1
|
Pastuszka A, Tobor S, Łoniewski I, Wierzbicka-Woś A, Sielatycka K, Styburski D, Cembrowska-Lech D, Koszutski T, Kurowicz M, Korlacka K, Podkówka A, Lemiński A, Brodkiewicz A, Hyla-Klekot L, Skonieczna-Żydecka K. Rewriting the urinary tract paradigm: the urobiome as a gatekeeper of host defense. Mol Biol Rep 2025; 52:497. [PMID: 40407923 PMCID: PMC12102141 DOI: 10.1007/s11033-025-10609-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 05/13/2025] [Indexed: 05/26/2025]
Abstract
The urobiome, or urinary tract microbiome, has emerged as a crucial component in maintaining urinary health and defending against infections. Recent advances in next-generation sequencing (NGS) have debunked the long-held belief that the urinary tract is sterile, revealing a unique ecosystem of microorganisms. The urobiome interacts with the urothelium and mucosa-associated lymphoid tissue (MALT) to support local immunity, playing an integral role in defending the urinary tract against pathogens. Through complex communication processes like quorum sensing, the urobiome regulates microbial behavior and controls interactions with host tissues, helping to prevent pathogen colonization and infection. However, dysbiosis in the urobiome can disrupt this balance, making the urinary tract more susceptible to infections, including urinary tract infections (UTIs). Studies have highlighted specific microbial compositions associated with both healthy and disease states, suggesting that shifts in the urobiome may correlate with various urological diseases. Furthermore, microbial diversity within the urinary tract differs by factors such as age and gender, reflecting the dynamic nature of the urobiome. Future research focusing on the interplay between the urobiome, host immune defenses, and pathogenic mechanisms may lead to innovative diagnostic and therapeutic approaches. Understanding how microbial composition changes during disease states could enable targeted treatments, potentially reducing reliance on antibiotics and minimizing resistance issues. The urobiome thus represents a promising frontier in urology, with implications for enhancing urinary health and treating infections more effectively.
Collapse
Affiliation(s)
- Agnieszka Pastuszka
- Chair and Department of Descriptive and Topographic Anatomy, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Katowice, Poland
| | - Szymon Tobor
- Department of Pediatric Surgery and Urology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Igor Łoniewski
- Department of Biochemical Science, Faculty of Health Sciences, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | | | - Katarzyna Sielatycka
- Sanprobi Sp. z. o. o sp. k., Szczecin, Poland
- Institute of Biology, Faculty of Exact and Natural Sciences, University of Szczecin, Szczecin, Poland
| | | | | | - Tomasz Koszutski
- Department of Pediatric Surgery and Urology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Marek Kurowicz
- Chair and Department of Descriptive and Topographic Anatomy, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Katowice, Poland
| | - Klaudia Korlacka
- Department of Pediatric Surgery and Urology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Albert Podkówka
- Department of Biochemical Science, Faculty of Health Sciences, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Artur Lemiński
- Department of Biochemical Science, Faculty of Health Sciences, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Andrzej Brodkiewicz
- Department of Pediatrics, Child Nephrology, Dialysotherapy and Management of Acute Poisoning, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Lidia Hyla-Klekot
- Department of Pediatric Surgery and Urology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Karolina Skonieczna-Żydecka
- Department of Biochemical Science, Faculty of Health Sciences, Pomeranian Medical University in Szczecin, Szczecin, Poland.
| |
Collapse
|
2
|
Bukhari Y, Chow R, Xiang AJ, Lemos N. Long-Term Antibiotics for Disturbed Bladder Microbiome Disorders. Int Urogynecol J 2025:10.1007/s00192-025-06145-7. [PMID: 40327075 DOI: 10.1007/s00192-025-06145-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 02/26/2025] [Indexed: 05/07/2025]
Abstract
INTRODUCTION AND HYPOTHESIS In recent years, there has been significant progress in understanding bladder disorders and their connection to the bladder microbiome. Emerging evidence suggests that the bladder microbiome, which is unique to each individual, plays a pivotal role in maintaining bladder health. Disruptions to the normal microbiome composition have been associated with various pathological conditions such as recurrent urinary tract infections, interstitial cystitis, and chronic recalcitrant cystitis. METHODS We completed a focused literature review to collect studies that evaluated the use of antibiotics for long-term treatment (more than 28 days) of infectious/inflammatory disturbed bladder microbiome DBM disorders. RESULTS: This article reviews current literature on the composition of the bladder microbiome, describes the disorders associated with DBM, explores the utility of long-term antibiotics in managing DBM, and foresees future venues for DBM disorders research. CONCLUSION This review has demonstrated encouraging outcomes regarding the use of long-term antibiotics in managing infectious disorders of DBM, such as recurrent urinary tract infections and chronic recalcitrant cystitis, while no benefit was seen in interstitial cystitis patients. The studies showed that long-term cephalexin, fluoroquinolones, and fosfomycin are well-tolerated and effective options, with cephalexin being favored given its low side-effect profile.
Collapse
Affiliation(s)
- Yasir Bukhari
- Department of Obstetrics and Gynecology, King Abdulaziz University, Jeddah, Saudi Arabia.
- Department of Obstetrics and Gynecology, Women's College Hospital, Mount Sinai Hospital, University of Toronto, Toronto, Canada.
- Mount Sinai Hospital, 600 University Avenue, Toronto, ON, Canada.
| | - Ryan Chow
- Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | | | - Nucelio Lemos
- Department of Obstetrics and Gynecology, Women's College Hospital, Mount Sinai Hospital, University of Toronto, Toronto, Canada
- Division of Pelvic Neurodysfunction, Department of Gynecology, Federal University of São Paulo, São Paulo , Brazil
- Institute for Care and Rehabilitation in Neuropelveology and Gynecology - Increasing, São Paulo, Brazil
| |
Collapse
|
3
|
Jendraszak M, Skibińska I, Kotwicka M, Andrusiewicz M. The elusive male microbiome: revealing the link between the genital microbiota and fertility. Critical review and future perspectives. Crit Rev Clin Lab Sci 2024; 61:559-587. [PMID: 38523477 DOI: 10.1080/10408363.2024.2331489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/19/2024] [Accepted: 03/13/2024] [Indexed: 03/26/2024]
Abstract
There is a growing focus on understanding the role of the male microbiome in fertility issues. Although research on the bacterial communities within the male reproductive system is in its initial phases, recent discoveries highlight notable variations in the microbiome's composition and abundance across distinct anatomical regions like the skin, foreskin, urethra, and coronary sulcus. To assess the relationship between male genitourinary microbiome and reproduction, we queried various databases, including MEDLINE (available via PubMed), SCOPUS, and Web of Science to obtain evidence-based data. The literature search was conducted using the following terms "gut/intestines microbiome," "genitourinary system microbiome," "microbiome and female/male infertility," "external genital tract microbiome," "internal genital tract microbiome," and "semen microbiome." Fifty-one relevant papers were analyzed, and eleven were strictly semen quality or male fertility related. The male microbiome, especially in the accessory glands like the prostate, seminal vesicles, and bulbourethral glands, has garnered significant interest because of its potential link to male fertility and reproduction. Studies have also found differences in bacterial diversity present in the testicular tissue of normozoospermic men compared to azoospermic suggesting a possible role of bacterial dysbiosis and reproduction. Correlation between the bacterial taxa in the genital microbiota of sexual partners has also been found, and sexual activity can influence the composition of the urogenital microbiota. Exploring the microbial world within the male reproductive system and its influence on fertility opens doors to developing ways to prevent, diagnose, and treat infertility. The present work emphasizes the importance of using consistent methods, conducting long-term studies, and deepening our understanding of how the reproductive tract microbiome works. This helps make research comparable, pinpoint potential interventions, and smoothly apply microbiome insights to real-world clinical practices.
Collapse
Affiliation(s)
- Magdalena Jendraszak
- Chair and Department of Cell Biology, Poznan University of Medical Sciences, Poznań, Poland
| | - Izabela Skibińska
- Chair and Department of Cell Biology, Poznan University of Medical Sciences, Poznań, Poland
| | - Małgorzata Kotwicka
- Chair and Department of Cell Biology, Poznan University of Medical Sciences, Poznań, Poland
| | - Mirosław Andrusiewicz
- Chair and Department of Cell Biology, Poznan University of Medical Sciences, Poznań, Poland
| |
Collapse
|
4
|
Ling J, Hryckowian AJ. Re-framing the importance of Group B Streptococcus as a gut-resident pathobiont. Infect Immun 2024; 92:e0047823. [PMID: 38436256 PMCID: PMC11392526 DOI: 10.1128/iai.00478-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024] Open
Abstract
Streptococcus agalactiae (Group B Streptococcus, GBS) is a Gram-positive bacterial species that causes disease in humans across the lifespan. While antibiotics are used to mitigate GBS infections, it is evident that antibiotics disrupt human microbiomes (which can predispose people to other diseases later in life), and antibiotic resistance in GBS is on the rise. Taken together, these unintended negative impacts of antibiotics highlight the need for precision approaches for minimizing GBS disease. One possible approach involves selectively depleting GBS in its commensal niches before it can cause disease at other body sites or be transmitted to at-risk individuals. One understudied commensal niche of GBS is the adult gastrointestinal (GI) tract, which may predispose colonization at other body sites in individuals at risk for GBS disease. However, a better understanding of the host-, microbiome-, and GBS-determined variables that dictate GBS GI carriage is needed before precise GI decolonization approaches can be developed. In this review, we synthesize current knowledge of the diverse body sites occupied by GBS as a pathogen and as a commensal. We summarize key molecular factors GBS utilizes to colonize different host-associated niches to inform future efforts to study GBS in the GI tract. We also discuss other GI commensals that are pathogenic in other body sites to emphasize the broader utility of precise de-colonization approaches for mitigating infections by GBS and other bacterial pathogens. Finally, we highlight how GBS treatments could be improved with a more holistic understanding of GBS enabled by continued GI-focused study.
Collapse
Affiliation(s)
- Joie Ling
- Department of
Medicine, Division of Gastroenterology and Hepatology, University of
Wisconsin School of Medicine and Public
Health, Madison,
Wisconsin, USA
- Department of Medical
Microbiology and Immunology, University of Wisconsin School of Medicine
and Public Healthon,
Madison, Wisconsin, USA
- Microbiology Doctoral
Training Program, University of
Wisconsin-Madison, Madison,
Wisconsin, USA
| | - Andrew J. Hryckowian
- Department of
Medicine, Division of Gastroenterology and Hepatology, University of
Wisconsin School of Medicine and Public
Health, Madison,
Wisconsin, USA
- Department of Medical
Microbiology and Immunology, University of Wisconsin School of Medicine
and Public Healthon,
Madison, Wisconsin, USA
| |
Collapse
|
5
|
Naji A, Siskin D, Woodworth MH, Lee JR, Kraft CS, Mehta N. The Role of the Gut, Urine, and Vaginal Microbiomes in the Pathogenesis of Urinary Tract Infection in Women and Consideration of Microbiome Therapeutics. Open Forum Infect Dis 2024; 11:ofae471. [PMID: 39247802 PMCID: PMC11378400 DOI: 10.1093/ofid/ofae471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 08/15/2024] [Indexed: 09/10/2024] Open
Abstract
The gut, urine, and vaginal microbiomes play significant roles in the pathogenesis of recurrent urinary tract infections (rUTIs). Analysis of these microbiota has shown distinct associations with urinary tract infections. Encouraging data indicate that rUTIs may be responsive to microbiome treatments such as fecal microbiota transplantation, expanding potential treatments beyond antibiotics, hydration, and behavioral interventions. If successful, these nonantibiotic therapies have the potential to increase time between rUTI episodes and reduce the prevalence of multidrug-resistant organisms. In this review, we discuss the role of the 3 microbiomes in the pathogenesis of rUTI and utilization of live biotherapeutic products as therapy for rUTI.
Collapse
Affiliation(s)
- Amal Naji
- Piedmont Hospital, Atlanta, Georgia, USA
| | | | - Michael H Woodworth
- Division of Infectious Diseases, Department of Medicine, Emory University, Atlanta, Georgia, USA
| | - John R Lee
- Division of Nephrology and Hypertension, Weill Cornell Medicine, New York, New York, USA
| | - Colleen S Kraft
- Division of Infectious Diseases, Department of Medicine, Emory University, Atlanta, Georgia, USA
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia, USA
| | - Nirja Mehta
- Division of Infectious Diseases, Department of Medicine, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
6
|
Razi A, Ghiaei A, Dolatabadi FK, Haghighi R. Unraveling the association of bacteria and urinary stones in patients with urolithiasis: an update review article. Front Med (Lausanne) 2024; 11:1401808. [PMID: 39281813 PMCID: PMC11392849 DOI: 10.3389/fmed.2024.1401808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 08/14/2024] [Indexed: 09/18/2024] Open
Abstract
Urinary stone disease (USD) is a prevalent urological condition, ranking as one of the most common urinary tract disorders globally. Various risk factors influence the formation of kidney stones, and recent research indicates a rising prevalence of urolithiasis worldwide, particularly in developing countries. While the morbidity associated with urinary stones has decreased in recent years, long-term complications such as stone recurrence, kidney failure, and uremia continue to burden patients. Understanding the etiologies of urolithiasis, including the role of bacteria, is crucial as they can contribute to stone recurrence. The incidence of urinary tract infection (UTI) stones can be attributed to specific infectious risk factors, socio-demographic factors, and comorbid metabolic disorders. This review article explores the emerging evidence suggesting the involvement of bacteria in USD. It discusses the potential role of microorganisms in non-infection stones and highlights the association between UTIs and urolithiasis. Furthermore, it surveys the relationship between kidney stones and recurrent UTIs and the formation of bacterial biofilms in UTIs. Considering various risk factors, including biochemical stone analysis and the presence of bacteria, is essential for treating patients with infectious stones optimally. This review aims to provide an updated understanding of the association between bacteria and urinary stones in patients with urolithiasis, shedding light on the pathophysiology of urinary stone formation, urinary stone characteristics, and the urinary microbiome in urinary stones.
Collapse
Affiliation(s)
- Abdolah Razi
- Department of Urology, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Azita Ghiaei
- Department of Microbiology, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran
| | - Fahimeh Kamali Dolatabadi
- Department of Cell and Molecular Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Ramin Haghighi
- Department of Urology, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| |
Collapse
|
7
|
Chatterjee P, Aziz IA, Singh A, Singh A. Microbiome in Teenagers – Acquisition and Development. LIFESTYLE DISEASES IN ADOLESCENTS: DISEASES, DISORDERS, AND PREVENTIVE MEASURES 2024:1-13. [DOI: 10.2174/9789815274431124010003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
Adolescence is the stage of life between childhood and adulthood, ranging
from 10 to 19 years. It is a distinct period in human development and crucial for setting
the groundwork for long-term health. Teenagers grow quickly in terms of their
physical, cognitive, and emotional development.In the body of teenagers, major
changes in microorganisms take place. With the development of these changes in the
microbiome of teenagers, diseases are also developed. Teenagers are the future of the
world. Microbiota and diseases have an impact on their emotions, thoughts, decisions,
and interactions with others and their environment. This chapter is written to
acknowledge the readers about the resident microorganisms of the human body during
adolescence and the many kinds of changes that occur in the microbiome due to
lifestyle changes.
Collapse
Affiliation(s)
- Pallabi Chatterjee
- School of Health Sciences and Technology, University of Petroleum and Energy Studies (UPES),
Dehradun, India
| | - Isra Aman Aziz
- Amity Institute of Biotechnology, Amity University Uttar Pradesh Lucknow Campus, Lucknow 226028, India
| | - Amarjit Singh
- Department of Centre for Medical Biotechnology, Maharshi Dayanand University, Rohtak,
Haryana, India
| | - Aditi Singh
- Amity Institute of Biotechnology, Amity University Uttar Pradesh Lucknow Campus, Lucknow 226028, India
| |
Collapse
|
8
|
Joubran P, Roux FA, Serino M, Deschamps JY. Gut and Urinary Microbiota in Cats with Kidney Stones. Microorganisms 2024; 12:1098. [PMID: 38930480 PMCID: PMC11205531 DOI: 10.3390/microorganisms12061098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/10/2024] [Accepted: 05/20/2024] [Indexed: 06/28/2024] Open
Abstract
Upper urinary tract urolithiasis is an emerging disease in cats, with 98% of kidney stones composed of calcium oxalate. In humans, disturbances in the intestinal and urinary microbiota are suspected to contribute to the formation of calcium oxalate stones. We hypothesized that similar mechanisms may be at play in cats. This study examines the intestinal and urinary microbiota of nine cats with kidney stones compared to nine healthy cats before, during, and after treatment with the antibiotic cefovecin, a cephalosporin. Initially, cats with kidney stones displayed a less diverse intestinal microbiota. Antibiotic treatment reduced microbiota diversity in both groups. The absence of specific intestinal bacteria could lead to a loss of the functions these bacteria perform, such as oxalate degradation, which may contribute to the formation of calcium oxalate stones. This study confirms the presence of a distinct urobiome in cats with kidney stones, characterized by greater richness and diversity compared to healthy cats. These findings highlight the potential of microbiota modulation as a strategy to prevent renal lithiasis in cats.
Collapse
Affiliation(s)
- Patrick Joubran
- Nutrition, PathoPhysiology and Pharmacology (NP3) Unit, Oniris VetAgro Bio, Nantes-Atlantic College of Veterinary Medicine, Food Science and Engineering, La Chantrerie, CEDEX 03, 44 307 Nantes, France; (P.J.); (F.A.R.)
| | - Françoise A. Roux
- Nutrition, PathoPhysiology and Pharmacology (NP3) Unit, Oniris VetAgro Bio, Nantes-Atlantic College of Veterinary Medicine, Food Science and Engineering, La Chantrerie, CEDEX 03, 44 307 Nantes, France; (P.J.); (F.A.R.)
- Emergency and Critical Care Unit, Oniris VetAgro Bio, Nantes-Atlantic College of Veterinary Medicine, Food Science and Engineering, La Chantrerie, CEDEX 03, 44 307 Nantes, France
| | - Matteo Serino
- IRSD, Institut de Recherche en Santé Digestive, Institut National de la Santé et de la Recherche Médicale (INSERM) U1220, Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Ecole Nationale Vétérinaire de Toulouse (ENVT), Université de Toulouse III-Paul Sabatier (UPS), CS 60039, 31 024 Toulouse, France
| | - Jack-Yves Deschamps
- Nutrition, PathoPhysiology and Pharmacology (NP3) Unit, Oniris VetAgro Bio, Nantes-Atlantic College of Veterinary Medicine, Food Science and Engineering, La Chantrerie, CEDEX 03, 44 307 Nantes, France; (P.J.); (F.A.R.)
- Emergency and Critical Care Unit, Oniris VetAgro Bio, Nantes-Atlantic College of Veterinary Medicine, Food Science and Engineering, La Chantrerie, CEDEX 03, 44 307 Nantes, France
| |
Collapse
|
9
|
Ljubetic BM, Mohammad A, Durrani B, Dobberfuhl AD. Pathophysiologic Insights into the Transition from Asymptomatic Bacteriuria to Urinary Tract Infection. Curr Urol Rep 2023; 24:533-540. [PMID: 37856072 DOI: 10.1007/s11934-023-01183-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/22/2023] [Indexed: 10/20/2023]
Abstract
PURPOSE OF REVIEW Asymptomatic bacteriuria (ASB) can be found in the general population but it is more common in catheterized patients. Some patients develop urinary tract infections (UTI) and others stay asymptomatic throughout time. The scientific community lacks a pathophysiologic explanation of why asymptomatic bacteriuria stays asymptomatic most of the time, and why and how it sometimes transitions to UTI. In an attempt to bridge this gap in knowledge, a summary of the current literature is conducted on the pathophysiologic differences between ASB and UTI, beyond their clinical differences. RECENT FINDINGS ASB and UTI cannot be differentiated just by their phylogroup or number of virulence factors. The difference may be in their metabolism gene expression. The literature lacks a pathophysiological explanation of the transition from ASB to UTI, and recent discoveries suggest that metabolic gene expression may hold the key.
Collapse
Affiliation(s)
- Bernardita M Ljubetic
- Department of Urology, Center for Academic Medicine, Urology-5656, Stanford University School of Medicine, 453 Quarry Road, Palo Alto, CA, 94304, USA
| | - Ashu Mohammad
- Department of Urology, Center for Academic Medicine, Urology-5656, Stanford University School of Medicine, 453 Quarry Road, Palo Alto, CA, 94304, USA
| | - Butool Durrani
- Department of Internal Medicine, Aga Khan University Hospital, National Stadium Rd, Karachi, Karachi City, Pakistan
| | - Amy D Dobberfuhl
- Department of Urology, Center for Academic Medicine, Urology-5656, Stanford University School of Medicine, 453 Quarry Road, Palo Alto, CA, 94304, USA.
| |
Collapse
|
10
|
Cho YJ, Shin B, Lee SH, Park S, Kim YK, Kim JJ, Kim E. Altered Urine Microbiome in Male Children and Adolescents with Attention-Deficit Hyperactivity Disorder. Microorganisms 2023; 11:2063. [PMID: 37630623 PMCID: PMC10458914 DOI: 10.3390/microorganisms11082063] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/26/2023] [Accepted: 08/03/2023] [Indexed: 08/27/2023] Open
Abstract
While interest in developing the human microbiome as a biomarker for attention-deficit hyperactivity disorder (ADHD) is increasing, there has been limited exploration in utilizing urine samples. In this study, we analysed urine microbiome profiles by extracting 16S ribosomal DNA from purified bacteria-derived extracellular membrane vesicles obtained from urine samples. Sequencing libraries were constructed by amplifying V3-V4 hypervariable regions sequenced using Illumina MiSeq. Profiles of male Korean children and adolescents with ADHD (n = 33) were compared with healthy sex-matched controls (n = 39). Statistically controlling for age, we found decreased alpha diversity in the urine bacteria of the ADHD group, as evidenced by reduced Shannon and Simpson indices (p < 0.05), and significant differences in beta diversity between the two groups (p < 0.001). The phyla Firmicutes and Actinobacteriota, as well as the genera Ralstonia and Afipia, were relatively more abundant in the ADHD group. The phylum Proteobacteria and the genera Corynebacterium and Peptoniphilus were more abundant in the control group. Notably, the genus Afipia exhibited significant correlations with the Child Behavior Checklist Attention Problems score and DSM-oriented ADHD subscale. This study is the first to propose the urine microbiome as a potential biomarker for pediatric ADHD.
Collapse
Affiliation(s)
- Yoon Jae Cho
- Department of Psychiatry, College of Medicine, Yonsei University, Seoul 06273, Republic of Korea
| | - Bokyoung Shin
- Department of Psychiatry, College of Medicine, Yonsei University, Seoul 06273, Republic of Korea
| | - Sung-Ha Lee
- Center for Happiness Studies, Seoul National University, Seoul 08826, Republic of Korea
| | - Sangmin Park
- Interdisciplinary Program in Neuroscience, Seoul National University, Seoul 08826, Republic of Korea
| | | | - Jae-Jin Kim
- Department of Psychiatry, College of Medicine, Yonsei University, Seoul 06273, Republic of Korea
- Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul 06273, Republic of Korea
| | - Eunjoo Kim
- Department of Psychiatry, College of Medicine, Yonsei University, Seoul 06273, Republic of Korea
- Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul 06273, Republic of Korea
| |
Collapse
|
11
|
Colella M, Topi S, Palmirotta R, D’Agostino D, Charitos IA, Lovero R, Santacroce L. An Overview of the Microbiota of the Human Urinary Tract in Health and Disease: Current Issues and Perspectives. Life (Basel) 2023; 13:1486. [PMID: 37511861 PMCID: PMC10381901 DOI: 10.3390/life13071486] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/09/2023] [Accepted: 06/23/2023] [Indexed: 07/30/2023] Open
Abstract
This article is intended to deepen our knowledge to date regarding the functions of the resident microbiota/microbiome in the urinary system for human health and disease. First, we sought to report the general characteristics (composition and stability) of the normal urinary system microbiota in the different anatomical sites in relation to some factors such as the effect of age, gender and diet, analyzing in detail the functions and the composition of the microbiota in the light of current knowledge. Several pieces of evidence suggest the importance of preserving the micro-ecosystem of the urinary system, and in some cases their relationship with diseases is important for maintaining human health is well understood. The female and male reproductive microbiota have mainly been studied over the past decade. In the past, the arrest was thought to have taken place in a sterile environment. Microorganisms of the microbiota form biofilms, three-dimensional structures, that differ in the reproductive organs and interact with both gametes and the embryo as well as with maternal tissues. These biofilms from the reproductive system also interact with others, such as that of the gastrointestinal tract. Reduction in its diversity intestinal microbiota can disrupt estrogen metabolism and affect the reproductive microbiota. It is therefore understood that its quantitative and qualitative identification is important for microbiota, but also the study of the structures formed by the microorganisms. A dysbiosis with local or systemic causes can lead to serious diseases. The role of probiotics in maintaining microbial population harmony (eubiosis) and preventing certain pathologies of the urinary and reproductive system was also investigated. A negative variation in the qualitative and quantitative composition of certain strains of microorganisms (dysbiosis) due to local or systemic causes can even lead to serious diseases. The role of probiotics in maintaining the healthy balance of microorganism populations (eubiosis), and thus in the prevention of certain pathologies of the urinary and reproductive system, has also been studied.
Collapse
Affiliation(s)
- Marica Colella
- Microbiology and Virology Unit, Interdisciplinary Department of Medicine, University of Bari “Aldo Moro”, Piazza G. Cesare, 11, 70124 Bari, Italy (R.P.)
| | - Skender Topi
- Department of Clinical Disciplines, School of Technical Medical Sciences, University of Elbasan “A. Xhuvani”, 3001 Elbasan, Albania; (S.T.)
| | - Raffaele Palmirotta
- Microbiology and Virology Unit, Interdisciplinary Department of Medicine, University of Bari “Aldo Moro”, Piazza G. Cesare, 11, 70124 Bari, Italy (R.P.)
| | - Donato D’Agostino
- Department of Clinical Disciplines, School of Technical Medical Sciences, University of Elbasan “A. Xhuvani”, 3001 Elbasan, Albania; (S.T.)
| | - Ioannis Alexandros Charitos
- Respiratory Rehabilitation Unit, Clinical Scientific Institutes Maugeri (IRCCS), Section of Bari, 70124 Bari, Italy
| | - Roberto Lovero
- AOU Policlinico Consorziale di Bari-Ospedale Giovanni XXIII, Clinical Pathology Unit, Policlinico University Hospital of Bari, 70124 Bari, Italy
| | - Luigi Santacroce
- Microbiology and Virology Unit, Interdisciplinary Department of Medicine, University of Bari “Aldo Moro”, Piazza G. Cesare, 11, 70124 Bari, Italy (R.P.)
- Department of Clinical Disciplines, School of Technical Medical Sciences, University of Elbasan “A. Xhuvani”, 3001 Elbasan, Albania; (S.T.)
| |
Collapse
|
12
|
Chen X, Cheng Y, Tian X, Li J, Ying X, Zhao Q, Wang M, Liu Y, Qiu Y, Yan X, Ren X. Urinary microbiota and metabolic signatures associated with inorganic arsenic-induced early bladder lesions. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 259:115010. [PMID: 37211000 DOI: 10.1016/j.ecoenv.2023.115010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 05/03/2023] [Accepted: 05/10/2023] [Indexed: 05/23/2023]
Abstract
Inorganic arsenic (iAs) contamination in drinking water is a global public health problem, and exposure to iAs is a known risk factor for bladder cancer. Perturbation of urinary microbiome and metabolome induced by iAs exposure may have a more direct effect on the development of bladder cancer. The aim of this study was to determine the impact of iAs exposure on urinary microbiome and metabolome, and to identify microbiota and metabolic signatures that are associated with iAs-induced bladder lesions. We evaluated and quantified the pathological changes of bladder, and performed 16S rDNA sequencing and mass spectrometry-based metabolomics profiling on urine samples from rats exposed to low (30 mg/L NaAsO2) or high (100 mg/L NaAsO2) iAs from early life (in utero and childhood) to puberty. Our results showed that iAs induced pathological bladder lesions, and more severe effects were noticed in the high-iAs group and male rats. Furthermore, six and seven featured urinary bacteria genera were identified in female and male offspring rats, respectively. Several characteristic urinary metabolites, including Menadione, Pilocarpine, N-Acetylornithine, Prostaglandin B1, Deoxyinosine, Biopterin, and 1-Methyluric acid, were identified significantly higher in the high-iAs groups. In addition, the correlation analysis demonstrated that the differential bacteria genera were highly correlated with the featured urinary metabolites. Collectively, these results suggest that exposure to iAs in early life not only causes bladder lesions, but also perturbs urinary microbiome composition and associated metabolic profiles, which shows a strong correlation. Those differential urinary genera and metabolites may contribute to bladder lesions, suggesting a potential for development of urinary biomarkers for iAs-induced bladder cancer.
Collapse
Affiliation(s)
- Xushen Chen
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China; Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY, United States
| | - Ying Cheng
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xiaolin Tian
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China; School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Jia Li
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xiaodong Ying
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Qiuyi Zhao
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Meng Wang
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yan Liu
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yulan Qiu
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xiaoyan Yan
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xuefeng Ren
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China; Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY, United States.
| |
Collapse
|
13
|
Emami E, Mt Sherwin C, Heidari-Soureshjani S. Effect of Probiotics on Urinary Tract Infections in Children: A Systematic Review and Meta-Analysis. Curr Rev Clin Exp Pharmacol 2023; 19:111-121. [PMID: 35507743 DOI: 10.2174/2772432817666220501114505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 02/21/2022] [Accepted: 03/14/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Urinary tract infections (UTIs) are the most prevalent bacterial infections that occur in children worldwide. OBJECTIVE This meta-analysis aims to investigate the utility of probiotics as preventive therapy in children with a UTI. METHODS The Web of Science, PubMed, and Scopus were searched for articles that investigated the relationship between probiotic consumption and the risk of UTIs. The quality of the articles was evaluated using the Jadad scale. The pooled odds ratio (OR) and 95% confidence interval (CI) were calculated using a random-effects model. Subgroup analyses and sensitivity analyses were also conducted. The Cochran Q test and the statistic I2 were used to evaluate heterogeneity. To determine any potential publication bias, the Egger's and Begg's tests were used. RESULTS In total, eleven studies were selected for the systematic review and meta-analysis. Compared to children who did not receive probiotics, the OR of developing or having a recurring urinary tract infection in those who received probiotics was 0.94 (95% CI; 0.88-0.999; p-value=0.046). The Begg's and Egger's tests showed no evidence of publication bias between probiotics and the risk of developing new or recurring urinary tract infections. CONCLUSION Based on this systematic review and meta-analysis, probiotics could be an alternative therapy for children who are at risk of developing a UTI. They are non-pharmaceutical options and could be used as natural prophylaxis for UTIs. However, the currently published evidence does not irrefutably confirm that probiotics provide a protective effect against urinary bacterial infections. Therefore, there need to be large-scale randomized clinical trials undertaken to investigate the possible prophylaxis of probiotics.
Collapse
Affiliation(s)
- Elham Emami
- Emam Hossein Educational Hospital, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Catherine Mt Sherwin
- Department of Pediatrics, Clinical Pharmacology, Wright State University Boonshoft School of Medicine, Dayton Children's Hospital, One Children's Plaza, Dayton, Ohio, USA
| | | |
Collapse
|
14
|
Microbiota and prostate cancer. Semin Cancer Biol 2022; 86:1058-1065. [PMID: 34536504 DOI: 10.1016/j.semcancer.2021.09.007] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 09/10/2021] [Accepted: 09/11/2021] [Indexed: 01/27/2023]
Abstract
Prostate cancer remains the most frequently diagnosed non-skin malignancy in male patients, still representing one of the main causes of cancer-related death worldwide. Evidence is mounting that suggests the putative role of microbiota in the carcinogenesis as well as in modulating the efficacy and activity of anticancer treatments (e.g., chemotherapy, immune checkpoint inhibitors, targeted therapies) in a large number of hematological and solid tumors. However, few data are available regarding the interactions between prostate cancer and microbiome so far, in particular in terms of the impact of microbiota on disease development, pathogenesis, and response to medical treatments in this genitourinary malignancy. Herein, we provide an overview of current knowledge, novel insights and emerging therapeutic approaches related to gastrointestinal and genitourinary microbiome in prostate cancer patients, especially focusing on available evidence and published trials on this topic.
Collapse
|
15
|
Pallares-Mendez R, Cervantes-Miranda DE, Gonzalez-Colmenero AD, Ochoa-Arvizo MA, Gutierrez-Gonzalez A. A Perspective of the Urinary Microbiome in Lower Urinary Tract Infections - A Review. Curr Urol Rep 2022; 23:235-244. [PMID: 36053406 DOI: 10.1007/s11934-022-01108-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2022] [Indexed: 11/24/2022]
Abstract
PURPOSE OF REVIEW Greater availability of sequencing methods has broadened the knowledge of the urinary microbiome in an environment previously believed to be sterile. This review discusses internal and external influences that promote either a balance or a dysbiosis of the urinary tract and the future perspectives in understanding lower urinary tract infections. RECENT FINDINGS Efforts have been made to identify a "core" urinary microbiome in which Firmicutes and Bacteroidetes account for most of the bacterial representations. A shift to a Proteobacteria-dominant representation shapes the fingerprint of the infectious urinary microbiome; furthermore, the virome and the mycobiome are important modulators of the urinary microbiome, which have been recently explored to determine their role in the health-disease process of the lower urinary tract. A disturbance of bacterial representation and diversity triggers a transition from health to disease; conversely, a functional cooperative interplay between the host and microbiome allows for basic metabolic and immune functions to take place.
Collapse
Affiliation(s)
- Rigoberto Pallares-Mendez
- Department of Urology, Hospital Universitario "Dr. José Eleuterio González", Universidad Autonoma de Nuevo Leon, Monterrey, Mexico.
| | - Daniel E Cervantes-Miranda
- Department of Urology, Hospital Universitario "Dr. José Eleuterio González", Universidad Autonoma de Nuevo Leon, Monterrey, Mexico
| | | | - Mario A Ochoa-Arvizo
- Department of Urology, Hospital Universitario "Dr. José Eleuterio González", Universidad Autonoma de Nuevo Leon, Monterrey, Mexico
| | - Adrian Gutierrez-Gonzalez
- Department of Urology, Hospital Universitario "Dr. José Eleuterio González", Universidad Autonoma de Nuevo Leon, Monterrey, Mexico
| |
Collapse
|
16
|
Dash HR, Das S. Microbial community signatures for estimation of postmortem time intervals. ADVANCES IN APPLIED MICROBIOLOGY 2022; 118:91-113. [PMID: 35461664 DOI: 10.1016/bs.aambs.2022.02.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The human body provides a complex ecosystem for symbiotic habitation of a huge number of microorganisms. These commensal microorganisms provide a huge benefit to the living host by acting against many deadly infections. Once the host dies, many changes in the complex ecosystem of the human body take place. The personalized microbes of a human body undergo successional change as many exogenous microbes attack the nutrient-rich cadaver after death. The succession pattern change of microbes in human cadaver allows postulating different models for estimation of Postmortem time interval (PMI). Estimation of PMI has a broad prospect from the criminal investigation point of view. Though many techniques are being used nowadays to estimate PMI, all of them have their pros and cons. With the advent of advanced molecular biological techniques, studies on the thanatomicrobiome of a human cadaver have gained pace and provide a superior alternative for conventional methods of PMI estimation. This chapter summarizes the recent advancements in the changes in signature microflora postmortem with change in human microenvironment to postulate a consensus model for estimation of PMI.
Collapse
Affiliation(s)
- Hirak Ranjan Dash
- DNA Fingerprinting Unit, Forensic Science Laboratory, Bhopal, Madhya Pradesh, India.
| | - Surajit Das
- Department of Life Science, National Institute of Technology, Rourkela, Odisha, India.
| |
Collapse
|
17
|
Zarei A, Javid H, Sanjarian S, Senemar S, Zarei H. Metagenomics studies for the diagnosis and treatment of prostate cancer. Prostate 2022; 82:289-297. [PMID: 34855234 DOI: 10.1002/pros.24276] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 11/09/2021] [Accepted: 11/19/2021] [Indexed: 12/19/2022]
Abstract
AIM Mutation occurs in the prostate cell genes, leading to abnormal prostate proliferation and ultimately cancer. Prostate cancer (PC) is one of the most common cancers amongst men, and its prevalence worldwide increases relative to men's age. About 16% of the world's cancers are the result of microbes in the human body. Impaired population balance of symbiosis microbes in the human reproductive system is linked to PC development. DISCUSSION With the advent of metagenomics science, the genome sequence of the microbiota of the human body has been unveiled. Therefore, it is now possible to identify a higher range of microbiome changes in PC tissue via the Next Generation Technique, which will have positive consequences in personalized medicine. In this review, we intend to question the role of metagenomics studies in the diagnosis and treatment of PC. CONCLUSION The microbial imbalance in the men's genital tract might have an effect on prostate health. Based on next-generation sequencing-generated data, Proteobacteria, Firmicutes, Actinobacteria, and Bacteriodetes are the nine frequent phyla detected in a PC sample, which might be involved in inducing mutation in the prostate cells that cause cancer.
Collapse
Affiliation(s)
- Ali Zarei
- Department of Human Genetics, Iranian Academic Center for Education, Culture and Research (ACECR)-Fars Branch Institute for Human Genetics Research, Shiraz, Iran
| | - Hossein Javid
- Department of Human Genetics, Iranian Academic Center for Education, Culture and Research (ACECR)-Fars Branch Institute for Human Genetics Research, Shiraz, Iran
| | - Sara Sanjarian
- Department of Human Genetics, Iranian Academic Center for Education, Culture and Research (ACECR)-Fars Branch Institute for Human Genetics Research, Shiraz, Iran
| | - Sara Senemar
- Department of Human Genetics, Iranian Academic Center for Education, Culture and Research (ACECR)-Fars Branch Institute for Human Genetics Research, Shiraz, Iran
| | - Hanieh Zarei
- Department of Physical Therapy, School of Rehabilitation Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
18
|
The urobiome, urinary tract infections, and the need for alternative therapeutics. Microb Pathog 2021; 161:105295. [PMID: 34801647 DOI: 10.1016/j.micpath.2021.105295] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 10/26/2021] [Accepted: 11/15/2021] [Indexed: 12/16/2022]
Abstract
Improvements in bacterial culturing and DNA sequencing techniques have revealed a diverse, and hitherto unknown, urinary tract microbiome (urobiome). The potential role of this microbial community in contributing to health and disease, particularly in the context of urinary tract infections (UTIs) is of significant clinical importance. However, while several studies have confirmed the existence of a core urobiome, the role of its constituent microbes is not yet fully understood, particularly in the context of health and disease. Herein, we review the current state of the art, concluding that the urobiome represents an important component of the body's innate immune defences, and a potentially rich resource for the development of alternative treatment and control strategies for UTIs.
Collapse
|
19
|
Jayalath S, Magana-Arachchi D. Dysbiosis of the Human Urinary Microbiome and its Association to Diseases Affecting the Urinary System. Indian J Microbiol 2021; 62:153-166. [DOI: 10.1007/s12088-021-00991-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 11/02/2021] [Indexed: 12/15/2022] Open
|
20
|
Zheng S, Carugo D, Mosayyebi A, Turney B, Burkhard F, Lange D, Obrist D, Waters S, Clavica F. Fluid mechanical modeling of the upper urinary tract. WIREs Mech Dis 2021; 13:e1523. [PMID: 34730288 DOI: 10.1002/wsbm.1523] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 12/20/2022]
Abstract
The upper urinary tract (UUT) consists of kidneys and ureters, and is an integral part of the human urogenital system. Yet malfunctioning and complications of the UUT can happen at all stages of life, attributed to reasons such as congenital anomalies, urinary tract infections, urolithiasis and urothelial cancers, all of which require urological interventions and significantly compromise patients' quality of life. Therefore, many models have been developed to address the relevant scientific and clinical challenges of the UUT. Of all approaches, fluid mechanical modeling serves a pivotal role and various methods have been employed to develop physiologically meaningful models. In this article, we provide an overview on the historical evolution of fluid mechanical models of UUT that utilize theoretical, computational, and experimental approaches. Descriptions of the physiological functionality of each component are also given and the mechanical characterizations associated with the UUT are provided. As such, it is our aim to offer a brief summary of the current knowledge of the subject, and provide a comprehensive introduction for engineers, scientists, and clinicians who are interested in the field of fluid mechanical modeling of UUT. This article is categorized under: Cancer > Biomedical Engineering Infectious Diseases > Biomedical Engineering Reproductive System Diseases > Biomedical Engineering.
Collapse
Affiliation(s)
- Shaokai Zheng
- ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland
| | - Dario Carugo
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, London, UK
| | - Ali Mosayyebi
- Bioengineering Sciences, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, UK
| | - Ben Turney
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Fiona Burkhard
- Department of Urology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Dirk Lange
- The Stone Centre at Vancouver General Hospital, Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Dominik Obrist
- ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland
| | - Sarah Waters
- Oxford Centre for Industrial and Applied Mathematics, Mathematical Institute, University of Oxford, Oxford, UK
| | - Francesco Clavica
- ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland
| |
Collapse
|
21
|
Huang X, Pan T, Yan L, Jin T, Zhang R, Chen B, Feng J, Duan T, Xiang Y, Zhang M, Chen X, Yang Z, Zhang W, Ding X, Xie T, Sui X. The inflammatory microenvironment and the urinary microbiome in the initiation and progression of bladder cancer. Genes Dis 2021; 8:781-797. [PMID: 34522708 PMCID: PMC8427242 DOI: 10.1016/j.gendis.2020.10.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 10/05/2020] [Accepted: 10/06/2020] [Indexed: 12/24/2022] Open
Abstract
Accumulating evidence suggests that chronic inflammation may play a critical role in various malignancies, including bladder cancer. This hypothesis stems in part from inflammatory cells observed in the urethral microenvironment. Chronic inflammation may drive neoplastic transformation and the progression of bladder cancer by activating a series of inflammatory molecules and signals. Recently, it has been shown that the microbiome also plays an important role in the development and progression of bladder cancer, which can be mediated through the stimulation of chronic inflammation. In effect, the urinary microbiome can play a role in establishing the inflammatory urethral microenvironment that may facilitate the development and progression of bladder cancer. In other words, chronic inflammation caused by the urinary microbiome may promote the initiation and progression of bladder cancer. Here, we provide a detailed and comprehensive account of the link between chronic inflammation, the microbiome and bladder cancer. Finally, we highlight that targeting the urinary microbiome might enable the development of strategies for bladder cancer prevention and personalized treatment.
Collapse
Affiliation(s)
- Xingxing Huang
- Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang Province, 310015, PR China
- College of Pharmacy, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang Province, 311121, PR China
| | - Ting Pan
- Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang Province, 310015, PR China
- College of Pharmacy, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang Province, 311121, PR China
| | - Lili Yan
- Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang Province, 310015, PR China
- College of Pharmacy, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang Province, 311121, PR China
| | - Ting Jin
- Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang Province, 310015, PR China
- College of Pharmacy, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang Province, 311121, PR China
| | - Ruonan Zhang
- Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang Province, 310015, PR China
- College of Pharmacy, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang Province, 311121, PR China
| | - Bi Chen
- Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang Province, 310015, PR China
- College of Pharmacy, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang Province, 311121, PR China
| | - Jiao Feng
- Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang Province, 310015, PR China
- College of Pharmacy, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang Province, 311121, PR China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang Province, 311121, PR China
| | - Ting Duan
- Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang Province, 310015, PR China
- College of Pharmacy, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang Province, 311121, PR China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang Province, 311121, PR China
| | - Yu Xiang
- Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang Province, 310015, PR China
- College of Pharmacy, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang Province, 311121, PR China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang Province, 311121, PR China
| | - Mingming Zhang
- Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang Province, 310015, PR China
- College of Pharmacy, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang Province, 311121, PR China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang Province, 311121, PR China
| | - Xiaying Chen
- Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang Province, 310015, PR China
- College of Pharmacy, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang Province, 311121, PR China
| | - Zuyi Yang
- Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang Province, 310015, PR China
- College of Pharmacy, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang Province, 311121, PR China
| | - Wenzheng Zhang
- Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang Province, 310015, PR China
- College of Pharmacy, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang Province, 311121, PR China
| | - Xia Ding
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, PR China
| | - Tian Xie
- Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang Province, 310015, PR China
- College of Pharmacy, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang Province, 311121, PR China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang Province, 311121, PR China
| | - Xinbing Sui
- Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang Province, 310015, PR China
- College of Pharmacy, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang Province, 311121, PR China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang Province, 311121, PR China
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, PR China
| |
Collapse
|
22
|
Josephs-Spaulding J, Krogh TJ, Rettig HC, Lyng M, Chkonia M, Waschina S, Graspeuntner S, Rupp J, Møller-Jensen J, Kaleta C. Recurrent Urinary Tract Infections: Unraveling the Complicated Environment of Uncomplicated rUTIs. Front Cell Infect Microbiol 2021; 11:562525. [PMID: 34368008 PMCID: PMC8340884 DOI: 10.3389/fcimb.2021.562525] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 05/18/2021] [Indexed: 12/14/2022] Open
Abstract
Urinary tract infections (UTIs) are frequent in humans, affecting the upper and lower urinary tract. Present diagnosis relies on the positive culture of uropathogenic bacteria from urine and clinical markers of inflammation of the urinary tract. The bladder is constantly challenged by adverse environmental stimuli which influence urinary tract physiology, contributing to a dysbiotic environment. Simultaneously, pathogens are primed by environmental stressors such as antibiotics, favoring recurrent UTIs (rUTIs), resulting in chronic illness. Due to different confounders for UTI onset, a greater understanding of the fundamental environmental mechanisms and microbial ecology of the human urinary tract is required. Such advancements could promote the tandem translation of bench and computational studies for precision treatments and clinical management of UTIs. Therefore, there is an urgent need to understand the ecological interactions of the human urogenital microbial communities which precede rUTIs. This review aims to outline the mechanistic aspects of rUTI ecology underlying dysbiosis between both the human microbiome and host physiology which predisposes humans to rUTIs. By assessing the applications of next generation and systems level methods, we also recommend novel approaches to elucidate the systemic consequences of rUTIs which requires an integrated approach for successful treatment. To this end, we will provide an outlook towards the so-called 'uncomplicated environment of UTIs', a holistic and systems view that applies ecological principles to define patient-specific UTIs. This perspective illustrates the need to withdraw from traditional reductionist perspectives in infection biology and instead, a move towards a systems-view revolving around patient-specific pathophysiology during UTIs.
Collapse
Affiliation(s)
- Jonathan Josephs-Spaulding
- Research Group Medical Systems Biology, Institute of Experimental Medicine, Christian-Albrechts-Universität, Kiel, Germany
| | - Thøger Jensen Krogh
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Hannah Clara Rettig
- Department of Infectious Diseases and Microbiology, University of Lübeck, Lübeck, Germany
| | - Mark Lyng
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Mariam Chkonia
- Department of Infectious Diseases and Microbiology, University of Lübeck, Lübeck, Germany
| | - Silvio Waschina
- Research Group Nutriinformatics, Institute of Human Nutrition and Food Science, Christian-Albrechts-Universität, Kiel, Germany
| | - Simon Graspeuntner
- Department of Infectious Diseases and Microbiology, University of Lübeck, Lübeck, Germany
| | - Jan Rupp
- Department of Infectious Diseases and Microbiology, University of Lübeck, Lübeck, Germany
- German Center for Infection Research (DZIF), Partner site Hamburg-Lübeck-Borstel-Riems, Lübeck, Germany
| | - Jakob Møller-Jensen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Christoph Kaleta
- Research Group Medical Systems Biology, Institute of Experimental Medicine, Christian-Albrechts-Universität, Kiel, Germany
| |
Collapse
|
23
|
Sklyar T, Gavryliuk V, Lavrentievа K, Kurahina N, Lykholat T, Zaichenko K, Papiashvili M, Lykholat O, Stepansky D. Monitoring of distribution of antibiotic-resistant strains of microorganisms in patients with dysbiosis of the urogenital tract. REGULATORY MECHANISMS IN BIOSYSTEMS 2021. [DOI: 10.15421/022128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Currently, the problem of the development of resistance to drugs among microorganisms that colonize the urogenital system is becoming especially relevant due to broadly distributed dysbiotic conditions of the reproductive system of men and women. Therefore, there should be constant monitoring of the qualitative and quantitative composition of microbiota of the urogential tract and determination of the levels of antibiotic-resistance of strains of conditionally pathogenic microorganisms in the reproductive system of various layers of the population. We monitored 774,375 people of various age and sex – patients of the independent diagnostic laboratory INVITRO in the city Dnipro in 2017–2019. Among the examined people, 640,783 of the patients were diagnosed with the development of dysbiotic disorders, accounting for 82.7% of the total amount of the applications for medical help. According to the results of identification of the range of dysbiotic conditions of the urogenital system of patients of different ages and sexes, we determined the dominating role of facultative anaerobes in the development of dysbiotic impairments caused by colonizations by large numbers of conditionally-pathogenic microorganisms: in women, Gardnerella accounted for 86.1%, Staphylococcus – 63.2%, Streptococcus – 54.1%, Candida – 69.3%; in men, Streptococcus were found in 83.0%, Staphylococcus – 79.4%, Corynebacterium – 54.2% and Candida – 37.6% of the cases. Share of obligate anaerobes was also quite large: women were diagnosed with Prevotella in 59.7%, Peptostreptococcus in 53.2%, Fusobacterium in 45.4% of the cases cases; men were observed to have Peptostreptococcus 62.4%, Clostridium in 54.3%, Bacteroides in 32.5% of the cases. We determined high parameters of frequency of diagnosing antibiotic-resistant isolates of conditionally pathogenic microorganisms that circulate in the urogenital tract of patients with dysbiotic impairments, belonging to the following families: Mycoplasmataceae – 78.6%, Enterobacteriaceae – 56.0% and genera – Staphylococcus – 76.1%, Gardnerella – 24.3%, Corynebacterium – 21.2%. The research revealed increase in the frequency of detection of strains of urapathogenic bacteria resistant to the applied antibiotic preparations in 2018–2019 compared with the data of 2017: increases of 10.3% and 6.4% in representatives of family Mycoplasmataceae resistant to ciprofloxacin and ofloxacin respectively, 4.8% and 4.0% in Enterobacteriaceae resistant to chloramphenicol and ampicillin respectively, and 8.9% in the genus Staphylococcus resistant to vancomycin.
Collapse
|
24
|
Qin J, Shi X, Xu J, Yuan S, Zheng B, Zhang E, Huang G, Li G, Jiang G, Gao S, Tian C, Guo R, Fu Z, Huang Q, Yang R, Zhang W, Li S, Wu S. Characterization of the Genitourinary Microbiome of 1,165 Middle-Aged and Elderly Healthy Individuals. Front Microbiol 2021; 12:673969. [PMID: 34489882 PMCID: PMC8417382 DOI: 10.3389/fmicb.2021.673969] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 07/27/2021] [Indexed: 02/05/2023] Open
Abstract
Accumulated evidence shows that complex microbial communities resides in the healthy human urinary tract and can change in urological disorders. However, there lacks a comprehensive profiling of the genitourinary microbiota in healthy cohort. Here, we performed 16S rRNA gene sequencing of midstream urine specimens from 1,172 middle-aged and elderly healthy individuals. The core microbiota included 6 dominant genera (mean relative abundance >5%), including Prevotella, Streptococcus, Lactobacillus, Gardnerella, Escherichia-Shigella, and Veillonella, and 131 low-abundance genera (0.01-5%), displaying a distinct microbiome profiles to that of host-matched gut microbiota. The composition and diversity of genitourinary microbiome (GM) were distinct between genders and may fluctuate with ages. Several urotypes were identified by the stratification of microbiome profiles, which were mainly dominated by the six most predominant genera. The prevalence of urotypes was disparate between genders, and the male sample additionally harbored other urotypes dominated by Acinetobacter, Corynebacterium, Staphylococcus, or Sphingomonas. Peptoniphilus, Ezakiella, and Porphyromonas were co-occurred and co-abundant, and they may play crucial roles as keystone genera and be associated with increased microbial diversity. Our results delineated the microbial structure and diversity landscape of the GM in healthy middle-aged and elderly adults and provided insights into the influence of gender and age to it.
Collapse
Affiliation(s)
- Junjie Qin
- Department of Urology, The Third Affiliated Hospital of Shenzhen University (Luohu Hospital Group), Shenzhen, China
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Biology, Tsinghua Shenzhen International Graduate School, Shenzhen, China
- Department of Human Microbiome, Promegene Institute, Shenzhen, China
| | - Xulian Shi
- Department of Urology, The Third Affiliated Hospital of Shenzhen University (Luohu Hospital Group), Shenzhen, China
| | - Junming Xu
- Department of Urology, The Third Affiliated Hospital of Shenzhen University (Luohu Hospital Group), Shenzhen, China
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Biology, Tsinghua Shenzhen International Graduate School, Shenzhen, China
- Department of Human Microbiome, Promegene Institute, Shenzhen, China
| | - Simin Yuan
- Department of Urology, The Third Affiliated Hospital of Shenzhen University (Luohu Hospital Group), Shenzhen, China
| | - Bo Zheng
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Biology, Tsinghua Shenzhen International Graduate School, Shenzhen, China
| | - Enpu Zhang
- Department of Urology, The Third Affiliated Hospital of Shenzhen University (Luohu Hospital Group), Shenzhen, China
| | - Guixiao Huang
- Department of Urology, The Third Affiliated Hospital of Shenzhen University (Luohu Hospital Group), Shenzhen, China
| | - Guo Li
- Department of Urology, The Third Affiliated Hospital of Shenzhen University (Luohu Hospital Group), Shenzhen, China
| | - Ganggang Jiang
- Department of Urology, The Third Affiliated Hospital of Shenzhen University (Luohu Hospital Group), Shenzhen, China
| | - Shan Gao
- Department of Urology, The Third Affiliated Hospital of Shenzhen University (Luohu Hospital Group), Shenzhen, China
| | - Cheng Tian
- Department of Human Microbiome, Promegene Institute, Shenzhen, China
| | - Ruochun Guo
- Department of Human Microbiome, Promegene Institute, Shenzhen, China
| | - Zhicong Fu
- Department of Human Microbiome, Promegene Institute, Shenzhen, China
| | - Qingru Huang
- Department of Human Microbiome, Promegene Institute, Shenzhen, China
| | - Rentao Yang
- Department of Human Microbiome, Promegene Institute, Shenzhen, China
| | - Wenyong Zhang
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Shenghui Li
- Department of Human Microbiome, Promegene Institute, Shenzhen, China
| | - Song Wu
- Department of Urology, The Third Affiliated Hospital of Shenzhen University (Luohu Hospital Group), Shenzhen, China
- Teaching Center of Shenzhen Luohu Hospital, Shantou University Medical College, Shantou, China
- Department of Urology and Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- *Correspondence: Song Wu,
| |
Collapse
|
25
|
Coleman CM, Ferreira D. Oligosaccharides and Complex Carbohydrates: A New Paradigm for Cranberry Bioactivity. Molecules 2020; 25:E881. [PMID: 32079271 PMCID: PMC7070526 DOI: 10.3390/molecules25040881] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 02/04/2020] [Accepted: 02/14/2020] [Indexed: 02/07/2023] Open
Abstract
Cranberry is a well-known functional food, but the compounds directly responsible for many of its reported health benefits remain unidentified. Complex carbohydrates, specifically xyloglucan and pectic oligosaccharides, are the newest recognized class of biologically active compounds identified in cranberry materials. Cranberry oligosaccharides have shown similar biological properties as other dietary oligosaccharides, including effects on bacterial adhesion, biofilm formation, and microbial growth. Immunomodulatory and anti-inflammatory activity has also been observed. Oligosaccharides may therefore be significant contributors to many of the health benefits associated with cranberry products. Soluble oligosaccharides are present at relatively high concentrations (~20% w/w or greater) in many cranberry materials, and yet their possible contributions to biological activity have remained unrecognized. This is partly due to the inherent difficulty of detecting these compounds without intentionally seeking them. Inconsistencies in product descriptions and terminology have led to additional confusion regarding cranberry product composition and the possible presence of oligosaccharides. This review will present our current understanding of cranberry oligosaccharides and will discuss their occurrence, structures, ADME, biological properties, and possible prebiotic effects for both gut and urinary tract microbiota. Our hope is that future investigators will consider these compounds as possible significant contributors to the observed biological effects of cranberry.
Collapse
Affiliation(s)
- Christina M. Coleman
- Department of BioMolecular Sciences, Division of Pharmacognosy, and the Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, University, MS 38677, USA
| | | |
Collapse
|
26
|
The Occurrence of Multidrug Resistant Bacteria in the Urine of Healthy Dogs and Dogs with Cystitis. Animals (Basel) 2019; 9:ani9121087. [PMID: 31817523 PMCID: PMC6941014 DOI: 10.3390/ani9121087] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 12/03/2019] [Accepted: 12/03/2019] [Indexed: 01/05/2023] Open
Abstract
Simple Summary Antimicrobial resistance is a global health issue. The “One Health” concept describes animals and environments playing an important role in the resistance to antimicrobials. In this study, we survey healthy companion animals (dogs) as a potential source of multidrug resistant (MDR) bacteria, and compare them with dogs with cystitis. Both groups have a similar isolated genus profile and frequency of multidrug resistance. In our study, both healthy and cystitis animals were found to be carriers of MDR bacteria. Abstract The objectives of this study were to evaluate the occurrence of microorganisms, the antimicrobial susceptibility profile, and the presence of multidrug resistant (MDR) bacteria in the urine of clinically healthy dogs and dogs with cystitis. The urine was collected through cystocentesis. Subsequently, culture and antimicrobial susceptibility tests were performed. The isolates were classified based on their resistance profile, to evaluate the presence of MDR bacteria. Statistical analyses were performed using the chi-squared or Fisher’s exact tests. Bacterial isolates were present in 24.39% of the dogs in the control group, and 60.27% of the dogs in the cystitis group. The cystitis group was associated with a higher risk of bacterial isolates than the control group (odds ratio = 7.5; 95% confidence interval = 2.81–22.40). The main isolates were Staphylococcus spp., Escherichia coli, Proteus spp., and Enterobacter spp. in both groups. A high percentage of isolates were resistant to ampicillin in both groups. The lowest resistance presented by the isolates in both groups was to meropenem. Only the resistance to quinolones was different between the groups. The proportions of MDR isolates were 70% (7/10) and 65.91% (29/44) in the control and cystitis groups, respectively. The results showed the presence of MDR bacteria in the urine of both the healthy dogs, and the dogs with cystitis. The drug resistance was high, reinforcing the importance of establishing an effective treatment approach against urinary tract infections in pets, to minimize the spread of bacterial resistance and its impact on public health.
Collapse
|
27
|
Grine G, Lotte R, Chirio D, Chevalier A, Raoult D, Drancourt M, Ruimy R. Co-culture of Methanobrevibacter smithii with enterobacteria during urinary infection. EBioMedicine 2019; 43:333-337. [PMID: 31072770 PMCID: PMC6558020 DOI: 10.1016/j.ebiom.2019.04.037] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 04/10/2019] [Accepted: 04/18/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Urinary tract infections are known to be caused by bacteria, but the potential implications of archaea have never been studied in this context. METHODS In two different university hospital centres we used specific laboratory methods for the detection and culture of archaeal methanogens in 383 urine specimens prospectively collected for diagnosing urinary tract infection (UTI). FINDINGS Methanobrevibacter smithii was detected by quantitative PCR and sequencing in 34 (9%) of the specimens collected from 34 patients. Escherichia coli, Klebsiella pneumoniae, Enterobacter sp., Enterococcus faecium and mixed cultures were detected along with M. smithii in eighteen, six, three, one and six urine samples, respectively. Interestingly, using our specific culture method for methanogens, we also isolated M. smithii in 31 (91%) of the 34 PCR positive urine samples. Genotyping the 31 isolates using multispacer sequence typing revealed three different genotypes which have been previously reported in intestinal microbiota. Antibiotic susceptibility testing found the 31 isolates to be in vitro susceptible to metronidazole (MIC: 1 mg/L) but resistant to fosfomycin, sulfamethoxazole-trimethoprim, amoxicillin-clavulanate and ofloxacin, commonly used to treat bacterial UTI. Finally, 19 (54%) of the 34 patients in whose urine samples M. smithii was detected were diagnosed with UTIs, including cystitis, pyelonephritis and prostatitis. INTERPRETATION Our results show that M. smithii is part of the urinary microbiota of some individuals and could play a role in community-acquired UTI in association with enteric bacteria. FUND: This study was supported by IHU Méditerranée Infection, Marseille, France.
Collapse
Affiliation(s)
- Ghiles Grine
- IHU Méditerranée Infection, Marseille, France; Aix Marseille Université, IRD, MEPHI, IHU Méditerranée Infection, Marseille, France; Laboratoire de bactériologie, Centre Hospitalier Universitaire de Nice, Hôpital de l'Archet II, Nice, France
| | - Romain Lotte
- Laboratoire de bactériologie, Centre Hospitalier Universitaire de Nice, Hôpital de l'Archet II, Nice, France; Université Côte d'Azur, Inserm, C3M, Nice, France; Inserm U1065, C3M, Equipe 6 « Virulence microbienne et signalisation inflammatoire », Bâtiment universitaire Archimède, Nice, France
| | - David Chirio
- Service de maladies infectieuses et tropicales, Centre Hospitalier Universitaire de Nice, Hôpital de l'Archet I, Nice, France
| | - Alicia Chevalier
- Laboratoire de bactériologie, Centre Hospitalier Universitaire de Nice, Hôpital de l'Archet II, Nice, France
| | - Didier Raoult
- Aix Marseille Université, IRD, MEPHI, IHU Méditerranée Infection, Marseille, France
| | - Michel Drancourt
- Aix Marseille Université, IRD, MEPHI, IHU Méditerranée Infection, Marseille, France
| | - Raymond Ruimy
- Laboratoire de bactériologie, Centre Hospitalier Universitaire de Nice, Hôpital de l'Archet II, Nice, France; Université Côte d'Azur, Inserm, C3M, Nice, France; Inserm U1065, C3M, Equipe 6 « Virulence microbienne et signalisation inflammatoire », Bâtiment universitaire Archimède, Nice, France.
| |
Collapse
|
28
|
Wu JF, Muthusamy A, Al-Ghalith GA, Knights D, Guo B, Wu B, Remmel RP, Schladt DP, Alegre ML, Oetting WS, Jacobson PA, Israni AK. Urinary microbiome associated with chronic allograft dysfunction in kidney transplant recipients. Clin Transplant 2018; 32:e13436. [PMID: 30372560 PMCID: PMC6984979 DOI: 10.1111/ctr.13436] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 09/14/2018] [Accepted: 10/21/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND We performed a study to identify differences in the urinary microbiome associated with chronic allograft dysfunction (CAD) and compared the urinary microbiome of male and female transplant recipients with CAD. METHODS This case-control study enrolled 67 patients within the Deterioration of Kidney Allograft Function (DeKAF) Genomics cohort at two transplant centers. CAD was defined as a greater than 25% rise in serum creatinine relative to a 3 month post-transplant baseline. Urine samples from patients with and without CAD were analyzed using 16S V4 bacterial ribosomal DNA sequences. RESULTS Corynebacterium was more prevalent in female and male patients with CAD compared to non-CAD female patients (P = 0.0005). A total 21 distinct Operational Taxonomic Unit (OTUs) were identified as significantly different when comparing CAD and non-CAD patients using Kruskal-Wallis (P < 0.01). A subset analysis of female patients with CAD compared to non-CAD females identified similar differentially abundant OTUs, including the genera Corynebacterium and Staphylococcus (Kruskal-Wallis; P = 0.01; P = 0.004, respectively). Male CAD vs female CAD analysis showed greater abundance of phylum Proteobacteria in males. CONCLUSION There were differences in the urinary microbiome when comparing female and male CAD patients with their female non-CAD counterparts and these differences persisted in the subset analysis limited to female patients only.
Collapse
Affiliation(s)
- Jennifer F. Wu
- Department of Medicine, Nephrology Division, Hennepin Healthcare, Minneapolis, MN
| | | | | | - Dan Knights
- Department of Computer Science and Biotechnology Institute, University of Minnesota, Minneapolis, MN
| | - Bin Guo
- Division of Biostatistics, University of Minnesota, Minneapolis, MN
| | - Baolin Wu
- Division of Biostatistics, University of Minnesota, Minneapolis, MN
| | - Rory P. Remmel
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN
| | | | - Maria-Luisa Alegre
- Department of Medicine, Section of Rheumatology, University of Chicago, Chicago, IL
| | - William S. Oetting
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN
| | - Pamala A. Jacobson
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN
| | - Ajay K. Israni
- Department of Medicine, Nephrology Division, Hennepin Healthcare, Minneapolis, MN
- Hennepin Healthcare Research Institute, Minneapolis, MN
| |
Collapse
|