1
|
Herzig M, Hyötyläinen T, Vettese GF, Law GTW, Vierinen T, Bomberg M. Altering environmental conditions induce shifts in simulated deep terrestrial subsurface bacterial communities-Secretion of primary and secondary metabolites. Environ Microbiol 2024; 26:e16552. [PMID: 38098179 DOI: 10.1111/1462-2920.16552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 11/24/2023] [Indexed: 01/30/2024]
Abstract
The deep terrestrial subsurface (DTS) harbours a striking diversity of microorganisms. However, systematic research on microbial metabolism, and how varying groundwater composition affects the bacterial communities and metabolites in these environments is lacking. In this study, DTS groundwater bacterial consortia from two Fennoscandian Shield sites were enriched and studied. We found that the enriched communities from the two sites consisted of distinct bacterial taxa, and alterations in the growth medium composition induced changes in cell counts. The lack of an exogenous organic carbon source (ECS) caused a notable increase in lipid metabolism in one community, while in the other, carbon starvation resulted in low overall metabolism, suggesting a dormant state. ECS supplementation increased CO2 production and SO4 2- utilisation, suggesting activation of a dissimilatory sulphate reduction pathway and sulphate-reducer-dominated total metabolism. However, both communities shared common universal metabolic features, most probably involving pathways needed for the maintenance of cell homeostasis (e.g., mevalonic acid pathway). Collectively, our findings indicate that the most important metabolites related to microbial reactions under varying growth conditions in enriched DTS communities include, but are not limited to, those linked to cell homeostasis, osmoregulation, lipid biosynthesis and degradation, dissimilatory sulphate reduction and isoprenoid production.
Collapse
Affiliation(s)
- Merja Herzig
- Faculty of Nuclear Sciences and Physical Engineering, Department of Nuclear Chemistry, Czech Technical University in Prague, Prague, Czech Republic
- Radiochemistry Unit, Faculty of Science, Department of Chemistry, University of Helsinki, Helsinki, Finland
| | - Tuulia Hyötyläinen
- School of Science and Technology, EnForce, Environment and Health and Systems Medicine, Örebro University, Örebro, Sweden
| | - Gianni F Vettese
- Radiochemistry Unit, Faculty of Science, Department of Chemistry, University of Helsinki, Helsinki, Finland
| | - Gareth T W Law
- Radiochemistry Unit, Faculty of Science, Department of Chemistry, University of Helsinki, Helsinki, Finland
| | - Taavi Vierinen
- Radiochemistry Unit, Faculty of Science, Department of Chemistry, University of Helsinki, Helsinki, Finland
| | - Malin Bomberg
- VTT Technical Research Centre of Finland, Espoo, Finland
| |
Collapse
|
2
|
Nuppunen-Puputti M, Kietäväinen R, Kukkonen I, Bomberg M. Implications of a short carbon pulse on biofilm formation on mica schist in microcosms with deep crystalline bedrock groundwater. Front Microbiol 2023; 14:1054084. [PMID: 36819068 PMCID: PMC9932282 DOI: 10.3389/fmicb.2023.1054084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 01/06/2023] [Indexed: 02/05/2023] Open
Abstract
Microbial life in the deep subsurface occupies rock surfaces as attached communities and biofilms. Previously, epilithic Fennoscandian deep subsurface bacterial communities were shown to host genetic potential, especially for heterotrophy and sulfur cycling. Acetate, methane, and methanol link multiple biogeochemical pathways and thus represent an important carbon and energy source for microorganisms in the deep subsurface. In this study, we examined further how a short pulse of low-molecular-weight carbon compounds impacts the formation and structure of sessile microbial communities on mica schist surfaces over an incubation period of ∼3.5 years in microcosms containing deep subsurface groundwater from the depth of 500 m, from Outokumpu, Finland. The marker gene copy counts in the water and rock phases were estimated with qPCR, which showed that bacteria dominated the mica schist communities with a relatively high proportion of epilithic sulfate-reducing bacteria in all microcosms. The dominant bacterial phyla in the microcosms were Proteobacteria, Firmicutes, and Actinobacteria, whereas most fungal genera belonged to Ascomycota and Basidiomycota. Dissimilarities between planktic and sessile rock surface microbial communities were observed, and the supplied carbon substrates led to variations in the bacterial community composition.
Collapse
Affiliation(s)
- Maija Nuppunen-Puputti
- VTT Technical Research Centre of Finland Ltd., Espoo, Finland,*Correspondence: Maija Nuppunen-Puputti,
| | | | - Ilmo Kukkonen
- Department of Physics, University of Helsinki, Helsinki, Finland
| | - Malin Bomberg
- VTT Technical Research Centre of Finland Ltd., Espoo, Finland
| |
Collapse
|
3
|
Nuppunen-Puputti M, Kietäväinen R, Raulio M, Soro A, Purkamo L, Kukkonen I, Bomberg M. Epilithic Microbial Community Functionality in Deep Oligotrophic Continental Bedrock. Front Microbiol 2022; 13:826048. [PMID: 35300483 PMCID: PMC8921683 DOI: 10.3389/fmicb.2022.826048] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/12/2022] [Indexed: 01/03/2023] Open
Abstract
The deep terrestrial biosphere hosts vast sessile rock surface communities and biofilms, but thus far, mostly planktic communities have been studied. We enriched deep subsurface microbial communities on mica schist in microcosms containing bedrock groundwater from the depth of 500 m from Outokumpu, Finland. The biofilms were visualized using scanning electron microscopy, revealing numerous different microbial cell morphologies and attachment strategies on the mica schist surface, e.g., bacteria with outer membrane vesicle-like structures, hair-like extracellular extensions, and long tubular cell structures expanding over hundreds of micrometers over mica schist surfaces. Bacterial communities were analyzed with amplicon sequencing showing that Pseudomonas, Desulfosporosinus, Hydrogenophaga, and Brevundimonas genera dominated communities after 8–40 months of incubation. A total of 21 metagenome assembled genomes from sessile rock surface metagenomes identified genes involved in biofilm formation, as well as a wide variety of metabolic traits indicating a high degree of environmental adaptivity to oligotrophic environment and potential for shifting between multiple energy or carbon sources. In addition, we detected ubiquitous organic carbon oxidation and capacity for arsenate and selenate reduction within our rocky MAGs. Our results agree with the previously suggested interaction between the deep subsurface microbial communities and the rock surfaces, and that this interaction could be crucial for sustaining life in the harsh anoxic and oligotrophic deep subsurface of crystalline bedrock environment.
Collapse
Affiliation(s)
| | | | - Mari Raulio
- European Chemicals Agency (ECHA), Helsinki, Finland
| | - Aino Soro
- VTT Technical Research Centre of Finland Ltd., Espoo, Finland
| | | | - Ilmo Kukkonen
- Department of Physics, University of Helsinki, Helsinki, Finland
| | - Malin Bomberg
- VTT Technical Research Centre of Finland Ltd., Espoo, Finland
| |
Collapse
|
4
|
Rock Surface Fungi in Deep Continental Biosphere-Exploration of Microbial Community Formation with Subsurface In Situ Biofilm Trap. Microorganisms 2020; 9:microorganisms9010064. [PMID: 33383728 PMCID: PMC7824546 DOI: 10.3390/microorganisms9010064] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 01/16/2023] Open
Abstract
Fungi have an important role in nutrient cycling in most ecosystems on Earth, yet their ecology and functionality in deep continental subsurface remain unknown. Here, we report the first observations of active fungal colonization of mica schist in the deep continental biosphere and the ability of deep subsurface fungi to attach to rock surfaces under in situ conditions in groundwater at 500 and 967 m depth in Precambrian bedrock. We present an in situ subsurface biofilm trap, designed to reveal sessile microbial communities on rock surface in deep continental groundwater, using Outokumpu Deep Drill Hole, in eastern Finland, as a test site. The observed fungal phyla in Outokumpu subsurface were Basidiomycota, Ascomycota, and Mortierellomycota. In addition, significant proportion of the community represented unclassified Fungi. Sessile fungal communities on mica schist surfaces differed from the planktic fungal communities. The main bacterial phyla were Firmicutes, Proteobacteria, and Actinobacteriota. Biofilm formation on rock surfaces is a slow process and our results indicate that fungal and bacterial communities dominate the early surface attachment process, when pristine mineral surfaces are exposed to deep subsurface ecosystems. Various fungi showed statistically significant cross-kingdom correlation with both thiosulfate and sulfate reducing bacteria, e.g., SRB2 with fungi Debaryomyces hansenii.
Collapse
|
5
|
Purkamo L, Kietäväinen R, Nuppunen-Puputti M, Bomberg M, Cousins C. Ultradeep Microbial Communities at 4.4 km within Crystalline Bedrock: Implications for Habitability in a Planetary Context. Life (Basel) 2020; 10:E2. [PMID: 31947979 PMCID: PMC7175195 DOI: 10.3390/life10010002] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 12/31/2019] [Accepted: 01/01/2020] [Indexed: 01/06/2023] Open
Abstract
The deep bedrock surroundings are an analog for extraterrestrial habitats for life. In this study, we investigated microbial life within anoxic ultradeep boreholes in Precambrian bedrock, including the adaptation to environmental conditions and lifestyle of these organisms. Samples were collected from Pyhäsalmi mine environment in central Finland and from geothermal drilling wells in Otaniemi, Espoo, in southern Finland. Microbial communities inhabiting the up to 4.4 km deep bedrock were characterized with phylogenetic marker gene (16S rRNA genes and fungal ITS region) amplicon and DNA and cDNA metagenomic sequencing. Functional marker genes (dsrB, mcrA, narG) were quantified with qPCR. Results showed that although crystalline bedrock provides very limited substrates for life, the microbial communities are diverse. Gammaproteobacterial phylotypes were most dominant in both studied sites. Alkanindiges -affiliating OTU was dominating in Pyhäsalmi fluids, while different depths of Otaniemi samples were dominated by Pseudomonas. One of the most common OTUs detected from Otaniemi could only be classified to phylum level, highlighting the uncharacterized nature of the deep biosphere in bedrock. Chemoheterotrophy, fermentation and nitrogen cycling are potentially significant metabolisms in these ultradeep environments. To conclude, this study provides information on microbial ecology of low biomass, carbon-depleted and energy-deprived deep subsurface environment. This information is useful in the prospect of finding life in other planetary bodies.
Collapse
Affiliation(s)
- Lotta Purkamo
- School of Earth and Environmental Sciences, University of St Andrews, St Andrews KY16 9AL, UK
- Geological Survey of Finland, 02151 Espoo, Finland
| | - Riikka Kietäväinen
- Geological Survey of Finland, 02151 Espoo, Finland
- Department of Geosciences and Geography, University of Helsinki, 00014 Helsinki, Finland
| | | | - Malin Bomberg
- VTT Technical Research Centre of Finland, 02044 VTT, Finland
| | - Claire Cousins
- School of Earth and Environmental Sciences, University of St Andrews, St Andrews KY16 9AL, UK
| |
Collapse
|
6
|
Purkamo L, Kietäväinen R, Miettinen H, Sohlberg E, Kukkonen I, Itävaara M, Bomberg M. Diversity and functionality of archaeal, bacterial and fungal communities in deep Archaean bedrock groundwater. FEMS Microbiol Ecol 2019; 94:5035813. [PMID: 29893836 DOI: 10.1093/femsec/fiy116] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 06/08/2018] [Indexed: 01/19/2023] Open
Abstract
The diversity and metabolic functions of deep subsurface ecosystems remain relatively unexplored. Microbial communities in previously studied deep subsurface sites of the Fennoscandian Shield are distinctive to each site. Thus, we hypothesized that the microbial communities of the deep Archaean bedrock fracture aquifer in Romuvaara, northern Finland, differ both in community composition and metabolic functionality from the other sites in the Fennoscandian Shield. We characterized the composition, functionality and substrate preferences of the microbial communities at different depths in a 600 m deep borehole. In contrast to other Fennoscandian deep biosphere communities studied to date, iron-oxidizing Gallionella dominated the bacterial communities, while methanogenic and ammonia-oxidizing archaea were the most prominent archaea, and a diverse fungal community was also detected. Potential for methane cycling and sulfate and nitrate reduction was confirmed by detection of the functional genes of these metabolic pathways. Organotrophs were less abundant, although carbohydrates were the most preferred of the tested substrates. The microbial communities shared features with those detected from other deep groundwaters with similar geochemistry, but the majority of taxa distinctive to Romuvaara are different from the taxa previously detected in saline deep groundwater in the Fennoscandian Shield, most likely because of the differences in water chemistry.
Collapse
Affiliation(s)
- Lotta Purkamo
- VTT Technical Research Centre of Finland, 02044 VTT, Finland
| | - Riikka Kietäväinen
- Geological Survey of Finland (GTK), Betonimiehenkuja 4, 02151 Espoo, Finland
| | - Hanna Miettinen
- VTT Technical Research Centre of Finland, 02044 VTT, Finland
| | - Elina Sohlberg
- VTT Technical Research Centre of Finland, 02044 VTT, Finland
| | - Ilmo Kukkonen
- Geological Survey of Finland (GTK), Betonimiehenkuja 4, 02151 Espoo, Finland
| | - Merja Itävaara
- VTT Technical Research Centre of Finland, 02044 VTT, Finland
| | - Malin Bomberg
- VTT Technical Research Centre of Finland, 02044 VTT, Finland
| |
Collapse
|
7
|
Rare Biosphere Archaea Assimilate Acetate in Precambrian Terrestrial Subsurface at 2.2 km Depth. GEOSCIENCES 2018. [DOI: 10.3390/geosciences8110418] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The deep biosphere contains a large portion of the total microbial communities on Earth, but little is known about the carbon sources that support deep life. In this study, we used Stable Isotope Probing (SIP) and high throughput amplicon sequencing to identify the acetate assimilating microbial communities at 2260 m depth in the bedrock of Outokumpu, Finland. The long-term and short-term effects of acetate on the microbial communities were assessed by DNA-targeted SIP and RNA targeted cell activation. The microbial communities reacted within hours to the amended acetate. Archaeal taxa representing the rare biosphere at 2260 m depth were identified and linked to the cycling of acetate, and were shown to have an impact on the functions and activity of the microbial communities in general through small key carbon compounds. The major archaeal lineages identified to assimilate acetate and metabolites derived from the labelled acetate were Methanosarcina spp., Methanococcus spp., Methanolobus spp., and unclassified Methanosarcinaceae. These archaea have previously been detected in the Outokumpu deep subsurface as minor groups. Nevertheless, their involvement in the assimilation of acetate and secretion of metabolites derived from acetate indicated an important role in the supporting of the whole community in the deep subsurface, where carbon sources are limited.
Collapse
|
8
|
Acetate Activates Deep Subsurface Fracture Fluid Microbial Communities in Olkiluoto, Finland. GEOSCIENCES 2018. [DOI: 10.3390/geosciences8110399] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Crystalline bedrock has been chosen for deep geologic long-term storage of used nuclear fuel in Finland. The risks generated by the deep subsurface microbial communities in these disposal sites need to be well characterised in advance to ensure safety. Deep subsurface microbial communities in a steady state are unlikely to contribute to known risk factors, such as corrosion or gas production. However, the construction of the geological final-disposal facility, bedrock disturbances, and hydraulic gradients cause changes that affect the microbial steady-state. To study the induced metabolism of deep microbial communities in changing environmental conditions, the activating effect of different electron donors and acceptors were measured with redox sensing fluorescent dyes (5-Cyano-2,3-ditolyl tetrazolium chloride, CTC and RedoxSensor™ Green, RSG). Fluids originating from two different fracture zones of the Finnish disposal site in Olkiluoto were studied. These fracture fluids were very dissimilar both chemically and in terms of bacterial and archaeal diversity. However, the microbial communities of both fracture fluids were activated, especially with acetate, which indicates the important role of acetate as a preferred electron donor for Olkiluoto deep subsurface communities.
Collapse
|
9
|
Lopez-Fernandez M, Broman E, Turner S, Wu X, Bertilsson S, Dopson M. Investigation of viable taxa in the deep terrestrial biosphere suggests high rates of nutrient recycling. FEMS Microbiol Ecol 2018; 94:5040220. [PMID: 29931252 PMCID: PMC6030916 DOI: 10.1093/femsec/fiy121] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 06/15/2018] [Indexed: 11/14/2022] Open
Abstract
The deep biosphere is the largest 'bioreactor' on earth, and microbes inhabiting this biome profoundly influence global nutrient and energy cycles. An important question for deep biosphere microbiology is whether or not specific populations are viable. To address this, we used quantitative PCR and high throughput 16S rRNA gene sequencing of total and viable cells (i.e. with an intact cellular membrane) from three groundwaters with different ages and chemical constituents. There were no statistically significant differences in 16S rRNA gene abundances and microbial diversity between total and viable communities. This suggests that populations were adapted to prevailing oligotrophic conditions and that non-viable cells are rapidly degraded and recycled into new biomass. With higher concentrations of organic carbon, the modern marine and undefined mixed waters hosted a community with a larger range of predicted growth strategies than the ultra-oligotrophic old saline water. These strategies included fermentative and potentially symbiotic lifestyles by candidate phyla that typically have streamlined genomes. In contrast, the old saline waters had more 16S rRNA gene sequences in previously cultured lineages able to oxidize hydrogen and fix carbon dioxide. This matches the paradigm of a hydrogen and carbon dioxide-fed chemolithoautotrophic deep biosphere.
Collapse
Affiliation(s)
- Margarita Lopez-Fernandez
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, Barlastgatan 11, Kalmar, Sweden
| | - Elias Broman
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, Barlastgatan 11, Kalmar, Sweden
| | - Stephanie Turner
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, Barlastgatan 11, Kalmar, Sweden
| | - Xiaofen Wu
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, Barlastgatan 11, Kalmar, Sweden
| | - Stefan Bertilsson
- Department of Ecology and Genetics, Limnology and Science for Life Laboratory, Uppsala University, Norbyvägen 18D, Uppsala, Sweden
| | - Mark Dopson
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, Barlastgatan 11, Kalmar, Sweden
| |
Collapse
|