1
|
Yin X, Yang F, Lin J, Hu Q, Tang X, Yin L, Yan X, Zhuang H, Ma G, Shen L, Zhao D. iTRAQ proteomics analysis of placental tissue with gestational diabetes mellitus. Acta Diabetol 2024; 61:1589-1601. [PMID: 38976025 DOI: 10.1007/s00592-024-02321-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 06/07/2024] [Indexed: 07/09/2024]
Abstract
BACKGROUND Gestational diabetes mellitus is an endocrine and metabolic disorder that appears for the first time during pregnancy and causes varying degrees of short- and/or long-term effects on the mother and child. The etiology of the disease is currently unknown and isobaric tags for relative and absolute quantitation proteomics approach, the present study attempted to identify potential proteins in placental tissues that may be involved in the pathogenesis of GDM and adverse foetal pregnancy outcomes. METHODS Pregnant women with GDM hospitalised were selected as the experimental group, and pregnant women with normal glucose metabolism as the control group. The iTRAQ protein quantification technology was used to screen the differentially expressed proteins between the GDM group and the normal control group, and the differentially expressed proteins were analysed by GO, KEGG, PPI, etc., and the key proteins were subsequently verified by western blot. RESULTS Based on the proteomics of iTRAQ, we experimented with three different samples of placental tissues from GDM and normal pregnant women, and the total number of identified proteins were 5906, 5959, and 6017, respectively, which were similar in the three different samples, indicating that the results were reliable. Through the Wayne diagram, we found that the total number of proteins coexisting in the three groups was 4475, and 91 differential proteins that could meet the quantification criteria were strictly screened, of which 32 proteins were up-regulated and 59 proteins were down-regulated. By GO enrichment analysis, these differential proteins are widely distributed in extracellular membrane-bounded organelle, mainly in extracellular exosome, followed by intracellular vesicle, extracellular organelle. It not only undertakes protein binding, protein complex binding, macromolecular complex binding, but also involves molecular biological functions such as neutrophil degranulation, multicellular organismal process, developmental process, cellular component organization, secretion, regulated exocytosis. Through the analysis of the KEGG signaling pathway, it is found that these differential proteins are mainly involved in HIF-1 signaling pathway, Glycolysis/Gluconeogenesis, Central carbon metabolism in cancer, AMPK signaling pathway, Proteoglycans in cancer, Protein processing in endoplasmic reticulum, Thyroid cancer, Alcoholism, Glucagon signaling pathway. DISCUSSION This preliminary study helps us to understand the changes in the placental proteome of GDM patients, and provides new insights into the pathophysiology of GDM.
Collapse
Affiliation(s)
- Xiaoping Yin
- Department of Obstetrics and Gynecology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Fei Yang
- Department of Obstetrics and Gynecology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Jin Lin
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, China
| | - Qin Hu
- Department of Obstetrics and Gynecology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Xiaoxiao Tang
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, China
| | - Li Yin
- Department of Obstetrics and Gynecology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Xi Yan
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, School of Public Health, Ministry of Education, Guizhou Medical University, Guiyang, China
| | - Hongbin Zhuang
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, China
| | - Guanwei Ma
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, School of Public Health, Ministry of Education, Guizhou Medical University, Guiyang, China
| | - Liming Shen
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, China.
| | - Danqing Zhao
- Department of Obstetrics and Gynecology, Affiliated Hospital of Guizhou Medical University, Guiyang, China.
| |
Collapse
|
2
|
Ramos-Lopez O. Genotype-based precision nutrition strategies for the prediction and clinical management of type 2 diabetes mellitus. World J Diabetes 2024; 15:142-153. [PMID: 38464367 PMCID: PMC10921165 DOI: 10.4239/wjd.v15.i2.142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 12/07/2023] [Accepted: 01/11/2024] [Indexed: 02/04/2024] Open
Abstract
Globally, type 2 diabetes mellitus (T2DM) is one of the most common metabolic disorders. T2DM physiopathology is influenced by complex interrelationships between genetic, metabolic and lifestyle factors (including diet), which differ between populations and geographic regions. In fact, excessive consumptions of high fat/high sugar foods generally increase the risk of developing T2DM, whereas habitual intakes of plant-based healthy diets usually exert a protective effect. Moreover, genomic studies have allowed the characterization of sequence DNA variants across the human genome, some of which may affect gene expression and protein functions relevant for glucose homeostasis. This comprehensive literature review covers the impact of gene-diet interactions on T2DM susceptibility and disease progression, some of which have demonstrated a value as biomarkers of personal responses to certain nutritional interventions. Also, novel genotype-based dietary strategies have been developed for improving T2DM control in comparison to general lifestyle recommendations. Furthermore, progresses in other omics areas (epigenomics, metagenomics, proteomics, and metabolomics) are improving current understanding of genetic insights in T2DM clinical outcomes. Although more investigation is still needed, the analysis of the genetic make-up may help to decipher new paradigms in the pathophysiology of T2DM as well as offer further opportunities to personalize the screening, prevention, diagnosis, management, and prognosis of T2DM through precision nutrition.
Collapse
Affiliation(s)
- Omar Ramos-Lopez
- Medicine and Psychology School, Autonomous University of Baja California, Tijuana 22390, Baja California, Mexico
| |
Collapse
|
3
|
Ursino G, Lucibello G, Teixeira PDS, Höfler A, Veyrat-Durebex C, Odouard S, Visentin F, Galgano L, Somm E, Vianna CR, Widmer A, Jornayvaz FR, Boland A, Ramadori G, Coppari R. S100A9 exerts insulin-independent antidiabetic and anti-inflammatory effects. SCIENCE ADVANCES 2024; 10:eadj4686. [PMID: 38170783 PMCID: PMC10796079 DOI: 10.1126/sciadv.adj4686] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 12/01/2023] [Indexed: 01/05/2024]
Abstract
Type 1 diabetes mellitus (T1DM) is characterized by insulin deficiency leading to hyperglycemia and several metabolic defects. Insulin therapy remains the cornerstone of T1DM management, yet it increases the risk of life-threatening hypoglycemia and the development of major comorbidities. Here, we report an insulin signaling-independent pathway able to improve glycemic control in T1DM rodents. Co-treatment with recombinant S100 calcium-binding protein A9 (S100A9) enabled increased adherence to glycemic targets with half as much insulin and without causing hypoglycemia. Mechanistically, we demonstrate that the hyperglycemia-suppressing action of S100A9 is due to a Toll-like receptor 4-dependent increase in glucose uptake in specific skeletal muscles (i.e., soleus and diaphragm). In addition, we found that T1DM mice have abnormal systemic inflammation, which is resolved by S100A9 therapy alone (or in combination with low insulin), hence uncovering a potent anti-inflammatory action of S100A9 in T1DM. In summary, our findings reveal the S100A9-TLR4 skeletal muscle axis as a promising therapeutic target for improving T1DM treatment.
Collapse
Affiliation(s)
- Gloria Ursino
- Department of Cell Physiology and Metabolism, University of Geneva, 1211 Geneva, Switzerland
- Diabetes Center of the Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Giulia Lucibello
- Department of Cell Physiology and Metabolism, University of Geneva, 1211 Geneva, Switzerland
- Diabetes Center of the Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Pryscila D. S. Teixeira
- Department of Cell Physiology and Metabolism, University of Geneva, 1211 Geneva, Switzerland
- Diabetes Center of the Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Anna Höfler
- Department of Molecular Biology, University of Geneva, 1211 Geneva, Switzerland
| | - Christelle Veyrat-Durebex
- Department of Cell Physiology and Metabolism, University of Geneva, 1211 Geneva, Switzerland
- Diabetes Center of the Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Soline Odouard
- Department of Cell Physiology and Metabolism, University of Geneva, 1211 Geneva, Switzerland
- Diabetes Center of the Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Florian Visentin
- Department of Cell Physiology and Metabolism, University of Geneva, 1211 Geneva, Switzerland
- Diabetes Center of the Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Luca Galgano
- Department of Cell Physiology and Metabolism, University of Geneva, 1211 Geneva, Switzerland
- Diabetes Center of the Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Emmanuel Somm
- Department of Cell Physiology and Metabolism, University of Geneva, 1211 Geneva, Switzerland
- Diabetes Center of the Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
- Service of Endocrinology, Diabetes, Nutrition and Therapeutic patient education, Geneva University Hospital, 1205 Geneva, Switzerland
| | - Claudia R. Vianna
- Center for Hypothalamic Research, Department of Internal Medicine, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390, USA
| | - Ariane Widmer
- Department of Cell Physiology and Metabolism, University of Geneva, 1211 Geneva, Switzerland
- Diabetes Center of the Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - François R. Jornayvaz
- Department of Cell Physiology and Metabolism, University of Geneva, 1211 Geneva, Switzerland
- Diabetes Center of the Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
- Service of Endocrinology, Diabetes, Nutrition and Therapeutic patient education, Geneva University Hospital, 1205 Geneva, Switzerland
| | - Andreas Boland
- Department of Molecular Biology, University of Geneva, 1211 Geneva, Switzerland
| | - Giorgio Ramadori
- Department of Cell Physiology and Metabolism, University of Geneva, 1211 Geneva, Switzerland
- Diabetes Center of the Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Roberto Coppari
- Department of Cell Physiology and Metabolism, University of Geneva, 1211 Geneva, Switzerland
- Diabetes Center of the Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| |
Collapse
|
4
|
Chen L, Chen X, Wang Y, Li S, Huang S, Wu Z, He J, Chen S, Deng F, Zhu P, Zhong W, Zhao B, Ma G, Li Y. Polymorphisms of Calgranulin Genes and Ischemic Stroke in a Chinese Population. J Inflamm Res 2022; 15:3355-3368. [PMID: 35706528 PMCID: PMC9191198 DOI: 10.2147/jir.s360775] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 05/31/2022] [Indexed: 11/24/2022] Open
Abstract
Background The S100/calgranulin gene appears to modulate neuroinflammation following cerebral ischemia and could be a valuable biomarker for stroke prognosis, according to growing research. This study aimed at evaluating the correlation between calgranulin gene variants and susceptibility to ischemic stroke (IS) in the Southern Chinese population. Methods Using an enhanced multi-temperature ligase detection reaction genotyping, 310 IS patients and 324 age-matched healthy controls were genotyped to identify five calgranulin gene variants. Results According to the obtained results, the S100A8 rs3795391, rs3806232, and S100A12 rs2916191 variants were linked to a higher risk of IS, while the S100A9 rs3014866 variant was associated with a lower risk of IS. Moreover, the T-T-C-A-T, T-T-C-G-T, or C-C-C-G-C haplotypes have been linked to a greater risk of developing IS, according to haplotype analysis. The occurrence of the variant C allele there in S100A8 rs3795391, rs3806232, and S100A12 rs2916191 variants may impart a greater risk of stroke in the LAA subtype, according to further stratification by IS subtypes, while the T allele of the S100A9 rs3014866 variant may be linked to a reduced risk of stroke of all subtypes. Furthermore, patients with the variant C allele of the S100A8 rs3795391, rs3806232, and S100A12 rs2916191 variants presented with increased circulating S100A8 and S100A12 levels and larger infarct volumes relative to those with the major TT genotype. Conclusion Our findings suggest that calgranulin gene variants are linked to IS susceptibility, implying that the calgranulin gene may be a potential biomarker for IS prevention and personalized treatment.
Collapse
Affiliation(s)
- Linfa Chen
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, People's Republic of China.,Department of Neurology, Huizhou Third People's Hospital, Guangzhou Medical University, Huizhou, People's Republic of China
| | - Xinglan Chen
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, People's Republic of China.,Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, People's Republic of China
| | - Yajun Wang
- Maternal and Children's Health Research Institute, Shunde Maternal and Children's Hospital, Guangdong Medical University, Shunde, People's Republic of China
| | - Shengnan Li
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, People's Republic of China.,Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, People's Republic of China
| | - Shaoting Huang
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, People's Republic of China.,Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, People's Republic of China
| | - Zhaochun Wu
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, People's Republic of China.,Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, People's Republic of China
| | - Jiawen He
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, People's Republic of China.,Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, People's Republic of China
| | - Shaofeng Chen
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, People's Republic of China.,Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, People's Republic of China
| | - Fu Deng
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, People's Republic of China.,Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, People's Republic of China
| | - Peiyi Zhu
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, People's Republic of China.,Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, People's Republic of China
| | - Wangtao Zhong
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, People's Republic of China.,Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, People's Republic of China
| | - Bin Zhao
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, People's Republic of China.,Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, People's Republic of China
| | - Guoda Ma
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, People's Republic of China.,Maternal and Children's Health Research Institute, Shunde Maternal and Children's Hospital, Guangdong Medical University, Shunde, People's Republic of China
| | - You Li
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, People's Republic of China.,Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, People's Republic of China
| |
Collapse
|
5
|
Williams PT. Quantile-Dependent Heritability of Glucose, Insulin, Proinsulin, Insulin Resistance, and Glycated Hemoglobin. Lifestyle Genom 2021; 15:10-34. [PMID: 34872092 PMCID: PMC8766916 DOI: 10.1159/000519382] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 09/01/2021] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND "Quantile-dependent expressivity" is a dependence of genetic effects on whether the phenotype (e.g., insulin resistance) is high or low relative to its distribution. METHODS Quantile-specific offspring-parent regression slopes (βOP) were estimated by quantile regression for fasting glucose concentrations in 6,453 offspring-parent pairs from the Framingham Heart Study. RESULTS Quantile-specific heritability (h2), estimated by 2βOP/(1 + rspouse), increased 0.0045 ± 0.0007 (p = 8.8 × 10-14) for each 1% increment in the fasting glucose distribution, that is, h2 ± SE were 0.057 ± 0.021, 0.095 ± 0.024, 0.146 ± 0.019, 0.293 ± 0.038, and 0.456 ± 0.061 at the 10th, 25th, 50th, 75th, and 90th percentiles of the fasting glucose distribution, respectively. Significant increases in quantile-specific heritability were also suggested for fasting insulin (p = 1.2 × 10-6), homeostatic model assessment of insulin resistance (HOMA-IR, p = 5.3 × 10-5), insulin/glucose ratio (p = 3.9 × 10-5), proinsulin (p = 1.4 × 10-6), proinsulin/insulin ratio (p = 2.7 × 10-5), and glucose concentrations during a glucose tolerance test (p = 0.001), and their logarithmically transformed values. DISCUSSION/CONCLUSION These findings suggest alternative interpretations to precision medicine and gene-environment interactions, including alternative interpretation of reported synergisms between ACE, ADRB3, PPAR-γ2, and TNF-α polymorphisms and being born small for gestational age on adult insulin resistance (fetal origin theory), and gene-adiposity (APOE, ENPP1, GCKR, IGF2BP2, IL-6, IRS-1, KIAA0280, LEPR, MFHAS1, RETN, TCF7L2), gene-exercise (INS), gene-diet (ACSL1, ELOVL6, IRS-1, PLIN, S100A9), and gene-socioeconomic interactions.
Collapse
Affiliation(s)
- Paul T Williams
- Division of Molecular Biophysics & Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| |
Collapse
|
6
|
Gkouskou K, Lazou E, Skoufas E, Eliopoulos AG. Genetically Guided Mediterranean Diet for the Personalized Nutritional Management of Type 2 Diabetes Mellitus. Nutrients 2021; 13:nu13020355. [PMID: 33503923 PMCID: PMC7912380 DOI: 10.3390/nu13020355] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 01/20/2021] [Accepted: 01/20/2021] [Indexed: 12/29/2022] Open
Abstract
The current consensus for the prevention and management of type 2 diabetes mellitus (T2DM) is that high-quality diets and adherence to a healthy lifestyle provide significant health benefits. Remarkably, however, there is little agreement on the proportions of macronutrients in the diet that should be recommended to people suffering from pre-diabetes or T2DM. We herein discuss emerging evidence that underscores the importance of gene-diet interactions in the improvement of glycemic biomarkers in T2DM. We propose that we can achieve better glycemic control in T2DM patients by coupling Mediterranean diets to genetic information as a predictor for optimal diet macronutrient composition in a personalized manner. We provide evidence to support this concept by presenting a case study of a T2DM patient who achieved rapid glycemic control when adhered to a personalized, genetically-guided Mediterranean Diet.
Collapse
Affiliation(s)
- Kalliopi Gkouskou
- Department of Biology, School of Medicine, National and Kapodistrian University of Athens, Mikras Asias 75, 11527 Athens, Greece; (E.L.); (E.S.)
- Embiodiagnostics Biology Research Company, 71305 Heraklion, Greece
- Correspondence: (K.G.); (A.G.E.); Tel.: +30-2107462356 (A.G.E.)
| | - Evgenia Lazou
- Department of Biology, School of Medicine, National and Kapodistrian University of Athens, Mikras Asias 75, 11527 Athens, Greece; (E.L.); (E.S.)
| | - Efstathios Skoufas
- Department of Biology, School of Medicine, National and Kapodistrian University of Athens, Mikras Asias 75, 11527 Athens, Greece; (E.L.); (E.S.)
| | - Aristides G. Eliopoulos
- Department of Biology, School of Medicine, National and Kapodistrian University of Athens, Mikras Asias 75, 11527 Athens, Greece; (E.L.); (E.S.)
- Center for New Biotechnologies and Precision Medicine, School of Medicine, National and Kapodistrian University of Athens, 15772 Athens, Greece
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
- Correspondence: (K.G.); (A.G.E.); Tel.: +30-2107462356 (A.G.E.)
| |
Collapse
|
7
|
Ramos-Lopez O, Riezu-Boj JI, Milagro FI, Cuervo M, Goni L, Martinez JA. Interplay of an Obesity-Based Genetic Risk Score with Dietary and Endocrine Factors on Insulin Resistance. Nutrients 2019; 12:33. [PMID: 31877696 PMCID: PMC7019905 DOI: 10.3390/nu12010033] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 12/13/2019] [Accepted: 12/18/2019] [Indexed: 12/17/2022] Open
Abstract
This study aimed to nutrigenetically screen gene-diet and gene-metabolic interactions influencing insulin resistance (IR) phenotypes. A total of 232 obese or overweight adults were categorized by IR status: non-IR (HOMA-IR (homeostatic model assessment - insulin resistance) index ≤ 2.5) and IR (HOMA-IR index > 2.5). A weighted genetic risk score (wGRS) was constructed using 95 single nucleotide polymorphisms related to energy homeostasis, which were genotyped by a next generation sequencing system. Body composition, the metabolic profile and lifestyle variables were evaluated, where individuals with IR showed worse metabolic outcomes. Overall, 16 obesity-predisposing genetic variants were associated with IR (p < 0.10 in the multivariate model). The wGRS strongly associated with the HOMA-IR index (adj. R squared = 0.2705, p < 0.0001). Moreover, the wGRS positively interacted with dietary intake of cholesterol (P int. = 0.002), and with serum concentrations of C-reactive protein (P int. = 0.008) regarding IR status, whereas a negative interaction was found regarding adiponectin blood levels (P int. = 0.006). In conclusion, this study suggests that interactions between an adiposity-based wGRS with nutritional and metabolic/endocrine features influence IR phenotypes, which could facilitate the prescription of personalized nutrition recommendations for precision prevention and management of IR and diabetes.
Collapse
Affiliation(s)
- Omar Ramos-Lopez
- Department of Nutrition, Food Science and Physiology, and Center for Nutrition Research, University of Navarra, 31008 Pamplona, Spain; (O.R.-L.); (J.I.R.-B.); (F.I.M.); (M.C.); (L.G.)
- Medicine and Psychology School, Autonomous University of Baja California, Tijuana 22427, Mexico
| | - José Ignacio Riezu-Boj
- Department of Nutrition, Food Science and Physiology, and Center for Nutrition Research, University of Navarra, 31008 Pamplona, Spain; (O.R.-L.); (J.I.R.-B.); (F.I.M.); (M.C.); (L.G.)
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain
| | - Fermin I. Milagro
- Department of Nutrition, Food Science and Physiology, and Center for Nutrition Research, University of Navarra, 31008 Pamplona, Spain; (O.R.-L.); (J.I.R.-B.); (F.I.M.); (M.C.); (L.G.)
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain
- CIBERobn, Fisiopatología de la Obesidad y la Nutrición, Carlos III Health Institute, 28029 Madrid, Spain
| | - Marta Cuervo
- Department of Nutrition, Food Science and Physiology, and Center for Nutrition Research, University of Navarra, 31008 Pamplona, Spain; (O.R.-L.); (J.I.R.-B.); (F.I.M.); (M.C.); (L.G.)
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain
| | - Leticia Goni
- Department of Nutrition, Food Science and Physiology, and Center for Nutrition Research, University of Navarra, 31008 Pamplona, Spain; (O.R.-L.); (J.I.R.-B.); (F.I.M.); (M.C.); (L.G.)
| | - J. Alfredo Martinez
- Department of Nutrition, Food Science and Physiology, and Center for Nutrition Research, University of Navarra, 31008 Pamplona, Spain; (O.R.-L.); (J.I.R.-B.); (F.I.M.); (M.C.); (L.G.)
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain
- CIBERobn, Fisiopatología de la Obesidad y la Nutrición, Carlos III Health Institute, 28029 Madrid, Spain
| |
Collapse
|
8
|
Moon JY, Louie TL, Jain D, Sofer T, Schurmann C, Below JE, Lai CQ, Aviles-Santa ML, Talavera GA, Smith CE, Petty LE, Bottinger EP, Chen YDI, Taylor KD, Daviglus ML, Cai J, Wang T, Tucker KL, Ordovás JM, Hanis CL, Loos RJF, Schneiderman N, Rotter JI, Kaplan RC, Qi Q. A Genome-Wide Association Study Identifies Blood Disorder-Related Variants Influencing Hemoglobin A 1c With Implications for Glycemic Status in U.S. Hispanics/Latinos. Diabetes Care 2019; 42:1784-1791. [PMID: 31213470 PMCID: PMC6702612 DOI: 10.2337/dc19-0168] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 05/24/2019] [Indexed: 02/03/2023]
Abstract
OBJECTIVE We aimed to identify hemoglobin A1c (HbA1c)-associated genetic variants and examine their implications for glycemic status evaluated by HbA1c in U.S. Hispanics/Latinos with diverse genetic ancestries. RESEARCH DESIGN AND METHODS We conducted a genome-wide association study (GWAS) of HbA1c in 9,636 U.S. Hispanics/Latinos without diabetes from the Hispanic Community Health Study/Study of Latinos, followed by a replication among 4,729 U.S. Hispanics/Latinos from three independent studies. RESULTS Our GWAS and replication analyses showed 10 previously known and novel loci associated with HbA1c at genome-wide significance levels (P < 5.0 × 10-8). In particular, two African ancestry-specific variants, HBB-rs334 and G6PD-rs1050828, which are causal mutations for sickle cell disease and G6PD deficiency, respectively, had ∼10 times larger effect sizes on HbA1c levels (β = -0.31% [-3.4 mmol/mol]) and -0.35% [-3.8 mmol/mol] per minor allele, respectively) compared with other HbA1c-associated variants (0.03-0.04% [0.3-0.4 mmol/mol] per allele). A novel Amerindian ancestry-specific variant, HBM-rs145546625, was associated with HbA1c and hematologic traits but not with fasting glucose. The prevalence of hyperglycemia (prediabetes and diabetes) defined using fasting glucose or oral glucose tolerance test 2-h glucose was similar between carriers of HBB-rs334 or G6PD-rs1050828 HbA1c-lowering alleles and noncarriers, whereas the prevalence of hyperglycemia defined using HbA1c was significantly lower in carriers than in noncarriers (12.2% vs. 28.4%, P < 0.001). After recalibration of the HbA1c level taking HBB-rs334 and G6PD-rs1050828 into account, the prevalence of hyperglycemia in carriers was similar to noncarriers (31.3% vs. 28.4%, P = 0.28). CONCLUSIONS This study in U.S. Hispanics/Latinos found several ancestry-specific alleles associated with HbA1c through erythrocyte-related rather than glycemic-related pathways. The potential influences of these nonglycemic-related variants need to be considered when the HbA1c test is performed.
Collapse
Affiliation(s)
- Jee-Young Moon
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY
| | - Tin L Louie
- Department of Biostatistics, University of Washington, Seattle, WA
| | - Deepti Jain
- Department of Biostatistics, University of Washington, Seattle, WA
| | - Tamar Sofer
- Department of Biostatistics, University of Washington, Seattle, WA
- Division of Sleep and Circadian Disorders, Department of Medicine, Brigham and Women's Hospital, Boston, MA
| | - Claudia Schurmann
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Jennifer E Below
- Human Genetics Center, University of Texas Health Science Center at Houston, Houston, TX
| | - Chao-Qiang Lai
- Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA
| | | | - Gregory A Talavera
- Graduate School of Public Health, San Diego State University, San Diego, CA
| | - Caren E Smith
- Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA
| | - Lauren E Petty
- Human Genetics Center, University of Texas Health Science Center at Houston, Houston, TX
| | - Erwin P Bottinger
- Department of Preventive Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Yii-Der Ida Chen
- Institute for Translational Genomics and Population Sciences, Harbor-UCLA Medical Center, Torrance, CA
| | - Kent D Taylor
- Institute for Translational Genomics and Population Sciences, Harbor-UCLA Medical Center, Torrance, CA
| | - Martha L Daviglus
- Institute for Minority Health Research, University of Illinois at Chicago, Chicago, IL
| | - Jianwen Cai
- Department of Biostatistics and Collaborative Studies Coordinating Center, University of North Carolina, Chapel Hill, NC
| | - Tao Wang
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY
| | - Katherine L Tucker
- Department of Biomedical and Nutritional Sciences, University of Massachusetts Lowell, Lowell, MA
| | - José M Ordovás
- Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA
- IMDEA Food Institute, Campus de Excelencia Internacional Universidad Autónoma de Madrid-Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Craig L Hanis
- Human Genetics Center, University of Texas Health Science Center at Houston, Houston, TX
| | - Ruth J F Loos
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | | | - Jerome I Rotter
- Institute for Translational Genomics and Population Sciences, Harbor-UCLA Medical Center, Torrance, CA
| | - Robert C Kaplan
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Qibin Qi
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY
| |
Collapse
|
9
|
Evert AB, Dennison M, Gardner CD, Garvey WT, Lau KHK, MacLeod J, Mitri J, Pereira RF, Rawlings K, Robinson S, Saslow L, Uelmen S, Urbanski PB, Yancy WS. Nutrition Therapy for Adults With Diabetes or Prediabetes: A Consensus Report. Diabetes Care 2019; 42:731-754. [PMID: 31000505 PMCID: PMC7011201 DOI: 10.2337/dci19-0014] [Citation(s) in RCA: 744] [Impact Index Per Article: 124.0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Alison B Evert
- UW Neighborhood Clinics, UW Medicine, University of Washington, Seattle, WA
| | | | - Christopher D Gardner
- Stanford Diabetes Research Center and Stanford Prevention Research Center, Department of Medicine, Stanford University, Stanford, CA
| | - W Timothy Garvey
- Diabetes Research Center, Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL
- Birmingham Veterans Affairs Medical Center, Birmingham, AL
| | | | | | - Joanna Mitri
- Section on Clinical, Behavioral and Outcomes Research Lipid Clinic, Adult Diabetes Section, Joslin Diabetes Center, Harvard Medical School, Boston, MA
| | | | | | | | - Laura Saslow
- Department of Health Behavior and Biological Sciences, University of Michigan School of Nursing, Ann Arbor, MI
| | | | | | - William S Yancy
- Duke Diet and Fitness Center, Department of Medicine, Duke University Health System, Durham, NC
- Durham Veterans Affairs Medical Center, Durham, NC
| |
Collapse
|
10
|
O'Connor S, Rudkowska I. Dietary Fatty Acids and the Metabolic Syndrome: A Personalized Nutrition Approach. ADVANCES IN FOOD AND NUTRITION RESEARCH 2019; 87:43-146. [PMID: 30678820 DOI: 10.1016/bs.afnr.2018.07.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Dietary fatty acids are present in a wide variety of foods and appear in different forms and lengths. The different fatty acids are known to have various effects on metabolic health. The metabolic syndrome (MetS) is a constellation of risk factors of chronic diseases. The etiology of the MetS is represented by a complex interplay of genetic and environmental factors. Dietary fatty acids can be important contributors of the evolution or in prevention of the MetS; however, great interindividual variability exists in the response to fatty acids. The identification of genetic variants interacting with fatty acids might explain this heterogeneity in metabolic responses. This chapter reviews the mechanisms underlying the interactions between the different components of the MetS, dietary fatty acids and genes. Challenges surrounding the implementation of personalized nutrition are also covered.
Collapse
Affiliation(s)
- Sarah O'Connor
- CHU de Québec Research Center, Université Laval, Québec, QC, Canada; Department of Kinesiology, Faculty of Medicine, Université Laval, Québec, QC, Canada
| | - Iwona Rudkowska
- CHU de Québec Research Center, Université Laval, Québec, QC, Canada; Department of Kinesiology, Faculty of Medicine, Université Laval, Québec, QC, Canada.
| |
Collapse
|
11
|
Gene-Diet Interactions in Type 2 Diabetes: The Chicken and Egg Debate. Int J Mol Sci 2017; 18:ijms18061188. [PMID: 28574454 PMCID: PMC5486011 DOI: 10.3390/ijms18061188] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 05/23/2017] [Accepted: 05/26/2017] [Indexed: 02/07/2023] Open
Abstract
Consistent evidence from both experimental and human studies indicates that Type 2 diabetes mellitus (T2DM) is a complex disease resulting from the interaction of genetic, epigenetic, environmental, and lifestyle factors. Nutrients and dietary patterns are important environmental factors to consider in the prevention, development and treatment of this disease. Nutritional genomics focuses on the interaction between bioactive food components and the genome and includes studies of nutrigenetics, nutrigenomics and epigenetic modifications caused by nutrients. There is evidence supporting the existence of nutrient-gene and T2DM interactions coming from animal studies and family-based intervention studies. Moreover, many case-control, cohort, cross-sectional cohort studies and clinical trials have identified relationships between individual genetic load, diet and T2DM. Some of these studies were on a large scale. In addition, studies with animal models and human observational studies, in different countries over periods of time, support a causative relationship between adverse nutritional conditions during in utero development, persistent epigenetic changes and T2DM. This review provides comprehensive information on the current state of nutrient-gene interactions and their role in T2DM pathogenesis, the relationship between individual genetic load and diet, and the importance of epigenetic factors in influencing gene expression and defining the individual risk of T2DM.
Collapse
|
12
|
Corella D, Coltell O, Mattingley G, Sorlí JV, Ordovas JM. Utilizing nutritional genomics to tailor diets for the prevention of cardiovascular disease: a guide for upcoming studies and implementations. Expert Rev Mol Diagn 2017; 17:495-513. [PMID: 28337931 DOI: 10.1080/14737159.2017.1311208] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Personalized diets based on an individual's genome to optimize the success of dietary intervention and reduce genetic cardiovascular disease (CVD) risk, is one of the challenges most frequently discussed in the scientific community. Areas covered: The authors gathered literature-based evidence on nutritional genomics and CVD phenotypes, our own results and research experience to provide a critical overview of the current situation of using nutritional genomics to tailor diets for CVD prevention and to propose guidelines for future studies and implementations. Expert commentary: Hundreds of studies on gene-diet interactions determining CVD intermediate (plasma lipids, hypertension, etc.) and final phenotypes (stroke, etc.) have furnished top-level scientific evidence for claiming that the genetic effect in cardiovascular risk is not deterministic, but can be modified by diet. However, despite the many results obtained, there are still gaps in practically applying a personalized diet design to specific genotypes. Hence, a better systemization and methodological improvement of new studies is required to obtain top-level evidence that will allow their application in the future precision nutrition/medicine. The authors propose several recommendations for tackling new approaches and applications.
Collapse
Affiliation(s)
- Dolores Corella
- a Department of Preventive Medicine and Public Health, School of Medicine , University of Valencia , Valencia , Spain.,b CIBER Fisiopatología de la Obesidad y Nutrición , Instituto de Salud Carlos III , Madrid , Spain
| | - Oscar Coltell
- b CIBER Fisiopatología de la Obesidad y Nutrición , Instituto de Salud Carlos III , Madrid , Spain.,c Department of Computer Languages and Systems, School of Technology and Experimental Sciences , Universitat Jaume I , Castellón , Spain
| | - George Mattingley
- a Department of Preventive Medicine and Public Health, School of Medicine , University of Valencia , Valencia , Spain
| | - José V Sorlí
- a Department of Preventive Medicine and Public Health, School of Medicine , University of Valencia , Valencia , Spain.,b CIBER Fisiopatología de la Obesidad y Nutrición , Instituto de Salud Carlos III , Madrid , Spain
| | - Jose M Ordovas
- d Nutrition and Genomics Laboratory , JM-USDA Human Nutrition Research Center on Aging at Tufts University , Boston , MA , USA
| |
Collapse
|