1
|
Barreiro-Alonso E, Castro-Estrada P, Sánchez M, Peña-Iglesias P, Suárez L, Cantabrana B. Association of Polyamine Intake, Other Dietary Components, and Fecal Content of N-acetyl Putrescine and Cadaverine with Patients' Colorectal Lesions. Nutrients 2024; 16:2894. [PMID: 39275210 PMCID: PMC11397480 DOI: 10.3390/nu16172894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/20/2024] [Accepted: 08/22/2024] [Indexed: 09/16/2024] Open
Abstract
Colorectal cancer (CRC) is the second leading cause of cancer death worldwide. Early detection and the modification of risk factors, such as diet, can reduce its incidence. Among food components, polyamines are important for maintaining gastrointestinal health and are metabolites of gut microbiota. Their disruption is linked to CRC, making polyamines a potential marker of the disease. This study analyzed the relationship between dietary components, including polyamines, and the presence of polyamines in feces to determine whether their presence could contribute to predicting the occurrence of colorectal lesions in patients. In total, 59 participants of both sexes (aged 50 to 70 years) who had undergone colonoscopy screening for CRC (18 without and 41 with colorectal lesions) participated in the study. A nutritional survey and determination of fecal polyamine content were performed. Specific dietary components and putrescine levels were higher in patients with colorectal lesions. The diet ratio of putrescine-spermidine and the fecal content of N-acetyl putrescine and cadaverine were elevated in patients with precancerous lesions and adenocarcinomas, showing a potential predictive value for the presence of colorectal lesions. These findings suggest that N-acetyl putrescine and cadaverine could be complementary markers for the diagnosis of suspected colorectal lesions.
Collapse
Affiliation(s)
- Eva Barreiro-Alonso
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), 33006 Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Servicio de Digestivo, Hospital Universitario Central de Asturias (HUCA), 33011 Oviedo, Spain
| | - Paula Castro-Estrada
- Farmacología, Departamento de Medicina, Universidad de Oviedo, 33006 Oviedo, Spain
| | - Manuel Sánchez
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), 33006 Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Farmacología, Departamento de Medicina, Universidad de Oviedo, 33006 Oviedo, Spain
| | - Pablo Peña-Iglesias
- Farmacología, Departamento de Medicina, Universidad de Oviedo, 33006 Oviedo, Spain
| | - Lorena Suárez
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), 33006 Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Farmacología, Departamento de Medicina, Universidad de Oviedo, 33006 Oviedo, Spain
| | - Begoña Cantabrana
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), 33006 Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Farmacología, Departamento de Medicina, Universidad de Oviedo, 33006 Oviedo, Spain
| |
Collapse
|
2
|
Del Rio B, Fernandez M, Redruello B, Ladero V, Alvarez MA. New insights into the toxicological effects of dietary biogenic amines. Food Chem 2024; 435:137558. [PMID: 37783126 DOI: 10.1016/j.foodchem.2023.137558] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 09/07/2023] [Accepted: 09/19/2023] [Indexed: 10/04/2023]
Abstract
Biogenic amines (BA) are molecules with biological functions, which can accumulate at toxic concentrations in foods. Several microorganisms have been identified as responsible for their accumulation at elevated concentrations. Histamine, tyramine and putrescine are the BA most commonly found at highest concentrations. The ingestion of food containing high BA concentrations leads to intoxication with symptoms depending on the BA and the amount consumed. Moreover, there is evidence of synergy between different BA, something of toxicological importance given that some foods accumulate different BA. This work reviews the BA toxic effects and examines recent discoveries regarding their synergy, cytotoxicity and genotoxicity. These advances in the toxicological consequences of ingesting BA contaminated foods support the need to regulate their presence in foods to preserve the consumer's health. However, more research efforts -focused on the establishment of risk assessments- are needed to reach a consensus in their limits in different food matrices.
Collapse
Affiliation(s)
- Beatriz Del Rio
- Department of Dairy Product Technology and Biotechnology, Dairy Research Institute, IPLA, CSIC, Villaviciosa, Spain; Health Research Institute in the Principality of Asturias (ISPA), Oviedo, Spain
| | - María Fernandez
- Department of Dairy Product Technology and Biotechnology, Dairy Research Institute, IPLA, CSIC, Villaviciosa, Spain; Health Research Institute in the Principality of Asturias (ISPA), Oviedo, Spain
| | - Begoña Redruello
- Department of Dairy Product Technology and Biotechnology, Dairy Research Institute, IPLA, CSIC, Villaviciosa, Spain; Health Research Institute in the Principality of Asturias (ISPA), Oviedo, Spain
| | - Victor Ladero
- Department of Dairy Product Technology and Biotechnology, Dairy Research Institute, IPLA, CSIC, Villaviciosa, Spain; Health Research Institute in the Principality of Asturias (ISPA), Oviedo, Spain.
| | - Miguel A Alvarez
- Department of Dairy Product Technology and Biotechnology, Dairy Research Institute, IPLA, CSIC, Villaviciosa, Spain; Health Research Institute in the Principality of Asturias (ISPA), Oviedo, Spain
| |
Collapse
|
3
|
Lagoumintzis G, Patrinos GP. Triangulating nutrigenomics, metabolomics and microbiomics toward personalized nutrition and healthy living. Hum Genomics 2023; 17:109. [PMID: 38062537 PMCID: PMC10704648 DOI: 10.1186/s40246-023-00561-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 12/02/2023] [Indexed: 12/18/2023] Open
Abstract
The unique physiological and genetic characteristics of individuals influence their reactions to different dietary constituents and nutrients. This notion is the foundation of personalized nutrition. The field of nutrigenetics has witnessed significant progress in understanding the impact of genetic variants on macronutrient and micronutrient levels and the individual's responsiveness to dietary intake. These variants hold significant value in facilitating the development of personalized nutritional interventions, thereby enabling the effective translation from conventional dietary guidelines to genome-guided nutrition. Nevertheless, certain obstacles could impede the extensive implementation of individualized nutrition, which is still in its infancy, such as the polygenic nature of nutrition-related pathologies. Consequently, many disorders are susceptible to the collective influence of multiple genes and environmental interplay, wherein each gene exerts a moderate to modest effect. Furthermore, it is widely accepted that diseases emerge because of the intricate interplay between genetic predisposition and external environmental influences. In the context of this specific paradigm, the utilization of advanced "omic" technologies, including epigenomics, transcriptomics, proteomics, metabolomics, and microbiome analysis, in conjunction with comprehensive phenotyping, has the potential to unveil hitherto undisclosed hereditary elements and interactions between genes and the environment. This review aims to provide up-to-date information regarding the fundamentals of personalized nutrition, specifically emphasizing the complex triangulation interplay among microbiota, dietary metabolites, and genes. Furthermore, it highlights the intestinal microbiota's unique makeup, its influence on nutrigenomics, and the tailoring of dietary suggestions. Finally, this article provides an overview of genotyping versus microbiomics, focusing on investigating the potential applications of this knowledge in the context of tailored dietary plans that aim to improve human well-being and overall health.
Collapse
Affiliation(s)
- George Lagoumintzis
- Division of Pharmacology and Biosciences, Department of Pharmacy, School of Health Sciences, University of Patras, 26504, Patras, Greece.
| | - George P Patrinos
- Division of Pharmacology and Biosciences, Department of Pharmacy, School of Health Sciences, University of Patras, 26504, Patras, Greece.
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, Abu Dhabi, UAE.
- Zayed Center for Health Sciences, United Arab Emirates University, Al-Ain, Abu Dhabi, UAE.
| |
Collapse
|
4
|
Jia Y, Yang X, Wilson LM, Mueller NT, Sears CL, Treisman GJ, Robinson KA. Diet-Related and Gut-Derived Metabolites and Health Outcomes: A Scoping Review. Metabolites 2022; 12:1261. [PMID: 36557297 PMCID: PMC9782760 DOI: 10.3390/metabo12121261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/08/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
We conducted a scoping review to map available evidence about the health impact of gut microbiota-derived metabolites. We searched PubMed and Embase for studies that assessed the health impact of ten metabolites on any health condition: deoxycholate or deoxycholic acid (DCA), lithocholate or lithocholic acid (LCA), glycolithocholate or glycolithocholic acid, glycodeoxycholate or glycodeoxycholic acid, tryptamine, putrescine, d-alanine, urolithins, N-acetylmannosamine, and phenylacetylglutamine. We identified 352 eligible studies with 168,072 participants. Most (326, 92.6%) were case-control studies, followed by cohort studies (14, 4.0%), clinical trials (8, 2.3%), and cross-sectional studies (6, 1.7%). Most studies assessed the following associations: DCA on hepatobiliary disorders (64 studies, 7976 participants), colorectal cancer (19 studies, 7461 participants), and other digestive disorders (27 studies, 2463 participants); LCA on hepatobiliary disorders (34 studies, 4297 participants), colorectal cancers (14 studies, 4955 participants), and other digestive disorders (26 studies, 2117 participants); putrescine on colorectal cancers (16 studies, 94,399 participants) and cancers excluding colorectal and hepatobiliary cancers (42 studies, 4250 participants). There is a need to conduct more prospective studies, including clinical trials. Moreover, we identified metabolites and conditions for which systemic reviews are warranted to characterize the direction and magnitude of metabolite-disease associations.
Collapse
Affiliation(s)
- Yuanxi Jia
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xuhao Yang
- Department of Neurology and Developmental Medicine, Kennedy Krieger Institute, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Lisa M. Wilson
- Department of Health Policy and Management, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Noel T. Mueller
- Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Cynthia L. Sears
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Glenn J. Treisman
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Karen A. Robinson
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
5
|
Visible light-responsive vanadium-based metal–organic framework supported pepsin with high oxidase mimic activity for food spoilage monitoring. Mikrochim Acta 2022; 189:448. [DOI: 10.1007/s00604-022-05554-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 10/28/2022] [Indexed: 11/19/2022]
|
6
|
Hofer SJ, Simon AK, Bergmann M, Eisenberg T, Kroemer G, Madeo F. Mechanisms of spermidine-induced autophagy and geroprotection. NATURE AGING 2022; 2:1112-1129. [PMID: 37118547 DOI: 10.1038/s43587-022-00322-9] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 10/28/2022] [Indexed: 04/30/2023]
Abstract
Aging involves the systemic deterioration of all known cell types in most eukaryotes. Several recently discovered compounds that extend the healthspan and lifespan of model organisms decelerate pathways that govern the aging process. Among these geroprotectors, spermidine, a natural polyamine ubiquitously found in organisms from all kingdoms, prolongs the lifespan of fungi, nematodes, insects and rodents. In mice, it also postpones the manifestation of various age-associated disorders such as cardiovascular disease and neurodegeneration. The specific features of spermidine, including its presence in common food items, make it an interesting candidate for translational aging research. Here, we review novel insights into the geroprotective mode of action of spermidine at the molecular level, as we discuss strategies for elucidating its clinical potential.
Collapse
Affiliation(s)
- Sebastian J Hofer
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
- Field of Excellence BioHealth, University of Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
| | - Anna Katharina Simon
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
- Max Delbrück Center, Berlin, Germany
| | - Martina Bergmann
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
| | - Tobias Eisenberg
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
- Field of Excellence BioHealth, University of Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France.
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France.
- Institut du Cancer Paris CARPEM, Department of Biology, Hôpital Européen Georges Pompidou, AP-HP, Paris, France.
| | - Frank Madeo
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria.
- Field of Excellence BioHealth, University of Graz, Graz, Austria.
- BioTechMed Graz, Graz, Austria.
| |
Collapse
|
7
|
Hofer SJ, Kroemer G, Kepp O. Autophagy-inducing nutritional interventions in experimental and clinical oncology. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2022; 373:125-158. [PMID: 36283765 DOI: 10.1016/bs.ircmb.2022.08.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Numerous pro-autophagic dietary interventions are being investigated for their potential cancer-preventive or therapeutic effects. This applies to different fasting regimens, methionine restriction and ketogenic diets. In addition, the supplementation of specific micronutrients such as nicotinamide (vitamin B3) or spermidine induces autophagy. In humans, leanness, plant-based diets (that may lead to partial methionine restriction) and high dietary uptake of spermidine are associated with a low incidence of cancers. Moreover, clinical trials have demonstrated the capacity of nicotinamide to prevent non-melanoma skin carcinogenesis. Multiple interventional trials are evaluating the capacity of autophagy-inducing regimens to improve the outcome of chemotherapy and immunotherapy. Here, we discuss the mechanistic underpinnings of autophagy induction by nutritional interventions, as well as the mechanisms through which autophagy induction in malignant or immune cells improves anticancer immunosurveillance.
Collapse
Affiliation(s)
- Sebastian J Hofer
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, Université Paris Saclay, Villejuif, France; Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris Cité, Sorbonne Université, Inserm U1138, Paris, France; Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Guido Kroemer
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, Université Paris Saclay, Villejuif, France; Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris Cité, Sorbonne Université, Inserm U1138, Paris, France; Institut du Cancer Paris Carpem, Department of Biology, APHP, Hôpital Européen Georges Pompidou, Paris, France.
| | - Oliver Kepp
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, Université Paris Saclay, Villejuif, France; Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris Cité, Sorbonne Université, Inserm U1138, Paris, France.
| |
Collapse
|
8
|
Yu Z, Jiao Y, Zhang J, Xu Q, Xu J, Li R, Yuan W, Guo H, Sun Z, Zheng L. Effect of Serum Spermidine on the Prognosis in Patients with Acute Myocardial Infarction: A Cohort Study. Nutrients 2022; 14:nu14071394. [PMID: 35406007 PMCID: PMC9002946 DOI: 10.3390/nu14071394] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 03/18/2022] [Accepted: 03/24/2022] [Indexed: 11/16/2022] Open
Abstract
Background: Spermidine, a natural polyamine, was found critically involved in cardioprotection and lifespan extension from both animal experiments and human studies. Aims: This study aimed to evaluate the effect of serum spermidine levels on the prognosis in patients with acute myocardial infarction (AMI) and investigate the potential mediation effect of oxidative stress in the above relationship. Methods: We included 377 patients with AMI in a prospective cohort study and measured serum spermidine and oxidative stress indexes (superoxide dismutase enzymes, glutathione peroxidase, and Malondialdehyde) using high-performance liquid chromatography with fluorescence detector and enzyme-linked immunosorbent assay, respectively. The associations of spermidine with AMI outcomes were evaluated using Cox proportional hazards models. Results: 84 (22.3%) major adverse cardiac events (MACE) were documented during a mean follow-up of 12.3 ± 4.2 months. After multivariable adjustment, participants with serum spermidine levels of ≥15.38 ng/mL (T3) and 7.59–5.38 ng/mL (T2) had hazard ratio (HR) for recurrent AMI of 0.450 [95% confidence interval (CI): 0.213–0.984] and 0.441 (95% CI: 0.215–0.907) compared with the ≤7.59 ng/mL (T1), respectively. Participants in T3 and T2 had HR for MACE of 0.566 (95% CI: 0.329–0.947) and 0.516 (95% CI: 0.298–0.893) compared with T1. A faint J-shaped association was observed between serum spermidine levels and the risk of MACE (p-nonlinearity = 0.036). Comparisons of areas under receiver operator characteristics curves confirmed that a model including serum spermidine levels had greater predictive power than the one without it (0.733 versus 0.701, p = 0.041). A marginal statistically significant mediation effect of superoxide dismutase was shown on the association between spermidine and MACE (p = 0.091). Conclusions: Serum spermidine was associated with an improved prognosis in individuals with AMI, whereas the underlying mechanism mediated by oxidative stress was not found.
Collapse
Affiliation(s)
- Zhecong Yu
- Department of Cardiology, Shengjing Hospital of China Medical University, Shenyang 110004, China; (Z.Y.); (Y.J.); (Q.X.); (J.X.)
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yundi Jiao
- Department of Cardiology, Shengjing Hospital of China Medical University, Shenyang 110004, China; (Z.Y.); (Y.J.); (Q.X.); (J.X.)
| | - Jin Zhang
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang 110004, China;
| | - Qianyi Xu
- Department of Cardiology, Shengjing Hospital of China Medical University, Shenyang 110004, China; (Z.Y.); (Y.J.); (Q.X.); (J.X.)
| | - Jiahui Xu
- Department of Cardiology, Shengjing Hospital of China Medical University, Shenyang 110004, China; (Z.Y.); (Y.J.); (Q.X.); (J.X.)
| | - Ruixue Li
- School of Public Health, China Medical University, Shenyang 110122, China; (R.L.); (W.Y.); (H.G.)
| | - Wei Yuan
- School of Public Health, China Medical University, Shenyang 110122, China; (R.L.); (W.Y.); (H.G.)
| | - Hui Guo
- School of Public Health, China Medical University, Shenyang 110122, China; (R.L.); (W.Y.); (H.G.)
| | - Zhaoqing Sun
- Department of Cardiology, Shengjing Hospital of China Medical University, Shenyang 110004, China; (Z.Y.); (Y.J.); (Q.X.); (J.X.)
- Correspondence: (Z.S.); (L.Z.); Tel.: +86-24-83282688 (Z.S. & L.Z.); Fax: +86-24-83282346 (Z.S. & L.Z.)
| | - Liqiang Zheng
- Department of Cardiology, Shengjing Hospital of China Medical University, Shenyang 110004, China; (Z.Y.); (Y.J.); (Q.X.); (J.X.)
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Correspondence: (Z.S.); (L.Z.); Tel.: +86-24-83282688 (Z.S. & L.Z.); Fax: +86-24-83282346 (Z.S. & L.Z.)
| |
Collapse
|
9
|
Li QZ, Zuo ZW, Zhou ZR, Ji Y. Polyamine homeostasis-based strategies for cancer: The role of combination regimens. Eur J Pharmacol 2021; 910:174456. [PMID: 34464603 DOI: 10.1016/j.ejphar.2021.174456] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/14/2021] [Accepted: 08/26/2021] [Indexed: 01/07/2023]
Abstract
Spermine, spermidine and putrescine polyamines are naturally occurring ubiquitous positively charged amines and are essential metabolites for biological functions in our life. These compounds play a crucial role in many cell processes, including cellular proliferation, growth, and differentiation. Intracellular levels of polyamines depend on their biosynthesis, transport and degradation. Polyamine levels are high in cancer cells, which leads to the promotion of tumor growth, invasion and metastasis. Targeting polyamine metabolism as an anticancer strategy is considerably rational. Due to compensatory mechanisms, a single strategy does not achieve satisfactory clinical effects when using a single agent. Combination regimens are more clinically promising for cancer chemoprevention because they work synergistically with causing little or no adverse effects due to each individual agent being used at lower doses. Moreover, bioactive substances have advantages over single chemical agents because they can affect multiple targets. In this review, we discuss anticancer strategies targeting polyamine metabolism and describe how combination treatments and effective natural active ingredients are promising therapies. The existing research suggests that polyamine metabolic enzymes are important therapeutic targets and that combination therapies can be more effective than monotherapies based on polyamine depletion.
Collapse
Affiliation(s)
- Qi-Zhang Li
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Industrial Fermentation (Ministry of Education), Institute of Biomedical and Pharmaceutical Sciences, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, Hubei, 430068, PR China.
| | - Zan-Wen Zuo
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Industrial Fermentation (Ministry of Education), Institute of Biomedical and Pharmaceutical Sciences, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, Hubei, 430068, PR China
| | - Ze-Rong Zhou
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Industrial Fermentation (Ministry of Education), Institute of Biomedical and Pharmaceutical Sciences, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, Hubei, 430068, PR China
| | - Yan Ji
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Industrial Fermentation (Ministry of Education), Institute of Biomedical and Pharmaceutical Sciences, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, Hubei, 430068, PR China
| |
Collapse
|
10
|
Hofer SJ, Davinelli S, Bergmann M, Scapagnini G, Madeo F. Caloric Restriction Mimetics in Nutrition and Clinical Trials. Front Nutr 2021; 8:717343. [PMID: 34552954 PMCID: PMC8450594 DOI: 10.3389/fnut.2021.717343] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 08/13/2021] [Indexed: 12/29/2022] Open
Abstract
The human diet and dietary patterns are closely linked to the health status. High-calorie Western-style diets have increasingly come under scrutiny as their caloric load and composition contribute to the development of non-communicable diseases, such as diabetes, cancer, obesity, and cardiovascular disorders. On the other hand, calorie-reduced and health-promoting diets have shown promising results in maintaining health and reducing disease burden throughout aging. More recently, pharmacological Caloric Restriction Mimetics (CRMs) have gained interest of the public and scientific community as promising candidates that mimic some of the myriad of effects induced by caloric restriction. Importantly, many of the CRM candidates activate autophagy, prolong life- and healthspan in model organisms and ameliorate diverse disease symptoms without the need to cut calories. Among others, glycolytic inhibitors (e.g., D-allulose, D-glucosamine), hydroxycitric acid, NAD+ precursors, polyamines (e.g., spermidine), polyphenols (e.g., resveratrol, dimethoxychalcones, curcumin, EGCG, quercetin) and salicylic acid qualify as CRM candidates, which are naturally available via foods and beverages. However, it is yet unclear how these bioactive substances contribute to the benefits of healthy diets. In this review, we thus discuss dietary sources, availability and intake levels of dietary CRMs. Finally, since translational research on CRMs has entered the clinical stage, we provide a summary of their effects in clinical trials.
Collapse
Affiliation(s)
- Sebastian J. Hofer
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
- Field of Excellence BioHealth, University of Graz, Graz, Austria
| | - Sergio Davinelli
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, Campobasso, Italy
| | - Martina Bergmann
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
| | - Giovanni Scapagnini
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, Campobasso, Italy
| | - Frank Madeo
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
- Field of Excellence BioHealth, University of Graz, Graz, Austria
| |
Collapse
|
11
|
Sagar NA, Tarafdar S, Agarwal S, Tarafdar A, Sharma S. Polyamines: Functions, Metabolism, and Role in Human Disease Management. Med Sci (Basel) 2021; 9:44. [PMID: 34207607 PMCID: PMC8293435 DOI: 10.3390/medsci9020044] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/05/2021] [Accepted: 06/07/2021] [Indexed: 12/11/2022] Open
Abstract
Putrescine, spermine, and spermidine are the important polyamines (PAs), found in all living organisms. PAs are formed by the decarboxylation of amino acids, and they facilitate cell growth and development via different cellular responses. PAs are the integrated part of the cellular and genetic metabolism and help in transcription, translation, signaling, and post-translational modifications. At the cellular level, PA concentration may influence the condition of various diseases in the body. For instance, a high PA level is detrimental to patients suffering from aging, cognitive impairment, and cancer. The levels of PAs decline with age in humans, which is associated with different health disorders. On the other hand, PAs reduce the risk of many cardiovascular diseases and increase longevity, when taken in an optimum quantity. Therefore, a controlled diet is an easy way to maintain the level of PAs in the body. Based on the nutritional intake of PAs, healthy cell functioning can be maintained. Moreover, several diseases can also be controlled to a higher extend via maintaining the metabolism of PAs. The present review discusses the types, important functions, and metabolism of PAs in humans. It also highlights the nutritional role of PAs in the prevention of various diseases.
Collapse
Affiliation(s)
- Narashans Alok Sagar
- Department of Agriculture and Environmental Sciences, National Institute of Food Technology Entrepreneurship and Management, Kundli, Sonepat 131028, Haryana, India
- Food Microbiology Lab, Division of Livestock Products Technology, ICAR-Indian Veterinary Research Institute, Izatnagar 243122, Uttar Pradesh, India
| | - Swarnava Tarafdar
- Department of Radiodiagnosis and Imaging, All India Institute of Medical Science, Rishikesh 249203, Uttarakhand, India;
| | - Surbhi Agarwal
- Department of Hematology, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India;
| | - Ayon Tarafdar
- Livestock Production and Management Section, ICAR-Indian Veterinary Research Institute, Izatnagar 243122, Uttar Pradesh, India;
| | - Sunil Sharma
- Department of Agriculture and Environmental Sciences, National Institute of Food Technology Entrepreneurship and Management, Kundli, Sonepat 131028, Haryana, India
| |
Collapse
|
12
|
Sudalaimani S, Sanjeev Kumar K, Esokkiya A, Suresh C, Giribabu K. Electrified liquid-liquid interface as an electrochemical tool for the sensing of putrescine and cadaverine. Analyst 2021; 146:3208-3215. [PMID: 33999050 DOI: 10.1039/d1an00019e] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Putrescine and cadaverine are biogenic amines that serve as potential biomarkers for several types of cancers and monitoring food quality. Electrochemical sensing of putrescine and cadaverine by non-enzymatic routes remains a challenge because of their inertness at unmodified electrode surfaces and hence a liquid-liquid interface strategy has been employed for their detection. In the present study, electrochemical sensing of cadaverine and putrescine has been demonstrated by simple and facilitated ion-transfer processes using a liquid-liquid microinterface supported by a microcapillary. A microinterface was constructed in different configurations by varying the aqueous phase composition in the absence and presence of dibenzo-18-crown-6, and the ion-transfer ability of putrescine and cadaverine was studied in these configurations. A peak shaped voltammogram was observed in the backward scan, due to the linear diffusion of putrescine and cadaverine from the organic to the aqueous phase. The detection ability in the presence of dibenzo-18-crown-6 was observed in the concentration ranges of 0.25-25 μM and 0.25-40 μM for putrescine and cadaverine with detection limits of 0.11 and 0.17 μM respectively. In the presence of dibenzo-18-crown-6, the electrochemical sensing of putrescine and cadaverine was more pronounced compared to the simple ion-transfer process.
Collapse
Affiliation(s)
- S Sudalaimani
- Electrodics and Electrocatalysis Division, CSIR-Central Electrochemical Research Institute, Karaikudi-630 003, Tamil Nadu, India.
| | | | | | | | | |
Collapse
|
13
|
Peng Y, Nie Y, Yu J, Wong CC. Microbial Metabolites in Colorectal Cancer: Basic and Clinical Implications. Metabolites 2021; 11:metabo11030159. [PMID: 33802045 PMCID: PMC8001357 DOI: 10.3390/metabo11030159] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/22/2021] [Accepted: 03/05/2021] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer (CRC) is one of the leading cancers that cause cancer-related deaths worldwide. The gut microbiota has been proved to show relevance with colorectal tumorigenesis through microbial metabolites. By decomposing various dietary residues in the intestinal tract, gut microbiota harvest energy and produce a variety of metabolites to affect the host physiology. However, some of these metabolites are oncogenic factors for CRC. With the advent of metabolomics technology, studies profiling microbiota-derived metabolites have greatly accelerated the progress in our understanding of the host-microbiota metabolism interactions in CRC. In this review, we briefly summarize the present metabolomics techniques in microbial metabolites researches and the mechanisms of microbial metabolites in CRC pathogenesis, furthermore, we discuss the potential clinical applications of microbial metabolites in cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Yao Peng
- Department of Gastroenterology, Guangzhou First People’s Hospital, Guangzhou Medical University, Guangzhou 510180, China; (Y.P.); (Y.N.)
| | - Yuqiang Nie
- Department of Gastroenterology, Guangzhou First People’s Hospital, Guangzhou Medical University, Guangzhou 510180, China; (Y.P.); (Y.N.)
- Department of Gastroenterology, The Second Affiliated Hospital, Medical School, South China University of Technology, Guangzhou 510180, China
| | - Jun Yu
- Department of Gastroenterology, The Second Affiliated Hospital, Medical School, South China University of Technology, Guangzhou 510180, China
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
- Correspondence: (J.Y.); (C.C.W.)
| | - Chi Chun Wong
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
- Correspondence: (J.Y.); (C.C.W.)
| |
Collapse
|
14
|
Zhang H, Liu M, Zhu X, Li H. Detection of Spermine Using Cucurbit[7]uril-phenazopyridine Host-Guest Inclusion Complex as a Platform. CHEM LETT 2021. [DOI: 10.1246/cl.200667] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Huaqing Zhang
- School of Chemistry and Life Science, Changchun University of Technology, Changchun 130012, P. R. China
- Advanced Institute of materials Science, Changchun University of Technology, Changchun 130012, P. R. China
| | - Mei Liu
- School of Chemistry and Life Science, Changchun University of Technology, Changchun 130012, P. R. China
- Advanced Institute of materials Science, Changchun University of Technology, Changchun 130012, P. R. China
| | - Xiaofei Zhu
- School of Chemistry and Life Science, Changchun University of Technology, Changchun 130012, P. R. China
| | - Hui Li
- School of Chemistry and Life Science, Changchun University of Technology, Changchun 130012, P. R. China
- Advanced Institute of materials Science, Changchun University of Technology, Changchun 130012, P. R. China
| |
Collapse
|
15
|
Sánchez-Chiprés DR, Chávez-Mora IY, Reynoso-Orozco R, Noa-Pérez M. Levels of Polyamines in Feces of Laying Hens Fed with Agave Fructans (Agave Tequilana, Weber) in Association with the Quality and Production of Egg. BRAZILIAN JOURNAL OF POULTRY SCIENCE 2021. [DOI: 10.1590/1806-9061-2020-1253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
| | | | | | - M Noa-Pérez
- University Center for Biological and Agricultural Sciences, Mexico
| |
Collapse
|
16
|
Dietary Polyamines Intake and Risk of Colorectal Cancer: A Case-Control Study. Nutrients 2020; 12:nu12113575. [PMID: 33266410 PMCID: PMC7700244 DOI: 10.3390/nu12113575] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/19/2020] [Accepted: 11/20/2020] [Indexed: 01/04/2023] Open
Abstract
Polyamines (including putrescine, spermidine, and spermine) are small, cationic molecules that are necessary for cell proliferation and differentiation. Few studies have examined the association of dietary polyamines intake with colorectal cancer risk. The aim of this study was to evaluate total polyamines, putrescine, spermidine, and spermine intake in relation to colorectal cancer risk in China. In total, 2502 colorectal cancer cases and 2538 age-(5-year interval) and sex-matched controls were recruited from July 2010 to April 2019. Odds ratios (ORs) and 95% confidence intervals (CI) were calculated by multivariable unconditional logistic regression after adjustment for various potential confounding factors. Higher intake of total polyamine, putrescine and spermidine was significantly associated with reduced risk of colorectal cancer. The adjusted ORs for the highest compared with the lowest quartile of intake were 0.60 (95% CI 0.50, 0.72; Ptrend < 0.001) for total polyamines, 0.35 (95% CI 0.29, 0.43; Ptrend < 0.001) for putrescine and 0.79 (95% CI 0.66, 0.95; Ptrend = 0.001) for spermidine, respectively. However, higher intake of spermine was associated with increased risk of colorectal cancer, with an adjusted OR of 1.58 (95% CI 1.29, 1.93; Ptrend < 0.001). This data indicate that higher intake of total polyamines, putrescine and spermidine, as well as lower intake of spermine, is associated with a decreased risk of colorectal cancer.
Collapse
|
17
|
Madeo F, Hofer SJ, Pendl T, Bauer MA, Eisenberg T, Carmona-Gutierrez D, Kroemer G. Nutritional Aspects of Spermidine. Annu Rev Nutr 2020; 40:135-159. [DOI: 10.1146/annurev-nutr-120419-015419] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Natural polyamines (spermidine and spermine) are small, positively charged molecules that are ubiquitously found within organisms and cells. They exert numerous (intra)cellular functions and have been implicated to protect against several age-related diseases. Although polyamine levels decline in a complex age-dependent, tissue-, and cell type–specific manner, they are maintained in healthy nonagenarians and centenarians. Increased polyamine levels, including through enhanced dietary intake, have been consistently linked to improved health and reduced overall mortality. In preclinical models, dietary supplementation with spermidine prolongs life span and health span. In this review, we highlight salient aspects of nutritional polyamine intake and summarize the current knowledge of organismal and cellular uptake and distribution of dietary (and gastrointestinal) polyamines and their impact on human health. We further summarize clinical and epidemiological studies of dietary polyamines.
Collapse
Affiliation(s)
- Frank Madeo
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, 8010 Graz, Austria
- BioTechMed-Graz, 8010 Graz, Austria
- Field of Excellence BioHealth, University of Graz, 8010 Graz, Austria
| | - Sebastian J. Hofer
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, 8010 Graz, Austria
| | - Tobias Pendl
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, 8010 Graz, Austria
| | - Maria A. Bauer
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, 8010 Graz, Austria
| | - Tobias Eisenberg
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, 8010 Graz, Austria
- BioTechMed-Graz, 8010 Graz, Austria
- Field of Excellence BioHealth, University of Graz, 8010 Graz, Austria
- Central Lab Graz Cell Informatics and Analyses (GRACIA), NAWI Graz, University of Graz, 8010 Graz, Austria
| | | | - Guido Kroemer
- Equipe Labellisée par la Ligue Contre le Cancer, Université de Paris, Sorbonne Université, INSERM U1138, Centre de Recherche des Cordeliers, 75006 Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, F-94805 Villejuif, France
- Pôle de Biologie, Hôpital Européen Georges Pompidou, Assistance Publique-Hôpitaux de Paris, F-75015 Paris, France
- Suzhou Institute for Systems Medicine, Chinese Academy of Medical Sciences, Jiangsu 215163, Suzhou, China
- Department of Women's and Children's Health, Karolinska Institute, Karolinska University, S-17177 Solna, Sweden
| |
Collapse
|
18
|
Correlation of polyamines, acrolein-conjugated lysine and polyamine metabolic enzyme levels with age in human liver. Heliyon 2020; 6:e05031. [PMID: 32995657 PMCID: PMC7512001 DOI: 10.1016/j.heliyon.2020.e05031] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 08/21/2020] [Accepted: 09/18/2020] [Indexed: 12/13/2022] Open
Abstract
The polyamines spermidine, spermine and putrescine are essential for normal cellular functions. The contents of polyamines in tissue decreased in aged mice compared to young mice. In this study, the polyamine contents and their metabolic byproduct acrolein-conjugated lysine (Nε-(3-formyl-3,4-dehydropiperidino)-lysine, FDP-Lys) in human liver tissue were measured and analyzed the correlation with age of the subjects. The putrescine and FDP-Lys levels were significantly increased with age. On the other hand, spermine level was decreased with age. Spermidine did not significantly correlate with age. The relative amount of spermine oxidase (SMOX) significantly correlated with the age of subjects whereas ornithine decarboxylase (ODC) and adenosylmethionine decarboxylase (AMD1) significantly reduced by the age. Our results suggested that an increase in oxidation and reduction in polyamine synthesis may cause the change of polyamine profile in the elderly.
Collapse
|
19
|
Prioritization of Variants for Investigation of Genotype-Directed Nutrition in Human Superpopulations. Int J Mol Sci 2019; 20:ijms20143516. [PMID: 31323740 PMCID: PMC6678450 DOI: 10.3390/ijms20143516] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 07/04/2019] [Accepted: 07/16/2019] [Indexed: 01/06/2023] Open
Abstract
Dietary guidelines recommended by key health agencies are generally designed for a global population. However, ethnicity affects human disease and environment-gene interactions, including nutrient intake. Historically, isolated human populations with different genetic backgrounds have adapted to distinct environments with varying food sources. Ethnicity is relevant to the interaction of food intake with genes and disease susceptibility; yet major health agencies generally do not recommend food and nutrients codified by population genotypes and their frequencies. In this paper, we have consolidated published nutrigenetic variants and examine their frequencies in human superpopulations to prioritize these variants for future investigation of population-specific genotype-directed nutrition. The nutrients consumed by individuals interact with their genome and may alter disease risk. Herein, we searched the literature, designed a data model, and manually curated hundreds of papers. The resulting database houses 101 variants that reached significance (p < 0.05), from 35 population studies. Nutrigenetic variants associated with modified nutrient intake have the potential to reduce the risk of colorectal cancer, obesity, metabolic syndrome, type 2 diabetes, and several other diseases. Since many nutrigenetic studies have identified a major variant in some populations, we suggest that superpopulation-specific genotype-directed nutrition modifications be prioritized for future study and evaluation. Genotype-directed nutrition approaches to dietary modification have the potential to reduce disease risk in select human populations.
Collapse
|
20
|
Soda K. Spermine and gene methylation: a mechanism of lifespan extension induced by polyamine-rich diet. Amino Acids 2019; 52:213-224. [PMID: 31004229 DOI: 10.1007/s00726-019-02733-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 04/06/2019] [Indexed: 01/05/2023]
Abstract
The polyamines spermidine and spermine are synthesized in almost all organisms and are also contained in food. Polyamine synthesis decreases with aging, but no significant decrease in polyamine concentrations were found in organs, tissues, and blood of adult animals and humans. We found that healthy dietary patterns were associated with a preference for polyamine-rich foods, and first reported that increased polyamine intake extended the lifespan of mice and decreased the incidence of colon cancer induced by repeated administration of moderate amounts of a carcinogen. Recent investigations have revealed that changes in DNA methylation status play an important role in lifespan and aging-associated pathologies. The methylation of DNA is regulated by DNA methyltransferases in the presence of S-adenosylmethionine. Decarboxylated S-adenosylmethionine, converted from S-adenosylmethionine by S-adenosylmethionine decarboxylase, provides an aminopropyl group to synthesize spermine and spermidine and acts to inhibit DNMT activity. Long-term increased polyamine intake were shown to elevate blood spermine levels in mice and humans. In vitro studies demonstrated that spermine reversed changes induced by the inhibition of ornithine decarboxylase (e.g., increased decarboxylated S-adenosylmethionine, decreased DNA methyltransferase activity, increased aberrant DNA methylation), whose activity decreases with aging. Further, aged mice fed high-polyamine chow demonstrated suppression of aberrant DNA methylation and a consequent increase in protein levels of lymphocyte function-associated antigen 1, which plays a pivotal role on inflammatory process. This review discusses the relation between polyamine metabolism and DNA methylation, as well as the biological mechanism of lifespan extension induced by increased polyamine intake.
Collapse
Affiliation(s)
- Kuniyasu Soda
- Cardiovascular Research Institute, Saitama Medical Center, Jichi Medical University, 1-847 Amanuma, Omiya, Saitama-City, Saitama, Japan.
| |
Collapse
|
21
|
Del Rio B, Redruello B, Linares DM, Ladero V, Ruas-Madiedo P, Fernandez M, Martin MC, Alvarez MA. The biogenic amines putrescine and cadaverine show in vitro cytotoxicity at concentrations that can be found in foods. Sci Rep 2019; 9:120. [PMID: 30644398 PMCID: PMC6333923 DOI: 10.1038/s41598-018-36239-w] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 11/15/2018] [Indexed: 12/11/2022] Open
Abstract
Putrescine and cadaverine are among the most common biogenic amines (BA) in foods, but it is advisable that their accumulation be avoided. Present knowledge about their toxicity is, however, limited; further research is needed if qualitative and quantitative risk assessments for foods are to be conducted. The present work describes a real-time analysis of the cytotoxicity of putrescine and cadaverine on intestinal cell cultures. Both BA were cytotoxic at concentrations found in BA-rich foods, although the cytotoxicity threshold for cadaverine was twice that of putrescine. Their mode of cytotoxic action was similar, with both BA causing cell necrosis; they did not induce apoptosis. The present results may help in establishing legal limits for both putrescine and cadaverine in food.
Collapse
Affiliation(s)
- Beatriz Del Rio
- Dairy Research Institute, IPLA-CSIC, Paseo Rio Linares s/n, 33300, Villaviciosa, Spain.
| | - Begoña Redruello
- Dairy Research Institute, IPLA-CSIC, Paseo Rio Linares s/n, 33300, Villaviciosa, Spain
| | - Daniel M Linares
- Dairy Research Institute, IPLA-CSIC, Paseo Rio Linares s/n, 33300, Villaviciosa, Spain
| | - Victor Ladero
- Dairy Research Institute, IPLA-CSIC, Paseo Rio Linares s/n, 33300, Villaviciosa, Spain
| | - Patricia Ruas-Madiedo
- Dairy Research Institute, IPLA-CSIC, Paseo Rio Linares s/n, 33300, Villaviciosa, Spain
| | - Maria Fernandez
- Dairy Research Institute, IPLA-CSIC, Paseo Rio Linares s/n, 33300, Villaviciosa, Spain
| | - M Cruz Martin
- Dairy Research Institute, IPLA-CSIC, Paseo Rio Linares s/n, 33300, Villaviciosa, Spain
| | - Miguel A Alvarez
- Dairy Research Institute, IPLA-CSIC, Paseo Rio Linares s/n, 33300, Villaviciosa, Spain
| |
Collapse
|
22
|
An altered gene expression profile in tyramine-exposed intestinal cell cultures supports the genotoxicity of this biogenic amine at dietary concentrations. Sci Rep 2018; 8:17038. [PMID: 30451877 PMCID: PMC6242974 DOI: 10.1038/s41598-018-35125-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 10/31/2018] [Indexed: 01/06/2023] Open
Abstract
Tyramine, histamine and putrescine are the most commonly detected and most abundant biogenic amines (BA) in food. The consumption of food with high concentrations of these BA is discouraged by the main food safety agencies, but legal limits have only been set for histamine. The present work reports a transcriptomic investigation of the oncogenic potential of the above-mentioned BA, as assessed in the HT29 human intestinal epithelial cell line. Tyramine had a greater effect on the expression of genes involved in tumorigenesis than did histamine or putrescine. Since some of the genes that showed altered expression in tyramine-exposed cells are involved in DNA damage and repair, the effect of this BA on the expression of other genes involved in the DNA damage response was investigated. The results suggest that tyramine might be genotoxic for intestinal cells at concentrations easily found in BA-rich food. Moreover, a role in promoting intestinal cancer cannot be excluded.
Collapse
|
23
|
Gerner EW, Bruckheimer E, Cohen A. Cancer pharmacoprevention: Targeting polyamine metabolism to manage risk factors for colon cancer. J Biol Chem 2018; 293:18770-18778. [PMID: 30355737 DOI: 10.1074/jbc.tm118.003343] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Cancer is a set of diseases characterized by uncontrolled cell growth. In certain cancers of the gastrointestinal tract, the adenomatous polyposis coli (APC) tumor suppressor gene is altered in either germline or somatic cells and causes formation of risk factors, such as benign colonic or intestinal neoplasia, which can progress to invasive cancer. APC is a key component of the WNT pathway, contributing to normal GI tract development, and APC alteration results in dysregulation of the pathway for production of polyamines, which are ubiquitous cations essential for cell growth. Studies with mice have identified nonsteroidal anti-inflammatory drugs (NSAIDs) and difluoromethylornithine (DFMO), an inhibitor of polyamine synthesis, as potent inhibitors of colon carcinogenesis. Moreover, gene expression profiling has uncovered that NSAIDs activate polyamine catabolism and export. Several DFMO-NSAID combination strategies are effective and safe methods for reducing risk factors in clinical trials with patients having genetic or sporadic risk of colon cancer. These strategies affect cancer stem cells, inflammation, immune surveillance, and the microbiome. Pharmacotherapies consisting of drug combinations targeting the polyamine pathway provide a complementary approach to surgery and cytotoxic cancer treatments for treating patients with cancer risk factors. In this Minireview, we discuss the role of polyamines in colon cancer and highlight the mechanisms of select pharmacoprevention agents to delay or prevent carcinogenesis in humans.
Collapse
Affiliation(s)
- Eugene W Gerner
- From Cancer Prevention Pharmaceuticals, Tucson, Arizona 85718 and .,the Department of Cell and Molecular Medicine, University of Arizona, Tucson, Arizona 85711
| | | | - Alfred Cohen
- From Cancer Prevention Pharmaceuticals, Tucson, Arizona 85718 and
| |
Collapse
|
24
|
Soda K. Polyamine Metabolism and Gene Methylation in Conjunction with One-Carbon Metabolism. Int J Mol Sci 2018; 19:E3106. [PMID: 30309036 PMCID: PMC6213949 DOI: 10.3390/ijms19103106] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 10/01/2018] [Accepted: 10/05/2018] [Indexed: 02/07/2023] Open
Abstract
Recent investigations have revealed that changes in DNA methylation status play an important role in aging-associated pathologies and lifespan. The methylation of DNA is regulated by DNA methyltransferases (DNMT1, DNMT3a, and DNMT3b) in the presence of S-adenosylmethionine (SAM), which serves as a methyl group donor. Increased availability of SAM enhances DNMT activity, while its metabolites, S-adenosyl-l-homocysteine (SAH) and decarboxylated S-adenosylmethionine (dcSAM), act to inhibit DNMT activity. SAH, which is converted from SAM by adding a methyl group to cytosine residues in DNA, is an intermediate precursor of homocysteine. dcSAM, converted from SAM by the enzymatic activity of adenosylmethionine decarboxylase, provides an aminopropyl group to synthesize the polyamines spermine and spermidine. Increased homocysteine levels are a significant risk factor for the development of a wide range of conditions, including cardiovascular diseases. However, successful homocysteine-lowering treatment by vitamins (B6, B12, and folate) failed to improve these conditions. Long-term increased polyamine intake elevated blood spermine levels and inhibited aging-associated pathologies in mice and humans. Spermine reversed changes (increased dcSAM, decreased DNMT activity, aberrant DNA methylation, and proinflammatory status) induced by the inhibition of ornithine decarboxylase. The relation between polyamine metabolism, one-carbon metabolism, DNA methylation, and the biological mechanism of spermine-induced lifespan extension is discussed.
Collapse
Affiliation(s)
- Kuniyasu Soda
- Cardiovascular Research Institute, Saitama Medical Center, Jichi Medical University, 1-847 Amanuma, Omiya, Saitama-city, Saitama Prefecture 330-8503, Japan.
| |
Collapse
|
25
|
Madeo F, Eisenberg T, Pietrocola F, Kroemer G. Spermidine in health and disease. Science 2018; 359:359/6374/eaan2788. [DOI: 10.1126/science.aan2788] [Citation(s) in RCA: 438] [Impact Index Per Article: 62.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
26
|
Abstract
Abstract
Clinical practice and experimental studies have shown the necessity of sufficient quantities of folic acid intake for normal embryogenesis and fetal development in the prevention of neural tube defects (NTDs) and neurological malformations. So, women of childbearing age must be sure to have an adequate folate intake periconceptionally, prior to and during pregnancy. Folic acid fortification of all enriched cereal grain product flour has been implemented in many countries. Thus, hundreds of thousands of people have been exposed to an increased intake of folic acid. Folate plays an essential role in the biosynthesis of methionine. Methionine is the principal aminopropyl donor required for polyamine biosynthesis, which is up-regulated in actively growing cells, including cancer cells. Folates are important in RNA and DNA synthesis, DNA stability and integrity. Clinical and epidemiological evidence links folate deficiency to DNA damage and cancer. On the other hand, long-term folate oversupplementation leads to adverse toxic effects, resulting in the appearance of malignancy. Considering the relationship of polyamines and rapidly proliferating tissues (especially cancers), there is a need for better investigation of the relationship between the ingestion of high amounts of folic acid in food supplementation and polyamine metabolism, related to malignant processes in the human body.
Collapse
|
27
|
Sánchez M, Suárez L, Andrés MT, Flórez BH, Bordallo J, Riestra S, Cantabrana B. Modulatory effect of intestinal polyamines and trace amines on the spontaneous phasic contractions of the isolated ileum and colon rings of mice. Food Nutr Res 2017; 61:1321948. [PMID: 28659731 PMCID: PMC5475348 DOI: 10.1080/16546628.2017.1321948] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 03/20/2017] [Indexed: 11/08/2022] Open
Abstract
Background: Gastrointestinal motility modulatory factors include substances of the intestinal content, such as polyamines and trace amines (TAs), the focus of this study. Methods: The amines of food, intestinal content and from faecal bacteria of Swiss mice were determined by HPLC and functionally characterised in isolated distal ileum and medial colon rings. Results: Mouse food and intestinal content contain polyamines (spermidine>putrescine>spermine) and TAs (isoamylamine>cadaverine). Intestinal bacteria mainly produce putrescine and cadaverine. The amines inhibited the spontaneous motility of the ileum (0.1-3 mM) and colon rings (0.01-3 mM, with lower IC50), with: spermine~isoamylamine~spermidine. Spermine inhibition was tetrodotoxin (TTX)-insensitive, while isoamylamine was TTX-sensitive, suggesting neural control. Mainly in the ileum, isoamylamine (3 mM) elicited acute effects modified by TTX, atropine and propranolol, and suppressed by spermine (3 mM), not being localized at the smooth muscle level. The amines assayed (3 mM), except putrescine and cadaverine in the ileum and isoamylamine in the colon, antagonised acetylcholine (ACh, 0.1 mM)-elicited phasic contractions. Isoamylamine and spermine in colon relaxed KCl (100 mM)-elicited tonic contractions, suggesting an effect on smooth muscle, but did not justify the suppression of motility caused by spermine and isoamylamine. Conclusions: Polyamines and TAs of the intestinal content might act on chemosensors and modulate intestinal peristalsis.
Collapse
Affiliation(s)
- Manuel Sánchez
- Farmacología, Departamento de Medicina, Universidad de Oviedo, Oviedo, Spain.,Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Oviedo, Spain
| | - Lorena Suárez
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Oviedo, Spain
| | - María Teresa Andrés
- Laboratorio de Microbiología Oral, Escuela de Estomatología, Universidad de Oviedo, Oviedo, Spain
| | - Blanca Henar Flórez
- Farmacología, Departamento de Medicina, Universidad de Oviedo, Oviedo, Spain
| | - Javier Bordallo
- Farmacología, Departamento de Medicina, Universidad de Oviedo, Oviedo, Spain.,Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Oviedo, Spain
| | - Sabino Riestra
- Servicio de Aparato Digestivo, Unidad de Enfermedad Inflamatoria Intestinal, Hospital Universitario Central de Asturias (HUCA), Oviedo, Spain
| | - Begoña Cantabrana
- Farmacología, Departamento de Medicina, Universidad de Oviedo, Oviedo, Spain.,Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Oviedo, Spain
| |
Collapse
|
28
|
Hammerling U, Bergman Laurila J, Grafström R, Ilbäck NG. Consumption of Red/Processed Meat and Colorectal Carcinoma: Possible Mechanisms Underlying the Significant Association. Crit Rev Food Sci Nutr 2016; 56:614-34. [PMID: 25849747 DOI: 10.1080/10408398.2014.972498] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Epidemiology and experimental studies provide an overwhelming support of the notion that diets high in red or processed meat accompany an elevated risk of developing pre-neoplastic colorectal adenoma and frank colorectal carcinoma (CRC). The underlying mechanisms are disputed; thus several hypotheses have been proposed. A large body of reports converges, however, on haem and nitrosyl haem as major contributors to the CRC development, presumably acting through various mechanisms. Apart from a potentially higher intestinal mutagenic load among consumers on a diet rich in red/processed meat, other mechanisms involving subtle interference with colorectal stem/progenitor cell survival or maturation are likewise at play. From an overarching perspective, suggested candidate mechanisms for red/processed meat-induced CRC appear as three partly overlapping tenets: (i) increased N-nitrosation/oxidative load leading to DNA adducts and lipid peroxidation in the intestinal epithelium, (ii) proliferative stimulation of the epithelium through haem or food-derived metabolites that either act directly or subsequent to conversion, and (iii) higher inflammatory response, which may trigger a wide cascade of pro-malignant processes. In this review, we summarize and discuss major findings of the area in the context of potentially pertinent mechanisms underlying the above-mentioned association between consumption of red/processed meat and increased risk of developing CRC.
Collapse
Affiliation(s)
- Ulf Hammerling
- a Cancer Pharmacology & Computational Medicine, Department of Medical Sciences, Uppsala University and Uppsala Academic Hospital , Uppsala , Sweden
| | - Jonas Bergman Laurila
- b Sahlgrenska Biobank, Gothia Forum, Sahlgrenska University Hospital , Gothenburg , Sweden
| | - Roland Grafström
- c Institute of Environmental Medicine, The Karolinska Institute , Stockholm , Sweden.,d Knowledge Intensive Products and Services, VTT Technical Research Centre of Finland , Turku , Finland
| | - Nils-Gunnar Ilbäck
- e Clinical Microbiology & Infectious Medicine, Department of Medical Sciences, Uppsala University and Uppsala Academic Hospital , Uppsala , Sweden
| |
Collapse
|
29
|
Tolerance and efficacy of a polyamine-deficient diet for the treatment of perioperative pain. Nutrition 2016; 36:33-40. [PMID: 28336105 DOI: 10.1016/j.nut.2016.02.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Revised: 02/07/2016] [Accepted: 02/21/2016] [Indexed: 11/21/2022]
Abstract
BACKGROUND Polyamines have been identified as pain agonists and interact with N-methyl-D-aspartate receptors. A prospective, randomized, multicenter, and blinded phase II clinical trial was conducted to evaluate a polyamine-deficient diet for the treatment of perioperative pain in patients during spinal surgery. METHODS All analyses followed the intention-to-treat principle. The trial was designed to evaluate the dose-ranging effect of a low polyamine diet with respect to a total (group 1) or partial (group 2) polyamine diet on perioperative pain (7 d before and 5 d after surgery). Pain (numerical scale at rest and motion), quality of life questionnaires (Brief Pain Inventory, EIFEL questionnaire, and Short Form-12 acute questionnaire), and tolerance of and compliance with the nutritional program were measured. RESULTS Compliance (preoperatively: 100% in group 1 and 83% in group 2; postoperatively: 83% in group 1 and 71% in group 2) and tolerance were good. After 7 d following the diet before surgery, decreased pain was observed in group 1 whereas no effect was observed in group 2 (P = 0.144). This analgesic effect became significant in group 1 in the subgroup of patients with initial high levels of pain (NS ≥ 4) at rest (P = 0.03) and during motion (P = 0.011). Quality of life was significantly improved in group 1 (P = 0.0465). In the postoperative period, pain was significantly decreased in group 1 compared to group 2 at rest (P = 0.022) and during motion (P = 0.029). The effect was significantly better on patients with higher initial pain both at rest (P = 0.013) and during motion (P = 0.005) in group 1 compared to group 2. CONCLUSION Suppression of polyamines from the diet offers a nutrition-based treatment option for perioperative pain reduction independent of and complementary to typical analgesic approaches.
Collapse
|
30
|
Han A, Bennett N, MacDonald A, Johnstone M, Whelan J, Donohoe DR. Cellular Metabolism and Dose Reveal Carnitine-Dependent and -Independent Mechanisms of Butyrate Oxidation in Colorectal Cancer Cells. J Cell Physiol 2015; 231:1804-13. [DOI: 10.1002/jcp.25287] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 12/09/2015] [Indexed: 12/14/2022]
Affiliation(s)
- Anna Han
- Department of Nutrition; University of Tennessee; Knoxville Tennessee
| | - Natalie Bennett
- Department of Nutrition; University of Tennessee; Knoxville Tennessee
| | - Amber MacDonald
- Department of Nutrition; University of Tennessee; Knoxville Tennessee
| | - Megan Johnstone
- Department of Nutrition; University of Tennessee; Knoxville Tennessee
| | - Jay Whelan
- Department of Nutrition; University of Tennessee; Knoxville Tennessee
| | - Dallas R. Donohoe
- Department of Nutrition; University of Tennessee; Knoxville Tennessee
| |
Collapse
|
31
|
Vargas AJ, Ashbeck EL, Wertheim BC, Wallace RB, Neuhouser ML, Thomson CA, Thompson PA. Dietary polyamine intake and colorectal cancer risk in postmenopausal women. Am J Clin Nutr 2015; 102:411-9. [PMID: 26135350 PMCID: PMC4515861 DOI: 10.3945/ajcn.114.103895] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 06/01/2015] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Putrescine, spermidine, and spermine (i.e., polyamines) are small cationic amines synthesized by cells or acquired from the diet or gut bacteria. Polyamines are required for both normal and colorectal cancer (CRC) cell growth. OBJECTIVE We investigated the association between dietary polyamines and risk of CRC incidence and mortality. DESIGN The study was a prospective analysis in 87,602 postmenopausal women in the Women's Health Initiative Observational Study. Multivariate Cox regression was used to calculate HRs and 95% CIs. RESULTS Total dietary polyamine intake (mean ± SD: 289.2 ± 127.4 μmol/d) was not positively associated with CRC in fully adjusted models. Instead, intake ≥179.67 μmol/d was associated with reduced risk of CRC [HR (95% CI): 0.82 (0.68, 1.00), 0.81 (0.66, 0.99), 0.91 (0.74, 1.12), and 0.80 (0.62, 1.02) for quintiles 2-5, respectively, compared with quintile 1]. Reduced risk was not significant across all quintiles. Polyamines were not significantly associated with CRC-specific mortality in fully adjusted models. When stratified by risk factors for CRC, only body mass index (BMI) and fiber intake significantly modified the association between polyamine intake and CRC. In women with BMI (in kg/m²) ≤25 or fiber consumption above the median, polyamine intake was associated with significantly lower risk of CRC. CONCLUSIONS No positive association between dietary polyamines and CRC or CRC-specific mortality risk in women was observed. Instead, a protective effect of dietary polyamines was suggested in women with some CRC risk-lowering behaviors in particular. These results are consistent with emerging evidence that exogenous polyamines may be beneficial in colon health and warrant additional study.
Collapse
Affiliation(s)
| | | | | | - Robert B Wallace
- University of Iowa College of Public Health, University of Iowa, Iowa City, IA; and
| | - Marian L Neuhouser
- Cancer Prevention Program, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Cynthia A Thomson
- Departments of Nutritional Sciences, College of Public Health, The University of Arizona, Tucson, AZ; The University of Arizona Cancer Center, Tucson, AZ
| | - Patricia A Thompson
- Departments of Nutritional Sciences, Molecular and Cellular Biology, and The University of Arizona Cancer Center, Tucson, AZ
| |
Collapse
|
32
|
Micro-scale strategy to detect spermine and spermidine by MALDI-TOF MS in foods and identification of apoptosis-related proteins by nano-flow UPLC-MS/MS after treatment with spermine and spermidine. J Chromatogr B Analyt Technol Biomed Life Sci 2014; 978-979:131-7. [PMID: 25541472 DOI: 10.1016/j.jchromb.2014.11.037] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2014] [Revised: 11/16/2014] [Accepted: 11/29/2014] [Indexed: 11/20/2022]
Abstract
Spermine and spermidine are multiple-nitrogen compounds found in many foods. Both compounds are essential for cell growth and human health. This study established a simple and fast method of detecting spermine and spermidine in food samples by matrix-assisted laser desorption/ionization combined with time-of-flight mass spectrometry (MALDI-TOF MS). After a simple sample preparation procedure, spermine and spermidine were directly detected by MALDI-TOF MS with no additional purification procedure. The calibration curves for spermine and spermidine ranged from 0.1 to 10 μg/mL. In intra- and inter-batch assays of three different concentrations of spermine and spermidine, all relative standard deviations and relative errors were below 18.9%. These experimental results confirmed the practicability and effectiveness of the proposed MALDI-TOF MS method for fast determination of spermine and spermidine in food samples. Furthermore, since spermine and spermidine have important roles in apoptosis, up-regulation and down-regulation of spermine and spermidine during apoptosis were analyzed. After treating NRK-52E cells with spermine and spermidine, the cells were lysed, and cell proteins were collected, and digested. Apoptosis-related proteins were then identified by tandem MS.
Collapse
|
33
|
Toro-Funes N, Bosch-Fuste J, Latorre-Moratalla ML, Veciana-Nogués MT, Vidal-Carou MC. Biologically active amines in fermented and non-fermented commercial soybean products from the Spanish market. Food Chem 2014; 173:1119-24. [PMID: 25466133 DOI: 10.1016/j.foodchem.2014.10.118] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 10/17/2014] [Accepted: 10/21/2014] [Indexed: 01/18/2023]
Abstract
Biologically active amines were determined in commercial soybean products. The antioxidant polyamines were found in both non-fermented and fermented soybean products. Natto and tempeh showed the highest content of polyamines (75-124 and 11-24 mg/kg of spermidine and spermine, respectively). On the other hand, the bacterial-related biogenic amines, tyramine, histamine, tryptamine and β-phenylethylamine, were detected in practically all fermented products with a high variability. The highest contents were found in sufu, tamari and soybean paste. Extremely high tyramine and histamine contents, 1700 and 700 mg/kg, respectively, found in some sufu samples could be unhealthy. However, biogenic amines observed in the other soybean products should not be a risk for healthy consumers. However, individuals who take monoamine and diamine oxidase inhibitors drugs should be strongly recommended to avoid this kind of products in order to suffer no adverse health effects. These biogenic amines were not detected in non-fermented soybean products.
Collapse
Affiliation(s)
- N Toro-Funes
- Department of Nutrition and Food Science-XaRTA, INSA, Faculty of Pharmacy, Campus de l'Alimentació Torribera, University of Barcelona, Avda. Prat de la Riba 171, 08921 Santa Coloma de Gramenet, Barcelona, Spain
| | - J Bosch-Fuste
- Department of Nutrition and Food Science-XaRTA, INSA, Faculty of Pharmacy, Campus de l'Alimentació Torribera, University of Barcelona, Avda. Prat de la Riba 171, 08921 Santa Coloma de Gramenet, Barcelona, Spain
| | - M L Latorre-Moratalla
- Department of Nutrition and Food Science-XaRTA, INSA, Faculty of Pharmacy, Campus de l'Alimentació Torribera, University of Barcelona, Avda. Prat de la Riba 171, 08921 Santa Coloma de Gramenet, Barcelona, Spain
| | - M T Veciana-Nogués
- Department of Nutrition and Food Science-XaRTA, INSA, Faculty of Pharmacy, Campus de l'Alimentació Torribera, University of Barcelona, Avda. Prat de la Riba 171, 08921 Santa Coloma de Gramenet, Barcelona, Spain
| | - M C Vidal-Carou
- Department of Nutrition and Food Science-XaRTA, INSA, Faculty of Pharmacy, Campus de l'Alimentació Torribera, University of Barcelona, Avda. Prat de la Riba 171, 08921 Santa Coloma de Gramenet, Barcelona, Spain.
| |
Collapse
|
34
|
Vargas AJ, Ashbeck EL, Thomson CA, Gerner EW, Thompson PA. Dietary polyamine intake and polyamines measured in urine. Nutr Cancer 2014; 66:1144-53. [PMID: 25204413 DOI: 10.1080/01635581.2014.949801] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Dietary polyamines have recently been associated with increased risk of pre-malignant colorectal lesions. Because polyamines are synthesized in cells and taken up from dietary sources, development of a biomarker of exposure is challenging. Excess polyamines are primarily excreted in the urine. This pilot study seeks to identify dietary correlates of excreted urinary polyamines as putative biomarkers of exposure. Dietary polyamines/other nutrients were estimated from a food frequency questionnaire (FFQ) and correlated with urinary levels of acetylated polyamines in 36 men using 24-h urine samples. Polyamines, abundant in cheese and citrus, were highly positively correlated with urinary N(8)-acetylspermidine (correlation coefficient; r = 0.37, P = 0.03), but this correlation was attenuated after adjustment for total energy intake (r = 0.07, P = 0.68). Dietary energy intake itself was positively correlated with urinary total acetylated polyamine output (r = .40, P = 0.02). In energy-adjusted analyses, folic acid and folate from food were associated with urinary N(1),N(12)-diacetylspermine (r = 0.34, P = 0.05 and r = -0.39, P = 0.02, respectively). Red meat negatively correlated with total urinary acetylated polyamines (r = -0.42, P = 0.01). Our findings suggest that energy, folate, folic acid, saturated fat, and red meat intake, as opposed to FFQ-estimated dietary polyamines, are correlated with urinary polyamines.
Collapse
Affiliation(s)
- Ashley J Vargas
- a Department of Nutritional Sciences , University of Arizona , Tucson , Arizona , USA
| | | | | | | | | |
Collapse
|
35
|
LINSALATA MICHELE, ORLANDO ANTONELLA, RUSSO FRANCESCO. Pharmacological and dietary agents for colorectal cancer chemoprevention: Effects on polyamine metabolism (Review). Int J Oncol 2014; 45:1802-12. [PMID: 25119812 DOI: 10.3892/ijo.2014.2597] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 07/04/2014] [Indexed: 11/06/2022] Open
|
36
|
Szwergold BS. Maillard reactions in hyperthermophilic archaea: implications for better understanding of non-enzymatic glycation in biology. Rejuvenation Res 2014; 16:259-72. [PMID: 23634960 DOI: 10.1089/rej.2012.1401] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Maillard reactions are an unavoidable feature of life that appear to be damaging to cell and organisms. Consequently, all living systems must have ways to protect themselves against this process. As of 2012, several such defense mechanisms have been identified. They are all enzymatic and were found in mesophilic organisms. To date, no systematic study of Maillard reactions and the relevant defense mechanisms has been conducted in thermophiles (50°C-80°C) or hyperthermophiles (80°C-120°C). This is surprisingly because Maillard reactions become significantly faster and potent with increasing temperatures. This review examines this neglected issue in two well-defined sets of hyperthermophiles. My analysis suggests that hyperthermophiles cope with glycation stress by several mechanisms: • Absence of glycation-prone head groups (such as ethanoalamine) from hyperthermophilic phospholipids • Protection of reactive carbohydrates and labile metabolic intermediates by substrate channeling. • Conversion of excess reactive sugars such as glucose to non-reactive compounds including trehalose, di-myo-inositol-phosphate and mannosylglycerate. • Detoxification of methylglyoxal and other ketoaldehydes by conversion to inert products through a variety of reductases and dehydrogenases. • Scavenging of the remaining carbonyls by nucleophilic amines, including a variety of novel polyamines. Disruption of the Maillard process at its early stages, rather than repair of damage caused by it at later stages, appears to be the preferred strategy in the organisms examined. The most unique among these mechanisms appears to be a polyamine-based scavenging system. Undertaking research of the Maillard process in hyperthermophiles is important in its own right and is also likely to provide new insights for the control of these reactions in humans, especially in diseases such as diabetes mellitus.
Collapse
|
37
|
Lu CY, Su HH, Chen YL, Tseng WL. Micro extraction to quantitate spermidine and spermine in human urine and blood by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. J Chromatogr A 2014; 1326:1-6. [DOI: 10.1016/j.chroma.2013.12.037] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2013] [Revised: 12/10/2013] [Accepted: 12/10/2013] [Indexed: 11/29/2022]
|
38
|
Enzonga J, Ong-Meang V, Couderc F, Boutonnet A, Poinsot V, Tsieri MM, Silou T, Bouajila J. Determination of free amino acids in African gourd seed milks by capillary electrophoresis with light-emitting diode induced fluorescence and laser-induced fluorescence detection. Electrophoresis 2013; 34:2632-8. [DOI: 10.1002/elps.201300136] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 06/13/2013] [Accepted: 06/28/2013] [Indexed: 02/05/2023]
Affiliation(s)
| | - Varravaddheay Ong-Meang
- Laboratoire des Interactions, Moléculaires et Réactivité Chimique et Photochimique UMR CNRS 5623; Université de Toulouse; Université Paul-Sabatier; Toulouse; France
| | - François Couderc
- Laboratoire des Interactions, Moléculaires et Réactivité Chimique et Photochimique UMR CNRS 5623; Université de Toulouse; Université Paul-Sabatier; Toulouse; France
| | | | - Véréna Poinsot
- Laboratoire des Interactions, Moléculaires et Réactivité Chimique et Photochimique UMR CNRS 5623; Université de Toulouse; Université Paul-Sabatier; Toulouse; France
| | | | - Thomas Silou
- Equipe pluridisciplaire en Alimentation et Nutrition; Faculté de Sciences; Université Marien Ngouabi; Brazzaville; Congo
| | - Jalloul Bouajila
- Laboratoire des Interactions, Moléculaires et Réactivité Chimique et Photochimique UMR CNRS 5623; Université de Toulouse; Université Paul-Sabatier; Toulouse; France
| |
Collapse
|