southeastern region of Kazakhstan, was assessed using both culture-dependent and -independent approaches. Shotgun metagenomic sequencing of DNA extracted from the spring water yielded 11,061,725 high-quality sequence reads, totaling >1,67 Gb of nucleotide sequences. Furthermore, water samples were enriched in nutrient broth at varying high temperatures, and colonies isolated by being streaked onto nutrient agar. Finally, DNA extraction and amplification, as well as sequencing and phylogenetic analysis, were conducted. Bacteria constituted more than 99.97% of the total prokaryotic abundance, with Archaea contributing only an extremely small component; Firmicutes, Proteobacteria, and Actinobacteria dominated the community. At genus level, Firmicutes reads affiliated with Desmospora, Parageobacillus, Paenibacillus, and Brevibacillus, accounting for more than 60% of total prokaryotic abundance. Eight morphologically distinct, aerobic, endospore-forming thermophilic bacteria were recovered; isolates differed significantly in substrate utilization patterns, as well as their production of thermophilic, extracellular, hydrolytic enzymes for degradation of starch, lipids, cellulose, and protein. Five strains could degrade all four macromolecular types at temperatures ranging from 55 to 75 °C. Phylogenetic analyses based on 16S rRNA gene sequences placed all isolates into the genus Geobacillus with some of them possibly representing novel species. The results indicate that this hot spring represents a rich source of novel thermophilic bacteria and potentially useful thermostable enzymes.
Collapse
|
8
|
Boyko KM, Kryukova MV, Petrovskaya LE, Nikolaeva AY, Korzhenevsky DA, Novototskaya-Vlasova KA, Rivkina EM, Dolgikh DA, Kirpichnikov MP, Popov VO. Crystal structure of PMGL2 esterase from the hormone-sensitive lipase family with GCSAG motif around the catalytic serine. PLoS One 2020; 15:e0226838. [PMID: 31990908 PMCID: PMC6986724 DOI: 10.1371/journal.pone.0226838] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 12/05/2019] [Indexed: 12/26/2022] Open
Abstract
Lipases comprise a large class of hydrolytic enzymes which catalyze the cleavage of the ester bonds in triacylglycerols and find numerous biotechnological applications. Previously, we have cloned the gene coding for a novel esterase PMGL2 from a Siberian permafrost metagenomic DNA library. We have determined the 3D structure of PMGL2 which belongs to the hormone-sensitive lipase (HSL) family and contains a new variant of the active site motif, GCSAG. Similar to many other HSLs, PMGL2 forms dimers in solution and in the crystal. Our results demonstrated that PMGL2 and structurally characterized members of the GTSAG motif subfamily possess a common dimerization interface that significantly differs from that of members of the GDSAG subfamily of known structure. Moreover, PMGL2 had a unique organization of the active site cavity with significantly different topology compared to the other lipolytic enzymes from the HSL family with known structure including the distinct orientation of the active site entrances within the dimer and about four times larger size of the active site cavity. To study the role of the cysteine residue in GCSAG motif of PMGL2, the catalytic properties and structure of its double C173T/C202S mutant were examined and found to be very similar to the wild type protein. The presence of the bound PEG molecule in the active site of the mutant form allowed for precise mapping of the amino acid residues forming the substrate cavity.
Collapse
Affiliation(s)
- Konstantin M. Boyko
- Department of Enzyme Engineering, Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| | - Marya V. Kryukova
- Kurchatov Complex of NBICS-technologies, National Research Centre "Kurchatov Institute", Moscow, Russia
| | - Lada E. Petrovskaya
- Department of Bioengineering, Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Alena Y. Nikolaeva
- Kurchatov Complex of NBICS-technologies, National Research Centre "Kurchatov Institute", Moscow, Russia
| | - Dmitry A. Korzhenevsky
- Kurchatov Complex of NBICS-technologies, National Research Centre "Kurchatov Institute", Moscow, Russia
| | - Ksenia A. Novototskaya-Vlasova
- Laboratory of Soil Cryology, Institute of Physicochemical and Biological Problems in Soil Science, Russian Academy of Sciences, Pushchino, Moscow Region, Russia
| | - Elizaveta M. Rivkina
- Laboratory of Soil Cryology, Institute of Physicochemical and Biological Problems in Soil Science, Russian Academy of Sciences, Pushchino, Moscow Region, Russia
| | - Dmitry A. Dolgikh
- Department of Bioengineering, Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
- Department of Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Mikhail P. Kirpichnikov
- Department of Bioengineering, Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
- Department of Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Vladimir O. Popov
- Department of Enzyme Engineering, Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
- Kurchatov Complex of NBICS-technologies, National Research Centre "Kurchatov Institute", Moscow, Russia
| |
Collapse
|
9
|
Chivers PRA, Kelly JA, Hill MJS, Smith DK. First-generation shaped gel reactors based on photo-patterned hybrid hydrogels. REACT CHEM ENG 2020. [DOI: 10.1039/d0re00109k] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
This paper reports the development of first-generation photo-patterned ring-shaped gel reactors that catalyse the hydrolysis of para-nitrophenol phosphate using a phosphatase enzyme.
Collapse
|
10
|
Biomolecules from extremophile microalgae: From genetics to bioprocessing of a new candidate for large-scale production. Process Biochem 2019. [DOI: 10.1016/j.procbio.2019.09.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
11
|
Production and Characterization of Extremophilic Proteinases From a New Enzyme Source, Barrientosiimonas sp. V9. Appl Biochem Biotechnol 2019; 190:1060-1073. [PMID: 31667755 DOI: 10.1007/s12010-019-03140-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Accepted: 09/12/2019] [Indexed: 10/25/2022]
Abstract
Microbial proteases are widely used as commercial enzymes, which have an active role in several industrial processes. The aim of this study was to investigate the production and properties of extracellular proteases from Barrientosiimonas sp. strain V9. The cultivation conditions for protease production were studied using different carbon and nitrogen sources. Maximum protease production was obtained in medium containing 25 g L-1 sucrose, 7 g L-1 KNO3, and initial pH 7.0 at 35 °C and 150 rpm during 72 h. Under these conditions, maximum proteolytic activity reached 1200 U mL-1. The enzyme extract showed optimum activity at 60 °C, pH 9.0, and was stable from 30 to 50 °C within a pH range from 4.0 to 10.0 and NaCl concentration up to 2.5 M. The enzyme was stable in the presence of EDTA, urea, Triton X-100 and laundry detergent (sodium lauryl sulfate as main component). The addition of 1% sodium dodecyl sulfate, Tween-80, or Tween-20 increased the activity by 183% and 119% respectively, while 2-mercaptoethanol reduced the activity to 71%. Casein zymogram analysis revealed three hydrolysis zones suggesting that Barrientosiimonas sp. V9 expresses proteases with molecular weights about 60, 45, and 35 kDa, which were inhibited in the presence of phenylmethylsulfonyl fluoride. Barrientosiimonas sp. V9 produces halotolerant serine proteases with great biotechnological potential.
Collapse
|
12
|
Biochemical Characteristics of Microbial Enzymes and Their Significance from Industrial Perspectives. Mol Biotechnol 2019; 61:579-601. [DOI: 10.1007/s12033-019-00187-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
13
|
Yaşar Yildiz S, Nikerel E, Toksoy Öner E. Genome-Scale Metabolic Model of a Microbial Cell Factory ( Brevibacillus thermoruber 423) with Multi-Industry Potentials for Exopolysaccharide Production. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2019; 23:237-246. [PMID: 30932743 DOI: 10.1089/omi.2019.0028] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Brevibacillus thermoruber 423 is a thermophilic bacterium capable of producing high levels of exopolysaccharide (EPS) that has broad applications in nutrition, feed, cosmetics, pharmaceutical, and chemical industries, not to mention in health and bionanotechnology sectors. EPS is a natural, nontoxic, and biodegradable polymer of sugar residues and plays pivotal roles in cell-to-cell interactions, adhesion, biofilm formation, and protection of cell against environmental extremes. This bacterium is a thermophilic EPS producer while exceeding other thermophilic producers by virtue of high level of polymer synthesis. Recently, B. thermoruber 423 was noted for relevance to multiple industry sectors because of its capacity to use xylose, and produce EPS, isoprenoids, ethanol/butanol, lipases, proteases, cellulase, and glucoamylase enzymes as well as its resistance to arsenic. A key step in understanding EPS production with a systems-based approach is the knowledge of microbial genome sequence. To speed biotechnology and industrial applications, this study reports on a genome-scale metabolic model (GSMM) of B. thermoruber 423, constructed using the recently available high-quality genome sequence that we have subsequently validated using physiological data on batch growth and EPS production on seven different carbon sources. The model developed contains 1454 reactions (of which 1127 are assigned an enzyme commission number) and 1410 metabolites from 925 genes. This GSMM offers the promise to enable and accelerate further systems biology and industrial scale studies, not to mention the ability to calculate metabolic flux distribution in large networks and multiomic data integration.
Collapse
Affiliation(s)
- Songül Yaşar Yildiz
- 1 Department of Bioengineering, Istanbul Medeniyet University, Istanbul, Turkey
| | - Emrah Nikerel
- 2 Department of Genetics and Bioengineering, Yeditepe University, Istanbul, Turkey
| | - Ebru Toksoy Öner
- 3 Department of Bioengineering, IBSB, Marmara University, Istanbul, Turkey
| |
Collapse
|
14
|
Bilal M, Asgher M, Cheng H, Yan Y, Iqbal HMN. Multi-point enzyme immobilization, surface chemistry, and novel platforms: a paradigm shift in biocatalyst design. Crit Rev Biotechnol 2019; 39:202-219. [PMID: 30394121 DOI: 10.1080/07388551.2018.1531822] [Citation(s) in RCA: 159] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Revised: 09/05/2018] [Accepted: 09/06/2018] [Indexed: 02/08/2023]
Abstract
Engineering enzymes with improved catalytic properties in non-natural environments have been concerned with their diverse industrial and biotechnological applications. Immobilization represents a promising but straightforward route, and immobilized biocatalysts often display higher activities and stabilities compared to free enzymes. Owing to their unique physicochemical characteristics, including the high-specific surface area, exceptional chemical, electrical, and mechanical properties, efficient enzyme loading, and multivalent functionalization, nano-based materials are postulated as suitable carriers for biomolecules or enzyme immobilization. Enzymes immobilized on nanomaterial-based supports are more robust, stable, and recoverable than their pristine counterparts, and are even used for continuous catalytic processes. Furthermore, the unique intrinsic properties of nanomaterials, particularly nanoparticles, also confer the immobilized enzymes to be used for their broader applications. Herein, an effort has been made to present novel potentialities of multi-point enzyme immobilization in the current biotechnological sector. Various nano-based platforms for enzyme/biomolecule immobilization are discussed in the second part of the review. In summary, recent developments in the use of nanomaterials as new carriers to construct robust nano-biocatalytic systems are reviewed, and future trends are pointed out in this article.
Collapse
Affiliation(s)
- Muhammad Bilal
- a School of Life Science and Food Engineering , Huaiyin Institute of Technology , Huaian , China
| | - Muhammad Asgher
- b Department of Biochemistry , University of Agriculture Faisalabad , Faisalabad , Pakistan
| | - Hairong Cheng
- c State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology , Shanghai Jiao Tong University , Shanghai , China
| | - Yunjun Yan
- d Key Lab of Molecular Biophysics of Ministry of Education , College of Life Science and Technology, Huazhong University of Science and Technology , Wuhan , China
| | - Hafiz M N Iqbal
- e Tecnologico de Monterrey, School of Engineering and Sciences , Campus Monterrey , Monterrey , Mexico
| |
Collapse
|
15
|
Akassou M, Groleau D. Advances and challenges in the production of extracellular thermoduric pullulanases by wild-type and recombinant microorganisms: a review. Crit Rev Biotechnol 2019; 39:337-350. [PMID: 30700157 DOI: 10.1080/07388551.2019.1566202] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Thermoduric pullulanases, acting as starch-debranching enzymes, are required in many industrial applications, mainly in the production of concentrated glucose, maltose, and fructose syrups. To date, however, a single pullulanase, from Bacillus acidopullulyticus, is available on the market for industrial purposes. This review is an investigation of the major advances as well as the major challenges being faced with regard to optimization of the production of extracellular thermoduric pullulanases either by their original hosts or by recombinant organisms. The critical aspects linked to industrial pullulanase production, which should always be considered, are emphasized, including those parameters influencing solubility, thermostability, and catalytic efficiency of the enzyme. This review provides new insights for improving the production of extracellular thermoduric pullulanases in the hope that such information may facilitate their commercial utilization and potentially be applied to the development of other industrially relevant enzymes.
Collapse
Affiliation(s)
- Mounia Akassou
- a Department of Chemical Engineering and Biotechnological Engineering , Faculty of Engineering, University of Sherbrooke , Sherbrooke , Canada
| | - Denis Groleau
- a Department of Chemical Engineering and Biotechnological Engineering , Faculty of Engineering, University of Sherbrooke , Sherbrooke , Canada
| |
Collapse
|
16
|
Optimization of the production of an extracellular and thermostable amylolytic enzyme by Thermus thermophilus HB8 and basic characterization. Extremophiles 2017; 22:189-202. [PMID: 29260387 DOI: 10.1007/s00792-017-0987-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 12/08/2017] [Indexed: 10/18/2022]
Abstract
The objective of this study was to determine the potential of Thermus thermophilus HB8 for accumulating a high level of extracellular, thermostable amylolytic enzyme. Initial production tests indicated clearly that only very low levels of amylolytic activity could be detected, solely from cells after extraction using the mild, non-ionic detergent Triton X-100. A sequential optimization strategy, based on statistical designs, was used to enhance greatly the production of extracellular amylolytic activity to achieve industrially attractive enzyme titers. Focus was placed on the optimal level of initial biomass concentration, culture medium composition and temperature for maximizing extracellular amylolytic enzyme accumulation. Empirical models were then developed describing the effects of the experimental parameters and their interactions on extracellular amylolytic enzyme production. Following such efforts, extracellular amylolytic enzyme accumulation was increased more than 70-fold, with enzyme titers in the 76 U/mL range. The crude extracellular enzyme was thereafter partially characterized. The optimal temperature and pH values were found to be 80 °C and 9.0, respectively. 100% of the initial enzyme activity could be recovered after incubation for 24 h at 80 °C, therefore, proving the very high thermostability of the enzyme preparation.
Collapse
|
17
|
Vishambra D, Srivastava M, Dev K, Jaiswal V. Subcellular localization based comparative study on radioresistant bacteria: A novel approach to mine proteins involve in radioresistance. Comput Biol Chem 2017; 69:1-9. [PMID: 28527408 DOI: 10.1016/j.compbiolchem.2017.05.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 03/25/2017] [Accepted: 05/05/2017] [Indexed: 11/16/2022]
Abstract
Radioresistant bacteria (RRB) are among the most radioresistant organisms and has a unique role in evolution. Along with the evolutionary role, radioresistant organisms play important role in paper industries, bioremediation, vaccine development and possibility in anti-aging and anti-cancer treatment. The study of radiation resistance in RRB was mainly focused on cytosolic mechanisms such as DNA repair mechanism, cell cleansing activity and high antioxidant activity. Although it was known that protein localized on outer areas of cell play role in resistance towards extreme condition but the mechanisms/proteins localized on the outer area of cells are not studied for radioresistance. Considering the fact that outer part of cell is more exposed to radiations and proteins present in outer area of the cell may have role in radioresistance. Localization based comparative study of proteome from RRB and non-radio resistant bacteria was carried out. In RRB 20 unique proteins have been identified. Further domain, structural, and pathway analysis of selected proteins were carried out. Out of 20 proteins, 8 proteins were direct involvement in radioresistance and literature study strengthens this, however, 1 proteins had assumed relation in radioresistance. Selected radioresistant proteins may be helpful for optimal use of RRB in industry and health care.
Collapse
Affiliation(s)
- Divya Vishambra
- Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, Himachal Pradesh, India
| | - Malay Srivastava
- Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, Himachal Pradesh, India
| | - Kamal Dev
- Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, Himachal Pradesh, India
| | - Varun Jaiswal
- School of Electrical and Computer Science Engineering, Shoolini University, Solan, Himachal Pradesh, India.
| |
Collapse
|
18
|
|
19
|
Kumar S, Arumugam N, Permaul K, Singh S. Chapter 5 Thermostable Enzymes and Their Industrial Applications. Microb Biotechnol 2016. [DOI: 10.1201/9781315367880-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023] Open
|
20
|
Stekhanova TN, Rakitin AL, Mardanov AV, Bezsudnova EY, Popov VO. A Novel highly thermostable branched-chain amino acid aminotransferase from the crenarchaeon Vulcanisaeta moutnovskia. Enzyme Microb Technol 2016; 96:127-134. [PMID: 27871372 DOI: 10.1016/j.enzmictec.2016.10.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 08/31/2016] [Accepted: 10/04/2016] [Indexed: 11/25/2022]
Abstract
A new fold-type IV branched-chain amino acid aminotransferase VMUT0738 from the hyperthermophilic Crenarchaeon Vulcanisaeta moutnovskia was successfully expressed in Escherichia coli. Purified VMUT0738 showed activity toward numerous aliphatic and aromatic l-amino acids and 2-oxo acids at optimal pH 8.0. Distinguishing features of the VMUT0738 compared with typical BCAT are the absence of activity toward acidic substrates, high activity toward basic ones, and low but detectable activity toward the (R)-enantiomer of α-methylbenzylamine (0.0076U/mg) The activity of VMUT0738 increases with a rise in the temperature from 60°C to 90°C. VMUT0738 showed high thermostability (after 24h incubation at 70°C the enzyme lost only 27% of the initial activity) and the resistance to organic solvents. The sequence alignment revealed two motifs (V/I)xLDxR and PFG(K/H)YL characteristic of BCATs from species of the related genera Vulcanisaeta, Pyrobaculum and Thermoproteus that might be responsible for the unique substrate recognition profile of the enzyme.
Collapse
Affiliation(s)
- Tatiana N Stekhanova
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33, bld. 2, 119071, Moscow, Russian Federation.
| | - Andrey L Rakitin
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33, bld. 2, 119071 Moscow, Russian Federation
| | - Andrey V Mardanov
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33, bld. 2, 119071 Moscow, Russian Federation
| | - Ekaterina Yu Bezsudnova
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33, bld. 2, 119071, Moscow, Russian Federation
| | - Vladimir O Popov
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33, bld. 2, 119071, Moscow, Russian Federation; NBICS Center, National Research Centre "Kurchatov Institute", Akad. Kurchatova sqr 1, 123182 Moscow, Russian Federation
| |
Collapse
|
21
|
Kilbane JJ. Biodesulfurization: How to Make it Work? ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2016. [DOI: 10.1007/s13369-016-2269-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
22
|
Petrovskaya LE, Novototskaya-Vlasova KA, Spirina EV, Durdenko EV, Lomakina GY, Zavialova MG, Nikolaev EN, Rivkina EM. Expression and characterization of a new esterase with GCSAG motif from a permafrost metagenomic library. FEMS Microbiol Ecol 2016; 92:fiw046. [PMID: 26929439 DOI: 10.1093/femsec/fiw046] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/24/2016] [Indexed: 11/14/2022] Open
Abstract
As a result of construction and screening of a metagenomic library prepared from a permafrost-derived microcosm, we have isolated a novel gene coding for a putative lipolytic enzyme that belongs to the hormone-sensitive lipase family. It encodes a polypeptide of 343 amino acid residues whose amino acid sequence displays maximum likelihood with uncharacterized proteins from Sphingomonas species. A putative catalytic serine residue of PMGL2 resides in a new variant of a recently discovered GTSAG sequence in which a Thr residue is replaced by a Cys residue (GCSAG). The recombinant PMGL2 was produced in Escherichia coli cells and purified by Ni-affinity chromatography. The resulting protein preferably utilizes short-chain p-nitrophenyl esters (C4 and C8) and therefore is an esterase. It possesses maximum activity at 45°C in slightly alkaline conditions and has limited thermostability at higher temperatures. Activity of PMGL2 is stimulated in the presence of 0.25-1.5 M NaCl indicating the good salt tolerance of the new enzyme. Mass spectrometric analysis demonstrated that N-terminal methionine in PMGL2 is processed and cysteine residues do not form a disulfide bond. The results of the study demonstrate the significance of the permafrost environment as a unique genetic reservoir and its potential for metagenomic exploration.
Collapse
Affiliation(s)
- Lada E Petrovskaya
- Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya, 16/10, 117997, Moscow, Russia
| | - Ksenia A Novototskaya-Vlasova
- Institute of Physicochemical and Biological Problems in Soil Science, Russian Academy of Sciences, Institutskaya str., 2, 142290, Pushchino, Moscow Region, Russia
| | - Elena V Spirina
- Institute of Physicochemical and Biological Problems in Soil Science, Russian Academy of Sciences, Institutskaya str., 2, 142290, Pushchino, Moscow Region, Russia
| | - Ekaterina V Durdenko
- Institute of Physicochemical and Biological Problems in Soil Science, Russian Academy of Sciences, Institutskaya str., 2, 142290, Pushchino, Moscow Region, Russia
| | - Galina Yu Lomakina
- Department of Chemistry, Lomonosov Moscow State University, Leninskiye Gory, 1/3, 119991, Moscow, Russia
| | - Maria G Zavialova
- Orekhovich Institute of Biomedical Chemistry, Russian Academy of Medical Sciences, ul. Pogodinskaya 10, 119121, Moscow, Russia
| | - Evgeny N Nikolaev
- Orekhovich Institute of Biomedical Chemistry, Russian Academy of Medical Sciences, ul. Pogodinskaya 10, 119121, Moscow, Russia Institute of Energy Problems of Chemical Physics, Russian Academy of Sciences, Leninskij pr. 38 k.2, 119334, Moscow, Russia
| | - Elizaveta M Rivkina
- Institute of Physicochemical and Biological Problems in Soil Science, Russian Academy of Sciences, Institutskaya str., 2, 142290, Pushchino, Moscow Region, Russia
| |
Collapse
|
23
|
Kambourova M, Radchenkova N, Tomova I, Bojadjieva I. Thermophiles as a Promising Source of Exopolysaccharides with Interesting Properties. BIOTECHNOLOGY OF EXTREMOPHILES: 2016. [DOI: 10.1007/978-3-319-13521-2_4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
24
|
Some like it hot, some like it cold: Temperature dependent biotechnological applications and improvements in extremophilic enzymes. Biotechnol Adv 2015; 33:1912-22. [DOI: 10.1016/j.biotechadv.2015.11.001] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 11/12/2015] [Accepted: 11/12/2015] [Indexed: 11/23/2022]
|
25
|
Shivlata L, Satyanarayana T. Thermophilic and alkaliphilic Actinobacteria: biology and potential applications. Front Microbiol 2015; 6:1014. [PMID: 26441937 PMCID: PMC4585250 DOI: 10.3389/fmicb.2015.01014] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 09/07/2015] [Indexed: 11/13/2022] Open
Abstract
Microbes belonging to the phylum Actinobacteria are prolific sources of antibiotics, clinically useful bioactive compounds and industrially important enzymes. The focus of the current review is on the diversity and potential applications of thermophilic and alkaliphilic actinobacteria, which are highly diverse in their taxonomy and morphology with a variety of adaptations for surviving and thriving in hostile environments. The specific metabolic pathways in these actinobacteria are activated for elaborating pharmaceutically, agriculturally, and biotechnologically relevant biomolecules/bioactive compounds, which find multifarious applications.
Collapse
|
26
|
Genomic analysis of Brevibacillus thermoruber 423 reveals its biotechnological and industrial potential. Appl Microbiol Biotechnol 2015; 99:2277-89. [DOI: 10.1007/s00253-015-6388-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 01/02/2015] [Accepted: 01/03/2015] [Indexed: 11/25/2022]
|
27
|
Hiteshi K, Gupta R. Thermal adaptation of α-amylases: a review. Extremophiles 2014; 18:937-44. [DOI: 10.1007/s00792-014-0674-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 07/06/2014] [Indexed: 11/24/2022]
|
28
|
Jiewei T, Zuchao L, Peng Q, Lei W, Yongqiang T. Purification and characterization of a cold-adapted lipase from Oceanobacillus strain PT-11. PLoS One 2014; 9:e101343. [PMID: 24984141 PMCID: PMC4077839 DOI: 10.1371/journal.pone.0101343] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 06/05/2014] [Indexed: 11/18/2022] Open
Abstract
We isolated a moderately halophilic lipase-producing bacterium from the saline soil. Based on the morphological, physiological, chemotaxonomic and phylogenetic analysis, the isolate PT-11 was postulated to be a novel species identified as Oceanobacillus rekensis PT-11. The lipase was purified 2.50-fold by Q-Sepharose FF and SP-Sepharose FF chromatography and its molecular mass was estimated to be 23.5 kDa by SDS-PAGE. It was highly active over the broad temperature ranging from 10 to 35°C and showed up to 80% of the maximum activity at 10°C indicating the lipase to be a typical cold-adapted enzyme. The enzyme activity was slightly enhanced by Na+, Li+ and K+. Incubation with detergents, such as Tween-20 and Tween-80, slightly inhibited the enzyme activity; while Triton X-100decreased the enzyme activity. The enzyme was fairly stable in the presence of long-chain alcohols but was highly denatured in hydrophilic solvents such as acetone or short-chain alcohols (C1-C3).
Collapse
Affiliation(s)
- Tian Jiewei
- Key laboratory of Leather Chemistry and engineering, College of Light Industry, Textile and Food Engineering, Sichuan University, Chengdu, China
- Department of Pharmaceutical and Biological Engineering, College of Chemical Engineering, Sichuan University, Chengdu, Sichuan, China
| | - Lei Zuchao
- Department of Pharmaceutical and Biological Engineering, College of Chemical Engineering, Sichuan University, Chengdu, Sichuan, China
| | - Qiu Peng
- Department of Pharmaceutical and Biological Engineering, College of Chemical Engineering, Sichuan University, Chengdu, Sichuan, China
| | - Wang Lei
- Department of Pharmaceutical and Biological Engineering, College of Chemical Engineering, Sichuan University, Chengdu, Sichuan, China
| | - Tian Yongqiang
- Key laboratory of Leather Chemistry and engineering, College of Light Industry, Textile and Food Engineering, Sichuan University, Chengdu, China
- * E-mail:
| |
Collapse
|
29
|
Sinha R, Srivastava AK, Khare SK. EFFICIENT PROTEOLYSIS AND APPLICATION OF AN ALKALINE PROTEASE FROM HALOPHILICBacillussp. EMB9. Prep Biochem Biotechnol 2014; 44:680-96. [DOI: 10.1080/10826068.2013.844711] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
30
|
In Silico Analysis of β-Galactosidases Primary and Secondary Structure in relation to Temperature Adaptation. JOURNAL OF AMINO ACIDS 2014; 2014:475839. [PMID: 24790757 PMCID: PMC3982409 DOI: 10.1155/2014/475839] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 02/06/2014] [Indexed: 11/18/2022]
Abstract
β -D-Galactosidases (EC 3.2.1.23) hydrolyze the terminal nonreducing β -D-galactose residues in β -D-galactosides and are ubiquitously present in all life forms including extremophiles. Eighteen microbial β -galactosidase protein sequences, six each from psychrophilic, mesophilic, and thermophilic microbes, were analyzed. Primary structure reveals alanine, glycine, serine, and arginine to be higher in psychrophilic β -galactosidases whereas valine, glutamine, glutamic acid, phenylalanine, threonine, and tyrosine are found to be statistically preferred by thermophilic β -galactosidases. Cold active β -galactosidase has a strong preference towards tiny and small amino acids, whereas high temperature inhabitants had higher content of basic and aromatic amino acids. Thermophilic β -galactosidases have higher percentage of α -helix region responsible for temperature tolerance while cold loving β -galactosidases had higher percentage of sheet and coil region. Secondary structure analysis revealed that charged and aromatic amino acids were significant for sheet region of thermophiles. Alanine was found to be significant and high in the helix region of psychrophiles and valine counters in thermophilic β -galactosidase. Coil region of cold active β -galactosidase has higher content of tiny amino acids which explains their high catalytic efficiency over their counterparts from thermal habitat. The present study has revealed the preference or prevalence of certain amino acids in primary and secondary structure of psychrophilic, mesophilic, and thermophilic β -galactosidase.
Collapse
|
31
|
Vasileva-Tonkova E, Romanovskaya V, Gladka G, Gouliamova D, Tomova I, Stoilova-Disheva M, Tashyrev O. Ecophysiological properties of cultivable heterotrophic bacteria and yeasts dominating in phytocenoses of Galindez Island, maritime Antarctica. World J Microbiol Biotechnol 2013; 30:1387-98. [PMID: 24277323 DOI: 10.1007/s11274-013-1555-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 11/06/2013] [Indexed: 10/26/2022]
Abstract
Antarctic plants are stable specific microenvironments for microbial colonization that are still less explored. In this study, we investigated cultivable heterotrophic bacteria and yeasts dominating in plant samples collected from different terrestrial biotopes near Ukrainian Antarctic Base on Galindez Island, maritime Antarctica. Phylogenetic analysis revealed affiliation of the bacterial isolates to genera Pseudomonas, Stenotrophomonas, Brevundimonas, Sporosarcina, Dermacoccus, Microbacterium, Rothia and Frondihabitans, and the yeast isolates to genera Rhodosporidium, Cryptococcus, Leucosporidiella, Candida and Exophiala. Some ecophysiological properties of isolated strains were determined that are important in response to different stresses such as psychro- and halotolerance, UV-resistance and production of hydrolytic enzymes. The majority of isolates (88 %) was found to be psychrotolerant; all are halotolerant. Significant differences in survival subsequent to UV-C radiation were observed among the isolates, as measured by culturable counts. For the bacterial isolates, lethal doses in the range 80-600 J m⁻² were determined, and for the yeast isolates--in the range 300-1,000 J m⁻². Dermacoccus profundi U9 and Candida davisiana U6 were found as most UV resistant among the bacterial and yeast isolates, respectively. Producers of caseinase, gelatinase, β-glucosidase, and cellulase were detected. To the best of our knowledge, this is the first report on isolation of UV resistant strain D. profundi, and Frondihabitans strain from Antarctica, and on detection of cellulase activity in Antarctic yeast strain C. davisiana. The results obtained contribute to clarifying adaptation strategies of Antarctic microbiota and its possible role in functional stability of Antarctic biocenoses. Stress tolerant strains were detected that are valuable for ecological and applied studies.
Collapse
Affiliation(s)
- Evgenia Vasileva-Tonkova
- Departments of General and Applied Microbiology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Acad. Georgi Bonchev Str., Bl. 26, 1113, Sofia, Bulgaria,
| | | | | | | | | | | | | |
Collapse
|
32
|
Bhattacharya A, Pletschke BI. Review of the enzymatic machinery of Halothermothrix orenii with special reference to industrial applications. Enzyme Microb Technol 2013; 55:159-69. [PMID: 24411459 DOI: 10.1016/j.enzmictec.2013.10.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 10/23/2013] [Accepted: 10/25/2013] [Indexed: 11/20/2022]
Abstract
Over the past few decades the extremes at which life thrives has continued to challenge our understanding of physiology, biochemistry, microbial ecology and evolution. Innovative culturing approaches, environmental genome sequencing, and whole genome sequencing have provided new opportunities for the biotechnological exploration of extremophiles. The whole genome sequencing of H. orenii has provided valuable insights not only into the survival and adaptation strategies of thermohalophiles but has also led to the identification of genes encoding biotechnologically relevant enzymes. The present review focuses on the purified and characterized enzymes from H. orenii including amylases, β-glucosidase, fructokinase, and ribokinase--along with uncharacterized but industrially important enzymes encoded by the genes identified in the genome such as β-galactosidases, mannosidases, pullulanases, chitinases, α-L-arabinofuranosidases and other glycosyl hydrolases of commercial interest. This review highlights the importance of the enzymes and their applications in different sectors and why future research for exploring the enzymatic machinery of H. orenii should focus on the expression, purification, and characterization of the novel proteins in H. orenii and their feasible application to pertinent industrial sectors. H. orenii is an anaerobe; genome sequencing studies have also revealed the presence of enzymes for gluconeogenesis and fermentation to ethanol and acetate, making H. orenii an attractive strain for the conversion of starch into bioethanol.
Collapse
Affiliation(s)
- Abhishek Bhattacharya
- Department of Biochemistry, Microbiology and Biotechnology, Rhodes University, PO Box 94, Grahamstown 6140, South Africa
| | - Brett I Pletschke
- Department of Biochemistry, Microbiology and Biotechnology, Rhodes University, PO Box 94, Grahamstown 6140, South Africa.
| |
Collapse
|
33
|
Jiménez DJ, Andreote FD, Chaves D, Montaña JS, Osorio-Forero C, Junca H, Zambrano MM, Baena S. Structural and functional insights from the metagenome of an acidic hot spring microbial planktonic community in the Colombian Andes. PLoS One 2012; 7:e52069. [PMID: 23251687 PMCID: PMC3522619 DOI: 10.1371/journal.pone.0052069] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Accepted: 11/15/2012] [Indexed: 12/11/2022] Open
Abstract
A taxonomic and annotated functional description of microbial life was deduced from 53 Mb of metagenomic sequence retrieved from a planktonic fraction of the Neotropical high Andean (3,973 meters above sea level) acidic hot spring El Coquito (EC). A classification of unassembled metagenomic reads using different databases showed a high proportion of Gammaproteobacteria and Alphaproteobacteria (in total read affiliation), and through taxonomic affiliation of 16S rRNA gene fragments we observed the presence of Proteobacteria, micro-algae chloroplast and Firmicutes. Reads mapped against the genomes Acidiphilium cryptum JF-5, Legionella pneumophila str. Corby and Acidithiobacillus caldus revealed the presence of transposase-like sequences, potentially involved in horizontal gene transfer. Functional annotation and hierarchical comparison with different datasets obtained by pyrosequencing in different ecosystems showed that the microbial community also contained extensive DNA repair systems, possibly to cope with ultraviolet radiation at such high altitudes. Analysis of genes involved in the nitrogen cycle indicated the presence of dissimilatory nitrate reduction to N2 (narGHI, nirS, norBCDQ and nosZ), associated with Proteobacteria-like sequences. Genes involved in the sulfur cycle (cysDN, cysNC and aprA) indicated adenylsulfate and sulfite production that were affiliated to several bacterial species. In summary, metagenomic sequence data provided insight regarding the structure and possible functions of this hot spring microbial community, describing some groups potentially involved in the nitrogen and sulfur cycling in this environment.
Collapse
Affiliation(s)
- Diego Javier Jiménez
- Colombian Center for Genomic and Bioinformatics from Extreme Environments (GeBiX), Bogotá, Colombia.
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Copeland E, Choy N, Gabani P, Singh OV. Biosynthesis of Extremolytes: Radiation Resistance and Biotechnological Implications. Extremophiles 2012. [DOI: 10.1002/9781118394144.ch15] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|