1
|
Tarantino G, Cataldi M, Citro V. Could chronic opioid use be an additional risk of hepatic damage in patients with previous liver diseases, and what is the role of microbiome? Front Microbiol 2024; 15:1319897. [PMID: 39687876 PMCID: PMC11646994 DOI: 10.3389/fmicb.2024.1319897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 11/18/2024] [Indexed: 12/18/2024] Open
Abstract
Among illicit drugs, addiction from opioids and synthetic opioids is soaring in an unparalleled manner with its unacceptable amount of deaths. Apart from these extreme consequences, the liver toxicity is another important aspect that should be highlighted. Accordingly, the chronic use of these substances, of which fentanyl is the most frequently consumed, represents an additional risk of liver damage in patients with underlying chronic liver disease. These observations are drawn from various preclinical and clinical studies present in literature. Several downstream molecular events have been proposed, but recent pieces of research strengthen the hypothesis that dysbiosis of the gut microbiota is a solid mechanism inducing and worsening liver damage by both alcohol and illicit drugs. In this scenario, the gut flora modification ascribed to non-alcoholic fatty liver disease performs an additive role. Interestingly enough, HBV and HCV infections impact gut-liver axis. In the end, the authors tried to solicit the attention of operators on this major healthcare problem.
Collapse
Affiliation(s)
- Giovanni Tarantino
- Department of Clinical Medicine and Surgery, “Federico II” University Medical School of Naples, Naples, Italy
| | - Mauro Cataldi
- Section of Pharmacology, Department of Neuroscience, Reproductive Sciences and Dentistry, Federico II University of Naples, Naples, Italy
| | - Vincenzo Citro
- Department of General Medicine, “Umberto I” Hospital, Nocera Inferiore, Italy
| |
Collapse
|
2
|
Moshiri M, Chaeideh B, Ebrahimi M, Dadpour B, Ghodsi A, Haghighizadeh A, Etemad L. Buprenorphine induced opioid withdrawal syndrome relieved by adjunctive Magnesium: A clinical trial. JOURNAL OF SUBSTANCE USE AND ADDICTION TREATMENT 2024; 160:209307. [PMID: 38309436 DOI: 10.1016/j.josat.2024.209307] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 12/20/2023] [Accepted: 01/24/2024] [Indexed: 02/05/2024]
Abstract
INTRODUCTION Precipitated opioid withdrawal syndrome (OWS) is a severe and intolerable situation that may occur by a pharmaceutical agent. Reactivation of inhibited N-methyl-d-aspartate (NMDA) receptor in person with prolonged opioid use can led to severe OWS. We conducted a double-blind, randomized clinical trial to assess the effect of magnesium sulfate (MGSO4) as an NMDA receptor antagonist on OWS. MATERIALS AND METHODS The study randomly divided forty patients with precipitated OWS due to partial agonist (buprenorphine) use referred to the emergency unit of Toxicology Department of Mashhad University of Medical Sciences, Iran; into two groups. The control group received conventional therapies, including clonidine 0.1 mg tablet each hour, intravenous infusion of 10 mg diazepam every 30 min, and IV paracetamol (Acetaminophen) 1 g, while the intervention group received 3 g of MGSO4 in 20 min and then 10 mg/kg/h up to 2 h, in addition to the conventional treatment. The clinical opiate withdrawal scale (COWS) evaluated OWS at the start of the treatment, 30 min, and 2 h later. RESULTS Both groups had similar demographic, opiate types, and COWS severity at the start of the intervention. COWS was lower in the intervention than the control group at 30 min (11.20 ± 2.86 and 14.65 ± 2.36, respectively, P = 0.002) and at 2 h (3.2 ± 1.61 and 11.25 ± 3.27, respectively, P < 0.001) after treatment. The intervention group received lesser doses of clonidine (0.12 ± 0.51 and 0.17 ± 0.45 mg, P = 0.003) and Diazepam (13.50 ± 5.87, 24.0 ± 6.80 mg, P = 0.001) than the control group. Serum magnesium levels raised from 1.71 ± 0.13 mmol/L to 2.73 ± 0.13 mmol/L in the intervention group. CONCLUSION Magnesium can significantly reduce the severity of OWS. Additional studies are required to confirm these results.
Collapse
Affiliation(s)
- Mohammad Moshiri
- Medical Toxicology Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Clinical Toxicology and Poisoning, Imam Reza (p) Hospital, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Mohsen Ebrahimi
- Department of Emergency Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bita Dadpour
- Medical Toxicology Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Clinical Toxicology and Poisoning, Imam Reza (p) Hospital, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alireza Ghodsi
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Atoosa Haghighizadeh
- Department of Pharmaceutical and Food Control, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Leila Etemad
- Medical Toxicology Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
3
|
Hooshmand B, Azizi H, Ahmadi-Soleimani SM, Semnanian S. Synergistic effect of orexin-glutamate co-administration on spontaneous discharge rate of locus coeruleus neurons in morphine-dependent rats. Neurosci Lett 2019; 706:12-17. [DOI: 10.1016/j.neulet.2019.04.060] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 04/25/2019] [Accepted: 04/29/2019] [Indexed: 12/16/2022]
|
4
|
Bujalska-Zadrożny M, Tatarkiewicz J, Kulik K, Filip M, Naruszewicz M. Magnesium enhances opioid-induced analgesia – What we have learnt in the past decades? Eur J Pharm Sci 2017; 99:113-127. [PMID: 27884758 DOI: 10.1016/j.ejps.2016.11.020] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 11/15/2016] [Accepted: 11/19/2016] [Indexed: 02/07/2023]
|
5
|
Ghasemi F, Moradi A, Izadpanah E, Moloudi MR, Hassanzadeh K, Rahimmi A, Hassanzadeh K. Simvastatin prevents morphine antinociceptive tolerance and withdrawal symptoms in rats. J Formos Med Assoc 2015; 114:399-406. [DOI: 10.1016/j.jfma.2014.07.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2014] [Revised: 07/28/2014] [Accepted: 07/29/2014] [Indexed: 01/06/2023] Open
|
6
|
Habibi-Asl B, Vaez H, Najafi M, Bidaghi A, Ghanbarzadeh S. Attenuation of morphine-induced dependence and tolerance by ceftriaxone and amitriptyline in mice. ACTA ACUST UNITED AC 2014; 52:163-8. [PMID: 25557842 DOI: 10.1016/j.aat.2014.11.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 11/07/2014] [Accepted: 11/12/2014] [Indexed: 12/30/2022]
Abstract
INTRODUCTION Tolerance to and dependence on the analgesic effect of opioids is a pharmacological phenomenon that occurs after their prolonged administration. OBJECTIVE The aim of this study was to evaluate the protective effects of ceftriaxone and amitriptyline on the development of morphine-induced tolerance and dependence. METHODS In this study, 18 groups (9 groups each for tolerance and dependency tests) of mice (n = 8) received saline [10 mL/kg, intraperitoneally (i.p.)], morphine (50 mg/kg, i.p.), ceftriaxone (50 mg/kg, i.p., 100 mg/kg, i.p., and 200 mg/kg, i.p.), amitriptyline (5 mg/kg, i.p., 10 mg/kg, i.p., and 15 mg/kg, i.p.), or a combination of ceftriaxone (50 mg/kg, i.p.) and amitriptyline (5 mg/kg, i.p.) once per day for 4 days for investigation and comparison of the effects of ceftriaxone and amitriptyline on the prevention of dependency and tolerance to morphine. Tolerance was assessed with administration of morphine (9 mg/kg, i.p.) and using the hot plate test on the 5(th) day. In dependency tests, withdrawal symptoms were assessed on the 4(th) day for each animal 30 minutes after the administration of naloxone (4 mg/kg, i.p.; 2 hours after the last dose of morphine). RESULTS It was found that treatment with ceftriaxone or amitriptyline attenuated the development of tolerance to the antinociceptive effect of morphine and also reduced naloxone-precipitated withdrawal jumping and standing on feet. Furthermore, coadministration of ceftriaxone and amitriptyline at low doses (50 mg/kg, i.p. and 5 mg/kg, i.p., respectively) prior to morphine injection also decreased both morphine-induced tolerance and dependence. CONCLUSION Results indicate that the treatment with ceftriaxone and amitriptyline, alone or in combination, could attenuate the development of morphine-induced tolerance and dependence.
Collapse
Affiliation(s)
- Bohlul Habibi-Asl
- Department of Pharmacology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Haleh Vaez
- Department of Pharmacology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Moslem Najafi
- Department of Pharmacology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Bidaghi
- Student Research Committee, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saeed Ghanbarzadeh
- Student Research Committee, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran; Research Center for Pharmaceutical Nanotechnology and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
7
|
Repeated central administration of selegiline attenuated morphine physical dependence in rat. Pharmacol Rep 2014; 65:593-9. [PMID: 23950581 DOI: 10.1016/s1734-1140(13)71036-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Revised: 01/11/2013] [Indexed: 11/20/2022]
Abstract
BACKGROUND Long-term exposure to opiates induces physical dependence; however, the neurobiological mechanisms of this phenomenon are not completely clear. The purpose of this study was to evaluate the effects of systemic and intracerebroventricular (icv) administration of selegiline (a selective inhibitor of monoamine oxidase B) on the morphine withdrawal syndrome in rats. METHODS To this aim, adult male Sprague Dawley rats were selected randomly, and then growing doses of morphine were administered subcutaneously at an interval of 12 h for nine days with the intention of inducing dependency. Nine days after, only the morning dose of morphine was administered, followed by systemic or central injection of saline or selegiline. Later, naloxone was injected after 30 min and withdrawal signs recorded for a period of 60 min. RESULTS Results showed failure of systemic administration of selegiline in changing the withdrawal symptoms; nevertheless, icv injection attenuated the withdrawal signs significantly. CONCLUSION In conclusion we found that central administration of selegiline attenuated morphine withdrawal symptoms.
Collapse
|
8
|
Sharifipour M, Izadpanah E, Nikkhoo B, Zare S, Abdolmaleki A, Hassanzadeh K, Moradi F, Hassanzadeh K. A new pharmacological role for donepezil: attenuation of morphine-induced tolerance and apoptosis in rat central nervous system. J Biomed Sci 2014; 21:6. [PMID: 24455992 PMCID: PMC3906771 DOI: 10.1186/1423-0127-21-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Accepted: 01/20/2014] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND Tolerance to the analgesic effect of opioids is a pharmacological phenomenon that occurs after their prolonged administration. It has been shown that morphine-induced tolerance is associated with apoptosis in the central nervous system and neuroprotective agents which prevented apoptosis signaling could attenuate tolerance to the analgesic effects. On the other hand donepezil, an acetylcholinesterase inhibitor, has been reported to have neuroprotective effects. Therefore in this study, the effect of systemic administration of donepezil on morphine-induced tolerance and apoptosis in the rat cerebral cortex and lumbar spinal cord was evaluated. Various groups of rats received morphine (ip) and different doses of donepezil (0, 0.5, 1, 1.5 mg/kg/day). Nociception was assessed using tail flick apparatus. Tail flick latency was recorded when the rat shook its tail. For apoptosis assay other groups of rats received the above treatment and apoptosis was evaluated by in situ terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end-labeling (TUNEL) method. RESULTS The results showed that administration of donepezil (0.5, 1, 1.5 mg/kg, ip) delayed the morphine tolerance for 9, 12 and 17 days, respectively. Furthermore pretreatment injection of donepezil attenuated the number of apoptotic cells in the cerebral cortex and lumbar spinal cord compared to the control group. CONCLUSION In conclusion, we found that systemic administration of donepezil attenuated morphine-induced tolerance and apoptosis in the rat cerebral cortex and lumbar spinal cord.
Collapse
Affiliation(s)
- Mozhdeh Sharifipour
- Department of Biology, Faculty of Basic Science, Urmia University, Urmia, Iran
| | - Esmaeal Izadpanah
- Cellular and Molecular Research Center, Kurdistan University of Medical Sciences, Sanandaj, Iran
- Department of Physiology and Pharmacology, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Bahram Nikkhoo
- Department of Pathology, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Samad Zare
- Department of Biology, Faculty of Basic Science, Urmia University, Urmia, Iran
| | - Ali Abdolmaleki
- Science and Research Branch, Islamic Azad University, Hamedan, Iran
| | - Katayoun Hassanzadeh
- Department of Physiology and Pharmacology, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Farshid Moradi
- Student Research Committee, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Kambiz Hassanzadeh
- Cellular and Molecular Research Center, Kurdistan University of Medical Sciences, Sanandaj, Iran
- Department of Physiology and Pharmacology, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
- Student Research Committee, Kurdistan University of Medical Sciences, Sanandaj, Iran
| |
Collapse
|
9
|
Jun IG, Kim SH, Yoon YI, Park JY. Intrathecal lamotrigine attenuates antinociceptive morphine tolerance and suppresses spinal glial cell activation in morphine-tolerant rats. J Korean Med Sci 2013; 28:300-7. [PMID: 23399922 PMCID: PMC3565144 DOI: 10.3346/jkms.2013.28.2.300] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Accepted: 11/16/2012] [Indexed: 12/15/2022] Open
Abstract
Glial cells play a critical role in morphine tolerance, resulting from repeated administration of morphine. Both the development and the expression of tolerance are suppressed by the analgesic lamotrigine. This study investigated the relationship between the ability of lamotrigine to maintain the antinociceptive effect of morphine during tolerance development and glial cell activation in the spinal cord. In a rat model, morphine (15 µg) was intrathecally injected once daily for 7 days to induce morphine tolerance. Lamotrigine (200 µg) was co-administered with morphine either for 7 days or the first or last 3 days of this 7 day period. Thermal nociception was measured. OX-42 and GFAP immunoreactivity, indicating spinal microglial and astrocytic activation were evaluated on day 8. Tolerance developed after 7 days of intrathecal morphine administration; however, this was completely blocked and reversed by co-administration of lamotrigine. When lamotrigine was coinjected with morphine on days 5-7, the morphine effect was partially restored. Glial cell activation increased with the development of morphine tolerance but was clearly inhibited in the presence of lamotrigine. These results suggest that, in association with the suppression of spinal glial cell activity, intrathecally coadministered lamotrigine attenuates antinociceptive tolerance to morphine.
Collapse
Affiliation(s)
- In-Gu Jun
- Department of Anesthesiology and Pain Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Sung-Hoon Kim
- Department of Anesthesiology and Pain Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Yang-In Yoon
- Department of Anesthesiology and Pain Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jong-Yeon Park
- Department of Anesthesiology and Pain Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
10
|
Rizzoli P, Loder EW. Tolerance to the beneficial effects of prophylactic migraine drugs: a systematic review of causes and mechanisms. Headache 2012; 51:1323-35. [PMID: 21884087 DOI: 10.1111/j.1526-4610.2011.01985.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Loss of benefit of a previously effective treatment regimen, also known as tolerance, can be an important barrier to the successful preventive treatment of migraine. We undertook a systematic review of the literature to identify the prevalence and possible mechanisms of drug tolerance in migraine prophylaxis. Results demonstrate that the frequency of tolerance to prophylactic migraine treatment is unknown, but available data support an estimate that it occurs in 1-8% of patients receiving prophylaxis. Four broad types of tolerance were identified that are likely to be relevant to migraine prophylaxis. These are pharmacokinetic, pharmacodynamic, behavioral, and cross tolerance. The mechanisms that underlie these types of tolerance determine whether their effects can be overcome or minimized. For example, certain forms of tolerance may be affected by manipulation of environmental cues associated with drug administration, by the order in which drugs are used, and by the concomitant use of other medications. Many medications used for migraine prophylaxis exert their effects through the endogenous opioid system. The implications of this finding are explored, particularly the parallels between medication overuse headache and tolerance to migraine prophylaxis. Given the many ways in which tolerance to migraine medications may develop, in some ways it is not surprising that migraine-preventive drugs stop working; it is more surprising that in many cases they do not.
Collapse
Affiliation(s)
- Paul Rizzoli
- John R. Graham Headache Center and Division of Headache and Pain, Department of Neurology, Brigham and Women's/Faulkner Hospitals, Boston, MA, USA
| | | |
Collapse
|
11
|
Hassanzadeh K, Roshangar L, Habibi-asl B, Farajnia S, Izadpanah E, Nemati M, Arasteh M, Mohammadi S. Riluzole prevents morphine-induced apoptosis in rat cerebral cortex. Pharmacol Rep 2011; 63:697-707. [DOI: 10.1016/s1734-1140(11)70581-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Revised: 12/28/2010] [Indexed: 11/28/2022]
|
12
|
Ghasemi A, Saberi M, Ghasemi M, Shafaroodi H, Moezi L, Bahremand A, Montaser-Kouhsari L, Ziai P, Dehpour AR. Administration of lithium and magnesium chloride inhibited tolerance to the anticonvulsant effect of morphine on pentylenetetrazole-induced seizures in mice. Epilepsy Behav 2010; 19:568-574. [PMID: 20920846 DOI: 10.1016/j.yebeh.2010.09.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Accepted: 09/04/2010] [Indexed: 10/19/2022]
Abstract
Although morphine has an anticonvulsant effect in several animal models of seizures, its potential clinical application in epilepsy may be hindered by its adverse effects like opioid tolerance. The present study evaluated the development of tolerance to the anticonvulsant effect of morphine in a model of clonic seizures induced with pentylenetetrazole (PTZ) in male Swiss mice. We also examined whether administration of either lithium chloride (LiCl) or magnesium chloride (MgCl(2)) was able to prevent the probable tolerance. Our data demonstrated that the anticonvulsant effect of a potent dose of morphine (1mg/kg) was abolished in chronic morphine-treated mice (mice administered the same dose of morphine intraperitoneally twice daily for 4 days). Four days of pretreatment with low and noneffective doses of MgCl(2) (2 and 5mg/kg) and LiCl (5mg/kg) inhibited the development of tolerance to the anticonvulsant effect of morphine (1mg/kg, ip). Moreover, a single acute injection of the aforementioned agents at the same doses reversed the expression of tolerance to the anticonvulsant effects of morphine (1mg/kg, ip). Chronic 17-day treatment with LiCl (600 mg/L in drinking water) also inhibited the development of tolerance to the anticonvulsant effects of 1mg/kg morphine. These results demonstrate that the anticonvulsant effect of morphine is subject to tolerance after repeated administration. Both development and expression of tolerance are inhibited by either LiCl or MgCl(2). As both LiCl and MgCl(2) can modulate the function of N-methyl-d-aspartate (NMDA) receptors, we discuss how NMDA receptor functioning might be involved in the effects of LiCl and MgCl(2) on the development of tolerance to the anticonvulsant effect of morphine.
Collapse
Affiliation(s)
- Abbas Ghasemi
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Seth V, Ahmad M, Upadhyaya P, Sharma M, Moghe V. Effect of potassium channel modulators on morphine withdrawal in mice. SUBSTANCE ABUSE-RESEARCH AND TREATMENT 2010; 4:61-6. [PMID: 22879744 PMCID: PMC3411524 DOI: 10.4137/sart.s6211] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The present study was conducted to investigate the effect of potassium channel openers and blockers on morphine withdrawal syndrome. Mice were rendered dependent on morphine by subcutaneous injection of morphine; four hours later, withdrawal was induced by using an opioid antagonist, naloxone. Mice were observed for 30 minutes for the withdrawal signs ie, the characteristic jumping, hyperactivity, urination and diarrhea. ATP-dependent potassium (K+ATP) channel modulators were injected intraperitoneally (i.p.) 30 minutes before the naloxone. It was found that a K+ATP channel opener, minoxidil (12.5–50 mg/kg i.p.), suppressed the morphine withdrawal significantly. On the other hand, the K+ATP channel blocker glibenclamide (12.5–50 mg/kg i.p.) caused a significant facilitation of the withdrawal. Glibenclamide was also found to abolish the minoxidil’s inhibitory effect on morphine withdrawal. The study concludes that K+ATP channels play an important role in the genesis of morphine withdrawal and K+ATP channel openers could be useful in the management of opioid withdrawal. As morphine opens K+ATP channels in neurons, the channel openers possibly act by mimicking the effects of morphine on neuronal K+ currents.
Collapse
Affiliation(s)
- Vikas Seth
- Pharmacology Department, Mahatma Gandhi Medical College, Jaipur, Rajasthan, India
| | | | | | | | | |
Collapse
|
14
|
Intracerebroventricular administration of riluzole prevents morphine-induced apoptosis in the lumbar region of the rat spinal cord. Pharmacol Rep 2010; 62:664-73. [DOI: 10.1016/s1734-1140(10)70323-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2009] [Revised: 01/19/2010] [Indexed: 11/23/2022]
|