1
|
Hamsayegan S, Raissi H, Ghahari A. Selective detection of food contaminants using engineered gallium-organic frameworks with MD and metadynamics simulations. Sci Rep 2024; 14:18144. [PMID: 39103470 PMCID: PMC11300645 DOI: 10.1038/s41598-024-69111-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 07/31/2024] [Indexed: 08/07/2024] Open
Abstract
The exclusion mechanism of food contaminants such as bisphenol A (BPA), Flavonoids (FLA), and Goitrin (GOI) onto the novel gallium-metal organic framework (MOF) and functionalized MOF with oxalamide group (MOF-OX) is evaluated by utilizing molecular dynamics (MD) and Metadynamics simulations. The atoms in molecules (AIM) analysis detected different types of atomic interactions between contaminant molecules and substrates. To assess this procedure, a range of descriptors including interaction energies, root mean square displacement, radial distribution function (RDF), density, hydrogen bond count (HB), and contact numbers are examined across the simulation trajectories. The most important elements in the stability of the systems under examination are found to be stacking π-π and HB interactions. It was confirmed by a significant value of total interaction energy for BPA/MOF-OX (- 338.21 kJ mol-1) and BPA/MOF (- 389.95 kJ mol-1) complexes. Evaluation of interaction energies reveals that L-J interaction plays an essential role in the adsorption of food contaminants on the substrates. The free energy values for the stability systems of BPA/MOF and BPA/MOF-OX complexes at their global minima reached about BPA/MOF = - 254.29 kJ mol-1 and BPA/MOF-OX = - 187.62 kJ mol-1, respectively. Nevertheless, this work provides a new strategy for the preparation of a new hierarchical tree-dimensional of the Ga-MOF hybrid material for the adsorption and exclusion of food contaminates and their effect on human health.
Collapse
Affiliation(s)
| | - Heidar Raissi
- Department of Chemistry, University of Birjand, Birjand, Iran.
| | - Afsaneh Ghahari
- Department of Chemistry, University of Birjand, Birjand, Iran
| |
Collapse
|
2
|
Zuo LSY, Tang XY, Xiong F, Liu YP, Liu M, Ling CW, Sun TY, Ling W, Zhang ZQ, Chen YM. Isoflavone biomarkers are inversely associated with atherosclerosis progression in adults: a prospective study. Am J Clin Nutr 2021; 114:203-213. [PMID: 33709111 DOI: 10.1093/ajcn/nqab008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 01/08/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Many studies have examined associations between dietary isoflavones and atherosclerosis, but few used objective biomarkers. OBJECTIVES We examined the associations of isoflavone biomarkers (primary analyses) and equol production (secondary analyses) with the progression of carotid intima-media thickness (cIMT), and whether inflammation, systolic blood pressure (SBP), blood lipids, and sex hormone-binding globulin (SHBG) mediated these associations, in Chinese adults. METHODS This 8.8-y prospective study included 2572 subjects (40-75 y old) from the GNHS (Guangzhou Nutrition and Health Study; 2008-2019). The concentrations of daidzein, genistein, and equol were assayed by an HPLC-tandem MS in serum (n = 2572) at baseline and in urine (n = 2220) at 3-y intervals. The cIMT of the common carotid artery (CCA) and bifurcation segment were measured by B-mode ultrasound every 3 y, and the progressions of cIMT ( ∆cIMT) were estimated using the regression method. RESULTS Multivariable linear mixed-effects models (LMEMs) and ANCOVA revealed that subjects with higher serum isoflavones tended to have lower increases of CCA-cIMT. The mean ± SEM differences in 8.8-y ∆CCA-cIMT between extreme tertiles of serum isoflavones were -17.1 ± 8.4, -20.6 ± 8.3, and -23.3 ± 10.4 μm for daidzein, total isoflavone, and equol (P-trends < 0.05), respectively. LMEMs showed that the estimated yearly changes (95% CIs) (μm/y) in CCA-IMT were -2.0 (-3.8, -0.3), -1.9 (-3.6, -0.1), and -2.1 (-3.8, -0.3) in the highest (compared with the lowest) tertile of daidzein, genistein, and total isoflavones, respectively (P-interaction < 0.05). Path analyses indicated that the serum equol-atherosclerosis association was mediated by increased SHBG and decreased SBP. Similar beneficial associations were observed in the secondary analyses. CONCLUSIONS Serum isoflavones and equol exposure were associated with reduced cIMT progression, mediated by SHBG and SBP.
Collapse
Affiliation(s)
- Luo-Shi-Yuan Zuo
- Department of Epidemiology, Guangdong Provincial Key Laboratory of Food, Nutrition, and Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Xin-Yi Tang
- Department of Pediatrics,The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Feng Xiong
- Department of Epidemiology, Guangdong Provincial Key Laboratory of Food, Nutrition, and Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Yu-Ping Liu
- Department of Epidemiology, Guangdong Provincial Key Laboratory of Food, Nutrition, and Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Meng Liu
- Department of Epidemiology, Guangdong Provincial Key Laboratory of Food, Nutrition, and Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Chu-Wen Ling
- Department of Epidemiology, Guangdong Provincial Key Laboratory of Food, Nutrition, and Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Ting-Yu Sun
- Department of Epidemiology, Guangdong Provincial Key Laboratory of Food, Nutrition, and Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Wenhua Ling
- Department of Epidemiology, Guangdong Provincial Key Laboratory of Food, Nutrition, and Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Zhe-Qing Zhang
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Yu-Ming Chen
- Department of Epidemiology, Guangdong Provincial Key Laboratory of Food, Nutrition, and Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
3
|
Peirotén Á, Bravo D, Landete JM. Bacterial metabolism as responsible of beneficial effects of phytoestrogens on human health. Crit Rev Food Sci Nutr 2019; 60:1922-1937. [PMID: 31161778 DOI: 10.1080/10408398.2019.1622505] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Phytoestrogens (PE) are compounds found in plants such as soy (isoflavones), flax seeds and cereals (lignans) and pomegranates (ellagitannins). PE have shown estrogenic/antiestrogenic, antioxidant, anti-inflammatory, antineoplastic and apoptotic activities. The human studies are showing promising although inconsistent results about the beneficial effects of PE on ameliorating the menopausal symptoms or reducing the risk of certain cancers, cardiovascular disease or diabetes. The effects of PE on the organism are mediated by the intestinal microbiota, which transforms them into bioactive PE such as genistein, equol, enterolignans and certain urolithins. In this work, we review the most recent findings about the bacteria able to metabolize PE, together with the latest studies on the effects of PE on health. In addition, we describe the possible factors hindering the demonstration of the beneficial effect of PE on health, evincing the importance of measuring the actual circulating PE in order to encompass the variability of PE metabolism due to the intestinal microbiota. With this in mind, we also explore an approach to ensure the access to bioactive PE.
Collapse
Affiliation(s)
- Ángela Peirotén
- Departamento de Tecnología de Alimentos, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
| | - Daniel Bravo
- Departamento de Tecnología de Alimentos, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
| | - José M Landete
- Departamento de Tecnología de Alimentos, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
| |
Collapse
|
4
|
Abstract
A growing body of nutritional science highlights the complex mechanisms and pleiotropic pathways of cardiometabolic effects of different foods. Among these, some of the most exciting advances are occurring in the area of flavonoids, bioactive phytochemicals found in plant foods; and in the area of dairy, including milk, yogurt, and cheese. Many of the relevant ingredients and mechanistic pathways are now being clarified, shedding new light on both the ingredients and the pathways for how diet influences health and well-being. Flavonoids, for example, have effects on skeletal muscle, adipocytes, liver, and pancreas, and myocardial, renal, and immune cells, for instance, related to 5'-monophosphate-activated protein kinase phosphorylation, endothelial NO synthase activation, and suppression of NF-κB (nuclear factor-κB) and TLR4 (toll-like receptor 4). Effects of dairy are similarly complex and may be mediated by specific amino acids, medium-chain and odd-chain saturated fats, unsaturated fats, branched-chain fats, natural trans fats, probiotics, vitamin K1/K2, and calcium, as well as by processing such as fermentation and homogenization. These characteristics of dairy foods influence diverse pathways including related to mammalian target of rapamycin, silent information regulator transcript-1, angiotensin-converting enzyme, peroxisome proliferator-activated receptors, osteocalcin, matrix glutamate protein, hepatic de novo lipogenesis, hepatic and adipose fatty acid oxidation and inflammation, and gut microbiome interactions such as intestinal integrity and endotoxemia. The complexity of these emerging pathways and corresponding biological responses highlights the rapid advances in nutritional science and the continued need to generate robust empirical evidence on the mechanistic and clinical effects of specific foods.
Collapse
Affiliation(s)
- Dariush Mozaffarian
- From the Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA (D.M.); and the George Institute for Global Health, Faculty of Medicine, University of New South Wales, Sydney, Australia (J.H.Y.W.).
| | - Jason H Y Wu
- From the Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA (D.M.); and the George Institute for Global Health, Faculty of Medicine, University of New South Wales, Sydney, Australia (J.H.Y.W.)
| |
Collapse
|
5
|
Rienks J, Barbaresko J, Nöthlings U. Association of isoflavone biomarkers with risk of chronic disease and mortality: a systematic review and meta-analysis of observational studies. Nutr Rev 2017; 75:616-641. [DOI: 10.1093/nutrit/nux021] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
6
|
Association of Polyphenol Biomarkers with Cardiovascular Disease and Mortality Risk: A Systematic Review and Meta-Analysis of Observational Studies. Nutrients 2017; 9:nu9040415. [PMID: 28441720 PMCID: PMC5409754 DOI: 10.3390/nu9040415] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 04/12/2017] [Accepted: 04/19/2017] [Indexed: 11/17/2022] Open
Abstract
Epidemiologic studies have suggested an inverse association between flavonoids and cardiovascular disease (CVD). However, the results might have been influenced by the use of dietary assessment methods, which are error prone. The aim of this paper was to systematically review and analyse the literature for evidence of associations between polyphenol biomarkers and CVD and mortality risk in observational studies. Eligible studies were identified through PubMed, Web of Science, and reference lists. Multivariable adjusted associations were extracted. Data were log-transformed and pooled using the random effects model. In total, eight studies were included, investigating 16 different polyphenol biomarkers in association with CVD and mortality. Blood and urine were used as biospecimens, and enterolactone, a lignan metabolite, was most often investigated. Three meta-analyses were conducted investigating the association between enterolactone, and all-cause and CVD mortality, and non-fatal myocardial infarction. A 30% and 45% reduced all-cause and CVD mortality risk were revealed at higher enterolactone concentrations. Furthermore, inverse associations were observed between polyphenol biomarkers and all-cause mortality, kaempferol, and acute coronary syndrome. There is evidence to suggest that enterolactone is associated with a lower CVD mortality risk. This emphasises the importance of the role of the microbiota in disease prevention. To strengthen the evidence, more studies are warranted.
Collapse
|
7
|
Urine phyto-oestrogen metabolites are not significantly associated with risk of type 2 diabetes: the Singapore Chinese health study. Br J Nutr 2016; 115:1607-15. [PMID: 26949260 DOI: 10.1017/s0007114516000581] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We evaluated the relationship between urine concentrations of phyto-oestrogens (isoflavones and lignans) and risk of incident type 2 diabetes in middle-aged and elderly Chinese residing in Singapore. Urine metabolites of isoflavones and lignans were assayed by HPLC among 564 diabetes cases and 564 matched controls in a case-control study nested within the Singapore Chinese Health Study cohort. Participants were free of diagnosed diabetes, CVD and cancer at morning urine collections during 1999-2004. Cases were participants who reported to have physician-diagnosed diabetes at follow-up visits during 2006-2010, whereas controls were randomly selected among those who remained free of diabetes and were matched to the index cases by age, sex, dialect group and date of urine collection. Conditional logistic regression models were used to calculate OR and 95 % CI with adjustment for potential confounders. The mean age of the participants at the time of urine collection was 59·8 years, and the average interval between urine collection and diabetes diagnosis was 4·0 years. The multivariate-adjusted OR for diabetes were 1·00 (reference), 0·76 (95 % CI 0·52, 1·11), 0·78 (95 % CI 0·53, 1·14) and 0·79 (95 % CI 0·54, 1·15) across quartiles of urine isoflavones (P for trend=0·54), and were 1·00 (reference), 0·87 (95 % CI 0·60, 1·27), 1·10 (95 % CI 0·77, 1·56) and 0·93 (95 % CI 0·63, 1·37) for lignans (P for trend=0·93). The results were similar in men and women, as well as for individual metabolites of isoflavones (genistein, daidzein, glycitin and equol) or lignans (enterodiol and enterolactone). The present study did not find a significant association between urine phyto-oestrogen metabolites and risk of type 2 diabetes in Chinese adults.
Collapse
|
8
|
Talaei M, Pan A. Role of phytoestrogens in prevention and management of type 2 diabetes. World J Diabetes 2015; 6:271-283. [PMID: 25789108 PMCID: PMC4360420 DOI: 10.4239/wjd.v6.i2.271] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2014] [Revised: 11/04/2014] [Accepted: 12/17/2014] [Indexed: 02/05/2023] Open
Abstract
Type 2 diabetes (T2D) has become a major public health threat across the globe. It has been widely acknowledged that diet plays an important role in the development and management of T2D. Phytoestrogens are polyphenols that are structurally similar to endogenous estrogen and have weak estrogenic properties. Emerging evidence from pre-clinical models has suggested that phytoestrogens may have anti-diabetic function via both estrogen-dependent and estrogen-independent pathways. In the current review, we have summarized the evidence linking two major types of phytoestrogens, isoflavones and lignans, and T2D from epidemiological studies and clinical trials. The cross-sectional and prospective cohort studies have reported inconsistent results, which may due to the large variations in different populations and measurement errors in dietary intakes. Long-term intervention studies
using isoflavone supplements have reported potential beneficial effects on glycemic parameters in postmenopausal women, while results from short-term small-size clinical trials are conflicting. Taken together, the current evidence from different study designs is complex and inconsistent. Although the widespread use of phytoestrogens could not be recommended yet, habitual consumption of phytoestrogens, particularly their intact food sources like soy and whole flaxseed, could be considered as a component of overall healthy dietary pattern for prevention and management of T2D.
Collapse
|
9
|
Abstract
Nutritional epidemiology has recently been criticized on several fronts, including the inability to measure diet accurately, and for its reliance on observational studies to address etiologic questions. In addition, several recent meta-analyses with serious methodologic flaws have arrived at erroneous or misleading conclusions, reigniting controversy over formerly settled debates. All of this has raised questions regarding the ability of nutritional epidemiologic studies to inform policy. These criticisms, to a large degree, stem from a misunderstanding of the methodologic issues of the field and the inappropriate use of the drug trial paradigm in nutrition research. The exposure of interest in nutritional epidemiology is human diet, which is a complex system of interacting components that cumulatively affect health. Consequently, nutritional epidemiology constantly faces a unique set of challenges and continually develops specific methodologies to address these. Misunderstanding these issues can lead to the nonconstructive and sometimes naive criticisms we see today. This article aims to clarify common misunderstandings of nutritional epidemiology, address challenges to the field, and discuss the utility of nutritional science in guiding policy by focusing on 5 broad questions commonly asked of the field.
Collapse
Affiliation(s)
- Ambika Satija
- Department of Nutrition and Department of Epidemiology, Harvard School of Public Health, Boston, MA; and
| | | | - Walter C Willett
- Department of Nutrition and Department of Epidemiology, Harvard School of Public Health, Boston, MA; and Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA
| | - Frank B Hu
- Department of Nutrition and Department of Epidemiology, Harvard School of Public Health, Boston, MA; and Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA
| |
Collapse
|