1
|
Claeboe ET, Blake KL, Shah NR, Morris CW, Hens B, Atwood BK, Absalon S, Mosley AL, Doud EH, Baucum AJ. Proximity labeling and orthogonal nanobody pulldown (ID-oPD) approaches to map the spinophilin interactome uncover a putative role for spinophilin in protein homeostasis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.23.634546. [PMID: 39896493 PMCID: PMC11785182 DOI: 10.1101/2025.01.23.634546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Spinophilin is a dendritic spine enriched scaffolding and protein phosphatase 1 targeting protein. To detail spinophilin interacting proteins, we created an Ultra-ID and ALFA-tagged spinophilin encoding construct that permits proximity labeling and orthogonal nanobody pulldown (ID-oPD) of spinophilin-associated protein complexes in heterologous cells. We identified 614 specific, and 312 specific and selective, spinophilin interacting proteins in HEK293 cells and validated a subset of these using orthogonal approaches. Many of these proteins are involved in mRNA processing and translation. In the brain, we determined that spinophilin mRNA is highly neuropil localized and that spinophilin may normally function to limit its own expression but promote the expression of other PSD-associated proteins. Overall, our use of an ID-oPD approach uncovers a novel putative role for spinophilin in mRNA translation and synaptic protein expression specifically within dendritic spines.
Collapse
Affiliation(s)
- Emily T. Claeboe
- Department of Biochemistry, Molecular Biology, and Pharmacology, Indiana University School of Medicine
| | - Keyana L. Blake
- Post-Baccalaureate Research Education Program, Indiana University Indianapolis
| | - Nikhil R. Shah
- Medical Neuroscience Graduate Program, Indiana University School of Medicine
| | - Cameron W. Morris
- Medical Neuroscience Graduate Program, Indiana University School of Medicine
| | - Basant Hens
- Pharmacology Graduate Training Program, University of Minnesota Medical School
| | - Brady K. Atwood
- Department of Pharmacology, University of Minnesota Medical School
| | - Sabrina Absalon
- Department of Biochemistry, Molecular Biology, and Pharmacology, Indiana University School of Medicine
| | - Amber L. Mosley
- Department of Biochemistry, Molecular Biology, and Pharmacology, Indiana University School of Medicine
- Center for Proteome Analysis Indiana University School of Medicine
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine
- Stark Neurosciences Research Institute, Indiana University School of Medicine
| | - Emma H. Doud
- Department of Biochemistry, Molecular Biology, and Pharmacology, Indiana University School of Medicine
- Center for Proteome Analysis Indiana University School of Medicine
| | - Anthony J. Baucum
- Department of Biochemistry, Molecular Biology, and Pharmacology, Indiana University School of Medicine
- Stark Neurosciences Research Institute, Indiana University School of Medicine
| |
Collapse
|
2
|
Kohan AA, Lupien M, Cescon D, Deblois G, Ventura M, Metser U, Veit-Haibach P. Detection of metabolic adaptation in a triple-negative breast cancer animal model with [ 18F]choline-PET imaging as a surrogate for drug resistance. Eur J Nucl Med Mol Imaging 2024; 51:1261-1267. [PMID: 38095672 DOI: 10.1007/s00259-023-06546-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 11/26/2023] [Indexed: 03/22/2024]
Abstract
PURPOSE Test the feasibility of an image-based method to identify taxane resistance in mouse bearing triple-negative breast cancer (TNBC) tumor xenografts. METHODS Xenograft tumor-bearing mice from paclitaxel-sensitive and paclitaxel-resistant TNBC cells (MDA-MD-346) were generated by orthotopic injection into female NOD-SCID mice. When tumors reached 100-150 mm3, mice were scanned using [18F]choline PET/CT. Tumors were collected and sliced for autoradiography and immunofluorescence analysis. Quantitative data was analyzed accordingly. RESULTS From fifteen mice scanned, five had taxane-sensitive cell line tumors of which two underwent taxol-based treatment. From the remaining 10 mice with taxane-resistant cell line tumors, four underwent taxol-based treatment. Only 13 mice had the tumor sample analyzed histologically. When normalized to the blood pool, both cell lines showed differences in metabolic uptake before and after treatment. CONCLUSIONS Treated and untreated taxane-sensitive and taxane-resistant cell lines have different metabolic properties that could be leveraged before the start of chemotherapy.
Collapse
Affiliation(s)
- Andres A Kohan
- University Medical Imaging Toronto, Toronto Joint Department Medical Imaging, University Health Network, Sinai Health System, Women's College Hospital, 263 McCaul St 4th floor, Toronto, ON, M5T 1W7, Canada.
| | - Mathieu Lupien
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - David Cescon
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Geneviève Deblois
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montréal, Québec, Canada
- Faculty of Pharmacy, Université de Montréal, Montréal, Québec, Canada
| | - Manuela Ventura
- STTARR Innovation Centre, University Health Network, Toronto, Ontario, Canada
- Animal Resources GSU, Human Technopole Foundation, Milan, Italy
| | - Ur Metser
- University Medical Imaging Toronto, Toronto Joint Department Medical Imaging, University Health Network, Sinai Health System, Women's College Hospital, 263 McCaul St 4th floor, Toronto, ON, M5T 1W7, Canada
| | - Patrick Veit-Haibach
- University Medical Imaging Toronto, Toronto Joint Department Medical Imaging, University Health Network, Sinai Health System, Women's College Hospital, 263 McCaul St 4th floor, Toronto, ON, M5T 1W7, Canada
| |
Collapse
|
3
|
Cavalieri V. The Expanding Constellation of Histone Post-Translational Modifications in the Epigenetic Landscape. Genes (Basel) 2021; 12:genes12101596. [PMID: 34680990 PMCID: PMC8535662 DOI: 10.3390/genes12101596] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/02/2021] [Accepted: 10/05/2021] [Indexed: 12/17/2022] Open
Abstract
The emergence of a nucleosome-based chromatin structure accompanied the evolutionary transition from prokaryotes to eukaryotes. In this scenario, histones became the heart of the complex and precisely timed coordination between chromatin architecture and functions during adaptive responses to environmental influence by means of epigenetic mechanisms. Notably, such an epigenetic machinery involves an overwhelming number of post-translational modifications at multiple residues of core and linker histones. This review aims to comprehensively describe old and recent evidence in this exciting field of research. In particular, histone post-translational modification establishing/removal mechanisms, their genomic locations and implication in nucleosome dynamics and chromatin-based processes, as well as their harmonious combination and interdependence will be discussed.
Collapse
Affiliation(s)
- Vincenzo Cavalieri
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90128 Palermo, Italy
| |
Collapse
|
4
|
Drummond-Barbosa D. Local and Physiological Control of Germline Stem Cell Lineages in Drosophila melanogaster. Genetics 2019; 213:9-26. [PMID: 31488592 PMCID: PMC6727809 DOI: 10.1534/genetics.119.300234] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 07/09/2019] [Indexed: 12/12/2022] Open
Abstract
The long-term survival of any multicellular species depends on the success of its germline in producing high-quality gametes and maximizing survival of the offspring. Studies in Drosophila melanogaster have led our growing understanding of how germline stem cell (GSC) lineages maintain their function and adjust their behavior according to varying environmental and/or physiological conditions. This review compares and contrasts the local regulation of GSCs by their specialized microenvironments, or niches; discusses how diet and diet-dependent factors, mating, and microorganisms modulate GSCs and their developing progeny; and briefly describes the tie between physiology and development during the larval phase of the germline cycle. Finally, it concludes with broad comparisons with other organisms and some future directions for further investigation.
Collapse
Affiliation(s)
- Daniela Drummond-Barbosa
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland 21205
| |
Collapse
|
5
|
Transposable elements are regulated by context-specific patterns of chromatin marks in mouse embryonic stem cells. Nat Commun 2019; 10:34. [PMID: 30604769 PMCID: PMC6318327 DOI: 10.1038/s41467-018-08006-y] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 12/11/2018] [Indexed: 01/18/2023] Open
Abstract
The majority of mammalian genomes are devoted to transposable elements (TEs). Whilst TEs are increasingly recognized for their important biological functions, they are a potential danger to genomic stability and are carefully regulated by the epigenetic system. However, the full complexity of this regulatory system is not understood. Here, using mouse embryonic stem cells, we show that TEs are suppressed by heterochromatic marks like H3K9me3, and are also labelled by all major types of chromatin modification in complex patterns, including bivalent activatory and repressive marks. We identified 29 epigenetic modifiers that significantly deregulated at least one type of TE. The loss of Setdb1, Ncor2, Rnf2, Kat5, Prmt5, Uhrf1, and Rrp8 caused widespread changes in TE expression and chromatin accessibility. These effects were context-specific, with different chromatin modifiers regulating the expression and chromatin accessibility of specific subsets of TEs. Our work reveals the complex patterns of epigenetic regulation of TEs. Transposable elements (TEs) fulfill essential but poorly understood roles in genome organization and gene expression control. Here the authors show that the regulation of TEs occurs through overlapping epigenetic mechanisms that control the expression and chromatin signatures at TEs.
Collapse
|
6
|
Abstract
Epigenetics is the study of heritable mechanisms that can modify gene activity and phenotype without modifying the genetic code. The basis for the concept of epigenetics originated more than 2,000 yr ago as a theory to explain organismal development. However, the definition of epigenetics continues to evolve as we identify more of the components that make up the epigenome and dissect the complex manner by which they regulate and are regulated by cellular functions. A substantial and growing body of research shows that nutrition plays a significant role in regulating the epigenome. Here, we critically assess this diverse body of evidence elucidating the role of nutrition in modulating the epigenome and summarize the impact such changes have on molecular and physiological outcomes with regards to human health.
Collapse
Affiliation(s)
- Folami Y Ideraabdullah
- Departments of Genetics and Nutrition, Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, North Carolina; and Departments of Nutrition and Pediatrics, Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, North Carolina
| | - Steven H Zeisel
- Departments of Genetics and Nutrition, Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, North Carolina; and Departments of Nutrition and Pediatrics, Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, North Carolina
| |
Collapse
|
7
|
Camara Teixeira D, Cordonier EL, Wijeratne SSK, Huebbe P, Jamin A, Jarecke S, Wiebe M, Zempleni J. A cell death assay for assessing the mitochondrial targeting of proteins. J Nutr Biochem 2018; 56:48-54. [PMID: 29454998 DOI: 10.1016/j.jnutbio.2018.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 12/13/2017] [Accepted: 01/12/2018] [Indexed: 11/24/2022]
Abstract
The mitochondrial proteome comprises 1000 to 1500 proteins, in addition to proteins for which the mitochondrial localization is uncertain. About 800 diseases have been linked with mutations in mitochondrial proteins. We devised a cell survival assay for assessing the mitochondrial localization in a high-throughput format. This protocol allows us to assess the mitochondrial localization of proteins and their mutants, and to identify drugs and nutrients that modulate the mitochondrial targeting of proteins. The assay works equally well for proteins directed to the outer mitochondrial membrane, inner mitochondrial membrane mitochondrial and mitochondrial matrix, as demonstrated by assessing the mitochondrial targeting of the following proteins: carnitine palmitoyl transferase 1 (consensus sequence and R123C mutant), acetyl-CoA carboxylase 2, uncoupling protein 1 and holocarboxylase synthetase. Our screen may be useful for linking the mitochondrial proteome with rare diseases and for devising drug- and nutrition-based strategies for altering the mitochondrial targeting of proteins.
Collapse
Affiliation(s)
- Daniel Camara Teixeira
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, 316C Leverton Hall, Lincoln, NE 68583-0806, USA
| | - Elizabeth L Cordonier
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, 316C Leverton Hall, Lincoln, NE 68583-0806, USA
| | - Subhashinee S K Wijeratne
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, 316C Leverton Hall, Lincoln, NE 68583-0806, USA
| | - Patricia Huebbe
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, 316C Leverton Hall, Lincoln, NE 68583-0806, USA
| | - Augusta Jamin
- School of Veterinary Medicine and Biomedical Sciences, Nebraska Center for Virology, University of Nebraska-Lincoln, Ken Morrison Life Sciences Research Center, Rm 139, 4240 Fair Street, Lincoln, NE 68583-0900, USA
| | - Sarah Jarecke
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, 316C Leverton Hall, Lincoln, NE 68583-0806, USA
| | - Matthew Wiebe
- School of Veterinary Medicine and Biomedical Sciences, Nebraska Center for Virology, University of Nebraska-Lincoln, Ken Morrison Life Sciences Research Center, Rm 139, 4240 Fair Street, Lincoln, NE 68583-0900, USA
| | - Janos Zempleni
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, 316C Leverton Hall, Lincoln, NE 68583-0806, USA.
| |
Collapse
|
8
|
Pirouzpanah S, Taleban FA, Mehdipour P, Sabour S, Atri M. Hypermethylation pattern of ESR and PgR genes and lacking estrogen and progesterone receptors in human breast cancer tumors: ER/PR subtypes. Cancer Biomark 2018; 21:621-638. [PMID: 29278880 DOI: 10.3233/cbm-170697] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND The option of endocrine therapy in breast cancer remains conventionally promising. OBJECTIVE We aimed to investigate how accurately the pattern of hypermethylation at estrogen receptor (ESR) and progesterone receptor (PgR) genes may associate with relative expression and protein status of ER, PR and the combinative phenotype of ER/PR. METHODS In this consecutive case-series, we enrolled 139 primary diagnosed breast cancer. Methylation specific PCR was used to assess the methylation status (individual test). Tumor mRNA expression levels were evaluated using real-time RT-PCR. Immunohistochemistry data was used to present hormonal receptor status of a tumor (as test reference). RESULTS Methylation at ESR1 was comparably frequent in ER-breast tumors (83.0%, P< 0.001; sensitivity = 83.0%, specificity = 65.2% and diagnostic odds ratio, DOR = 12.0) and strongly correlated with ER-/PR- conditions (Cramer's V= 0.44, P< 0.001). Methylated PgRb promoter frequently was observed in tumors recognised as ER- or negative ER/PR (77.1%, P< 0.01). Assessment of DNA methylation of ESR1 harbouring methylation at PgRb was a case significantly suggested to be able to detect the lack of ER/PR expressions (55.6%, P< 0.01; sensitivity = 80.6%, specificity = 68.7% and DOR = 8.7). However, methylated PgRb was quite acceptable determinant to contribute with methylated ESR1 to rank tumors as ER-/PR- (64.4%, P< 0.01; sensitivity = 78.0%, specificity = 62.5% and DOR = 6.0). CONCLUSIONS Despite the methylation status of ESR1 showed preponderant contribution to tumoral phenotypes of ER- and ER-/PR-, the hypermethylation of PgRb seem another epigenetic signalling variable actively associate with methylated ESR1 to show lack of ER+/PR+ tumors in breast cancer.
Collapse
Affiliation(s)
- Saeed Pirouzpanah
- Department of Biochemistry and Dietetics, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Forough-Azam Taleban
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Parvin Mehdipour
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Siamak Sabour
- Safety Promotion and Injury Prevention Research Centre, Department of Clinical Epidemiology, Faculty of Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Morteza Atri
- Cancer Institute, Tehran University of Medical Sciences/Day General Hospital, Tehran, Iran
| |
Collapse
|
9
|
Bhat MI, Kapila R. Dietary metabolites derived from gut microbiota: critical modulators of epigenetic changes in mammals. Nutr Rev 2017; 75:374-389. [PMID: 28444216 DOI: 10.1093/nutrit/nux001] [Citation(s) in RCA: 147] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The mammalian gastrointestinal tract harbors trillions of commensal microorganisms, collectively known as the microbiota. The microbiota is a critical source of environmental stimuli and, thus, has a tremendous impact on the health of the host. The microbes within the microbiota regulate homeostasis within the gut, and any alteration in their composition can lead to disorders that include inflammatory bowel disease, allergy, autoimmune disease, diabetes, mental disorders, and cancer. Hence, restoration of the gut flora following changes or imbalance is imperative for the host. The low-molecular-weight compounds and nutrients such as short-chain fatty acids, polyamines, polyphenols, and vitamins produced by microbial metabolism of nondigestible food components in the gut actively participate in various epigenomic mechanisms that reprogram the genome by altering the transcriptional machinery of a cell in response to environmental stimuli. These epigenetic modifications are caused by a set of highly dynamic enzymes, notably histone acetylases, deacetylases, DNA methylases, and demethylases, that are influenced by microbial metabolites and other environmental cues. Recent studies have shown that host expression of histone acetylases and histone deacetylases is important for regulating communication between the intestinal microbiota and the host cells. Histone acetylases and deacetylases influence the molecular expression of genes that affect not only physiological functions but also behavioral shifts that occur via neuroepigenetic modifications of genes. The underlying molecular mechanisms, however, have yet to be fully elucidated and thus provide a new area of research. The present review provides insights into the current understanding of the microbiota and its association with mammalian epigenomics as well as the interaction of pathogens and probiotics with host epigenetic machinery.
Collapse
Affiliation(s)
- Mohd Iqbal Bhat
- Mohd I. Bhat and R. Kapila are with Animal Biochemistry Division, ICAR-National Dairy Research Institute, Karnal, Haryana, India
| | - Rajeev Kapila
- Mohd I. Bhat and R. Kapila are with Animal Biochemistry Division, ICAR-National Dairy Research Institute, Karnal, Haryana, India
| |
Collapse
|
10
|
Zeisel S. Choline, Other Methyl-Donors and Epigenetics. Nutrients 2017; 9:nu9050445. [PMID: 28468239 PMCID: PMC5452175 DOI: 10.3390/nu9050445] [Citation(s) in RCA: 164] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 04/13/2017] [Accepted: 04/26/2017] [Indexed: 12/21/2022] Open
Abstract
Choline dietary intake varies such that many people do not achieve adequate intakes. Diet intake of choline can modulate methylation because, via betaine homocysteine methyltransferase (BHMT), this nutrient (and its metabolite, betaine) regulate the concentrations of S-adenosylhomocysteine and S-adenosylmethionine. Some of the epigenetic mechanisms that modify gene expression without modifying the genetic code depend on the methylation of DNA or of histones; and diet availability of choline and other methyl-group donors influences both of these methylations. Examples of methyl-donor mediated epigenetic effects include the changes in coat color and body weight in offspring when pregnant agouti mice are fed high choline, high methyl diets; the changes in tail kinking in offspring when pregnant Axin(Fu) mice are fed high choline, high methyl diets; the changes in Cdkn3 methylation and altered brain development that occurs in offspring when pregnant rodents are fed low choline diets. When choline metabolism is disrupted by deleting the gene Bhmt, DNA methylation is affected (especially in a region of chromosome 13), expression of specific genes is suppressed, and liver cancers develop. Better understanding of how nutrients such as choline and methyl-donors influence epigenetic programs has importance for our understanding of not only developmental abnormalities but also for understanding the origins of chronic diseases.
Collapse
Affiliation(s)
- Steven Zeisel
- UNC Nutrition Research Institute, Departments of Nutrition and Pediatrics, University of North Carolina at Chapel Hill, 500 Laureate Drive, Kannapolis, NC 28081, USA.
| |
Collapse
|
11
|
Cordonier EL, Adjam R, Teixeira DC, Onur S, Zbasnik R, Read PE, Döring F, Schlegel VL, Zempleni J. Resveratrol compounds inhibit human holocarboxylase synthetase and cause a lean phenotype in Drosophila melanogaster. J Nutr Biochem 2015; 26:1379-84. [PMID: 26303405 DOI: 10.1016/j.jnutbio.2015.07.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 06/22/2015] [Accepted: 07/08/2015] [Indexed: 02/06/2023]
Abstract
Holocarboxylase synthetase (HLCS) is the sole protein-biotin ligase in the human proteome. HLCS has key regulatory functions in intermediary metabolism, including fatty acid metabolism, and in gene repression through epigenetic mechanisms. The objective of this study was to identify food-borne inhibitors of HLCS that alter HLCS-dependent pathways in metabolism and gene regulation. When libraries of extracts from natural products and chemically pure compounds were screened for HLCS inhibitor activity, resveratrol compounds in grape materials caused an HLCS inhibition of >98% in vitro. The potency of these compounds was piceatannol>resveratrol>piceid. Grape-borne compounds other than resveratrol metabolites also contributed toward HLCS inhibition, e.g., p-coumaric acid and cyanidin chloride. HLCS inhibitors had meaningful effects on body fat mass. When Drosophila melanogaster brummer mutants, which are genetically predisposed to storing excess amounts of lipids, were fed diets enriched with grape leaf extracts and piceid, body fat mass decreased by more than 30% in males and females. However, Drosophila responded to inhibitor treatment with an increase in the expression of HLCS, which elicited an increase in the abundance of biotinylated carboxylases in vivo. We conclude that mechanisms other than inhibition of HLCS cause body fat loss in flies. We propose that the primary candidate is the inhibition of the insulin receptor/Akt signaling pathway.
Collapse
Affiliation(s)
- Elizabeth L Cordonier
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, 316 Ruth Leverton Hall, Lincoln, NE 68583-0806, USA
| | - Riem Adjam
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, 316 Ruth Leverton Hall, Lincoln, NE 68583-0806, USA
| | - Daniel Camara Teixeira
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, 316 Ruth Leverton Hall, Lincoln, NE 68583-0806, USA
| | - Simone Onur
- Abteilung Molekulare Prävention, Institut für Humanernährung und Lebensmittelkunde, Universität Kiel, Heinrich-Hecht-Platz 10, 24118 Kiel, Germany
| | - Richard Zbasnik
- Department of Food Science and Technology, University of Nebraska-Lincoln, 326 Filley Hall, Lincoln, NE 68583-0806, USA
| | - Paul E Read
- Department of Agronomy, University of Nebraska-Lincoln, 377 Plant Science Hall, Lincoln, NE 68583-0724, USA
| | - Frank Döring
- Abteilung Molekulare Prävention, Institut für Humanernährung und Lebensmittelkunde, Universität Kiel, Heinrich-Hecht-Platz 10, 24118 Kiel, Germany
| | - Vicki L Schlegel
- Department of Food Science and Technology, University of Nebraska-Lincoln, 326 Filley Hall, Lincoln, NE 68583-0806, USA
| | - Janos Zempleni
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, 316 Ruth Leverton Hall, Lincoln, NE 68583-0806, USA.
| |
Collapse
|
12
|
Sawamura H, Ikeda C, Shimada R, Yoshii Y, Watanabe T. Dietary intake of high-dose biotin inhibits spermatogenesis in young rats. Congenit Anom (Kyoto) 2015; 55:31-6. [PMID: 25039897 DOI: 10.1111/cga.12070] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 06/04/2014] [Indexed: 11/28/2022]
Abstract
To characterize a new function of the water-soluble vitamin, biotin, in reproduction and early growth in mammals, the effects of high dietary doses of biotin on early spermatogenesis were biochemically and histologically investigated in male rats. Weaned rats were fed a CE-2 (control) diet containing 0.00004% biotin, or a control diet supplemented with 0.01%, 0.1%, or 1.0% biotin. Pair-fed rats were fed a control diet that was equal in calories to the amount ingested by the 1.0% biotin group, because food intake was decreased in the 1.0% biotin group. Food intake and body weight gain were lower in the 1.0% biotin group than in the control group. The kidney, brain and testis weights were significantly lower in the 1.0% biotin group than in the pair-fed group after 6 weeks of feeding. The accumulation of biotin in the liver and testis increased in a dose-dependent manner. In the 1.0% biotin group, the number of mature sperm was markedly lower, that of sperm with morphologically abnormal heads, mainly consisting of round heads, had increased. In addition, the development of seminiferous tubules was inhibited, and few spermatogonia and no spermatocytes were histologically observed. These results demonstrated that the long-term intake of high-dose biotin inhibited spermatogenesis in young male rats.
Collapse
Affiliation(s)
- Hiromi Sawamura
- Department of Molecular Nutrition, School of Human Science and Environment, University of Hyogo, Himeji, Japan; Reserch Institute for Food and Nutritional Sciences, University of Hyogo, Himeji, Japan
| | | | | | | | | |
Collapse
|
13
|
Sadakierska-Chudy A, Filip M. A comprehensive view of the epigenetic landscape. Part II: Histone post-translational modification, nucleosome level, and chromatin regulation by ncRNAs. Neurotox Res 2014; 27:172-97. [PMID: 25516120 PMCID: PMC4300421 DOI: 10.1007/s12640-014-9508-6] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 12/02/2014] [Accepted: 12/03/2014] [Indexed: 12/31/2022]
Abstract
The complexity of the genome is regulated by epigenetic mechanisms, which act on the level of DNA, histones, and nucleosomes. Epigenetic machinery is involved in various biological processes, including embryonic development, cell differentiation, neurogenesis, and adult cell renewal. In the last few years, it has become clear that the number of players identified in the regulation of chromatin structure and function is still increasing. In addition to well-known phenomena, including DNA methylation and histone modification, new, important elements, including nucleosome mobility, histone tail clipping, and regulatory ncRNA molecules, are being discovered. The present paper provides the current state of knowledge about the role of 16 different histone post-translational modifications, nucleosome positioning, and histone tail clipping in the structure and function of chromatin. We also emphasize the significance of cross-talk among chromatin marks and ncRNAs in epigenetic control.
Collapse
Affiliation(s)
- Anna Sadakierska-Chudy
- Laboratory of Drug Addiction Pharmacology, Institute of Pharmacology Polish Academy of Sciences, Smetna 12, 31-343, Kraków, Poland,
| | | |
Collapse
|
14
|
Holocarboxylase synthetase interacts physically with nuclear receptor co-repressor, histone deacetylase 1 and a novel splicing variant of histone deacetylase 1 to repress repeats. Biochem J 2014; 461:477-86. [PMID: 24840043 DOI: 10.1042/bj20131208] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
HLCS (holocarboxylase synthetase) is a nuclear protein that catalyses the binding of biotin to distinct lysine residues in chromatin proteins. HLCS-dependent epigenetic marks are over-represented in repressed genomic loci, particularly in repeats. Evidence is mounting that HLCS is a member of a multi-protein gene repression complex, which determines its localization in chromatin. In the present study we tested the hypothesis that HLCS interacts physically with N-CoR (nuclear receptor co-repressor) and HDAC1 (histone deacetylase 1), thereby contributing toward the removal of H3K9ac (Lys⁹-acetylated histone H3) gene activation marks and the repression of repeats. Physical interactions between HLCS and N-CoR, HDAC1 and a novel splicing variant of HDAC1 were confirmed by co-immunoprecipitation, limited proteolysis and split luciferase complementation assays. When HLCS was overexpressed, the abundance of H3K9ac marks decreased by 50% and 68% in LTRs (long terminal repeats) 15 and 22 respectively in HEK (human embryonic kidney)-293 cells compared with the controls. This loss of H3K9ac marks was linked with an 83% decrease in mRNA coding for LTRs. Similar patterns were seen in pericentromeric alpha satellite repeats in chromosomes 1 and 4. We conclude that interactions of HLCS with N-CoR and HDACs contribute towards the transcriptional repression of repeats, presumably increasing genome stability.
Collapse
|
15
|
Romagnolo DF, Zempleni J, Selmin OI. Nuclear receptors and epigenetic regulation: opportunities for nutritional targeting and disease prevention. Adv Nutr 2014; 5:373-85. [PMID: 25022987 PMCID: PMC4085186 DOI: 10.3945/an.114.005868] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Posttranslational modifications of histones, alterations in the recruitment and functions of non-histone proteins, DNA methylation, and changes in expression of noncoding RNAs contribute to current models of epigenetic regulation. Nuclear receptors (NRs) are a group of transcription factors that, through ligand-binding, act as sensors to changes in nutritional, environmental, developmental, pathophysiologic, and endocrine conditions and drive adaptive responses via gene regulation. One mechanism through which NRs direct gene expression is the assembly of transcription complexes with cofactors and coregulators that possess chromatin-modifying properties. Chromatin modifications can be transient or become part of the cellular "memory" and contribute to genomic imprinting. Because many food components bind to NRs, they can ultimately influence transcription of genes associated with biologic processes, such as inflammation, proliferation, apoptosis, and hormonal response, and alter the susceptibility to chronic diseases (e.g., cancer, diabetes, obesity). The objective of this review is to highlight how NRs influence epigenetic regulation and the relevance of dietary compound-NR interactions in human nutrition and for disease prevention and treatment. Identifying gene targets of unliganded and bound NRs may assist in the development of epigenetic maps for food components and dietary patterns. Progress in these areas may lead to the formulation of disease-prevention models based on epigenetic control by individual or associations of food ligands of NRs.
Collapse
Affiliation(s)
- Donato F Romagnolo
- Department of Nutritional Sciences and University of Arizona Cancer Center, University of Arizona, Tucson, AZ; and
| | - Janos Zempleni
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE
| | - Ornella I Selmin
- Department of Nutritional Sciences and University of Arizona Cancer Center, University of Arizona, Tucson, AZ; and
| |
Collapse
|
16
|
Zempleni J, Liu D, Camara DT, Cordonier EL. Novel roles of holocarboxylase synthetase in gene regulation and intermediary metabolism. Nutr Rev 2014; 72:369-76. [PMID: 24684412 DOI: 10.1111/nure.12103] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The role of holocarboxylase synthetase (HLCS) in catalyzing the covalent binding of biotin to the five biotin-dependent carboxylases in humans is well established, as are the essential roles of these carboxylases in the metabolism of fatty acids, the catabolism of leucine, and gluconeogenesis. This review examines recent discoveries regarding the roles of HLCS in assembling a multiprotein gene repression complex in chromatin. In addition, emerging evidence suggests that the number of biotinylated proteins is far larger than previously assumed and includes members of the heat-shock superfamily of proteins and proteins coded by the ENO1 gene. Evidence is presented linking biotinylation of heat-shock proteins HSP60 and HSP72 with redox biology and immune function, respectively, and biotinylation of the two ENO1 gene products MBP-1 and ENO1 with tumor suppression and glycolysis, respectively.
Collapse
Affiliation(s)
- Janos Zempleni
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | | | | | | |
Collapse
|
17
|
Baier SR, Zbasnik R, Schlegel V, Zempleni J. Off-target effects of sulforaphane include the derepression of long terminal repeats through histone acetylation events. J Nutr Biochem 2014; 25:665-8. [PMID: 24746830 DOI: 10.1016/j.jnutbio.2014.02.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 11/26/2013] [Accepted: 02/06/2014] [Indexed: 12/21/2022]
Abstract
Sulforaphane is a naturally occurring isothiocyanate in cruciferous vegetables. Sulforaphane inhibits histone deacetylases, leading to the transcriptional activation of genes including tumor suppressor genes. The compound has attracted considerable attention in the chemoprevention of prostate cancer. Here we tested the hypothesis that sulforaphane is not specific for tumor suppressor genes but also activates loci such as long terminal repeats (LTRs), which might impair genome stability. Studies were conducted using chemically pure sulforaphane in primary human IMR-90 fibroblasts and in broccoli sprout feeding studies in healthy adults. Sulforaphane (2.0 μM) caused an increase in LTR transcriptional activity in cultured cells. Consumption of broccoli sprouts (34, 68 or 102 g) by human volunteers caused a dose dependent elevation in LTR mRNA in circulating leukocytes, peaking at more than a 10-fold increase. This increase in transcript levels was associated with an increase in histone H3 K9 acetylation marks in LTR 15 in peripheral blood mononuclear cells from subjects consuming sprouts. Collectively, this study suggests that sulforaphane has off-target effects that warrant further investigation when recommending high levels of sulforaphane intake, despite its promising activities in chemoprevention.
Collapse
Affiliation(s)
- Scott R Baier
- Department of Nutrition, University of Nebraska-Lincoln, Lincoln, NE
| | - Richard Zbasnik
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE
| | - Vicki Schlegel
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE
| | - Janos Zempleni
- Department of Nutrition, University of Nebraska-Lincoln, Lincoln, NE.
| |
Collapse
|
18
|
Gravel RA. Holocarboxylase synthetase: a multitalented protein with roles in biotin transfer, gene regulation and chromatin dynamics. Mol Genet Metab 2014; 111:305-306. [PMID: 24361214 DOI: 10.1016/j.ymgme.2013.11.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2013] [Accepted: 11/16/2013] [Indexed: 11/27/2022]
Affiliation(s)
- Roy A Gravel
- Departments of Biochemistry & Molecular Biology and of Medical Genetics and the Alberta Children's Hospital Research Institute for Child and Maternal Health, Faculties of Medicine and Kinesiology, University of Calgary, Room 250 Heritage Medical Research Building, 3330 Hospital Drive N.W., Calgary, Alberta, Canada T3H-1C1.
| |
Collapse
|
19
|
Xue J, Zempleni J. Epigenetic synergies between biotin and folate in the regulation of pro-inflammatory cytokines and repeats. Scand J Immunol 2014; 78:419-25. [PMID: 24007195 DOI: 10.1111/sji.12108] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 08/30/2013] [Indexed: 12/29/2022]
Abstract
The protein biotin ligase, holocarboxylase synthetase (HLCS), is a chromatin protein that interacts physically with the DNA methyltransferase DNMT1, the methylated cytosine-binding protein MeCP2 and the histone H3 K9-methyltransferase EHMT1, all of which participate in folate-dependent gene repression. Here we tested the hypothesis that biotin and folate synergize in the repression of pro-inflammatory cytokines and long-terminal repeats (LTRs), mediated by interactions between HLCS and other chromatin proteins. Biotin and folate supplementation could compensate for each other's deficiency in the repression of LTRs in Jurkat and U937 cells. For example, when biotin-deficient Jurkat cells were supplemented with folate, the expression of LTRs decreased by >70%. Epigenetic synergies were more complex in the regulation of cytokines compared with LTRs. For example, the abundance of TNF-α was 100% greater in folate- and biotin-supplemented U937 cells compared with biotin-deficient and folate-supplemented cells. The NF-κB inhibitor curcumin abrogated the effects of folate and biotin in cytokine regulation, suggesting that transcription factor signalling adds an extra layer of complexity to the regulation of cytokine genes by epigenetic phenomena. We conclude that biotin and folate synergize in the repression of LTRs and that these interactions are probably mediated by HLCS-dependent epigenetic mechanisms. In contrast, synergies between biotin and folate in the regulation of cytokines need to be interpreted in the context of transcription factor signalling.
Collapse
Affiliation(s)
- J Xue
- Department of Nutrition and Health Sciences, University of Nebraska at Lincoln, Lincoln, NE, USA
| | | |
Collapse
|
20
|
Xia M, Malkaram SA, Zempleni J. Three promoters regulate the transcriptional activity of the human holocarboxylase synthetase gene. J Nutr Biochem 2013; 24:1963-9. [PMID: 24075901 DOI: 10.1016/j.jnutbio.2013.06.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 05/24/2013] [Accepted: 06/14/2013] [Indexed: 11/18/2022]
Abstract
Holocarboxylase synthetase (HLCS) is the only protein biotin ligase in the human proteome. HLCS-dependent biotinylation of carboxylases plays crucial roles in macronutrient metabolism. HLCS appears to be an essential part of multiprotein complexes in the chromatin that cause gene repression and contribute toward genome stability. Consistent with these essential functions, HLCS knockdown causes strong phenotypes including shortened life span and low stress resistance in Drosophila melanogaster, and de-repression of long-terminal repeats in humans, other mammalian cell lines and Drosophila. Despite previous observations that the expression of HLCS depends on biotin status in rats and in human cell lines, little is known about the regulation of HLCS expression. The goal of this study was to identify promoters that regulate the expression of the human HLCS gene. Initially, the human HLCS locus was interrogated in silico using predictors of promoters including sequences of HLCS mRNA and expressed sequence tags, CpG islands, histone marks denoting transcriptionally poised chromatin, transcription factor binding sites and DNaseI hypersensitive regions. Our predictions revealed three putative HLCS promoters, denoted P1, P2 and P3. Promoters lacked a TATA box, which is typical for housekeeping genes. When the three promoters were cloned into a luciferase reporter plasmid, reporter gene activity was at least three times background noise in human breast, colon and kidney cell lines; activities consistently followed the pattern P1>>P3>P2. Promoter activity depended on the concentration of biotin in culture media, but the effect was moderate. We conclude that we have identified promoters in the human HLCS gene.
Collapse
Affiliation(s)
- Mengna Xia
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583-0806, USA
| | | | | |
Collapse
|
21
|
Xue J, Wijeratne SSK, Zempleni J. Holocarboxylase synthetase synergizes with methyl CpG binding protein 2 and DNA methyltransferase 1 in the transcriptional repression of long-terminal repeats. Epigenetics 2013; 8:504-11. [PMID: 23624957 DOI: 10.4161/epi.24449] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Holocarboxylase synthetase (HLCS) is a chromatin protein that facilitates the creation of histone H3 lysine 9-methylation (H3K9me) gene repression marks through physical interactions with the histone methyltransferase EHMT-1. HLCS knockdown causes a depletion of H3K9me marks in mammalian cell cultures and severe phenotypes such as short lifespan and low stress resistance in Drosophila melanogaster. HLCS displays a punctuate distribution pattern in chromatin despite lacking a strong DNA-binding domain. Previous studies suggest that the binding of HLCS to chromatin depends on DNA methylation. We tested the hypothesis that HLCS interacts physically with the DNA methyltransferase DNMT1 and the methyl CpG binding protein MeCP2 to facilitate the binding of HLCS to chromatin, and that these interactions contribute toward the repression of long-terminal repeats (LTRs) by H3K9me marks. Co-immunoprecipitation and limited proteolysis assays provided evidence suggesting that HLCS interacts physically with both DNMT1 and MeCP2. The abundance of H3K9me marks was 207% greater in the LTR15 locus in HLCS overexpression human embryonic kidney HEK293 cells compared with controls. This gain in H3K9me was inversely linked with a 87% decrease in mRNA coding for LTRs. Effects of HLCS abundance on LTR expression were abolished when DNA methylation marks were erased by treating cells with 5-azacytidine. We conclude that interactions between DNA methylation and HLCS are crucial for mediating gene repression by H3K9me, thereby providing evidence for epigenetic synergies between the protein biotin ligase HLCS and dietary methyl donors.
Collapse
Affiliation(s)
- Jing Xue
- Department of Nutrition and Health Sciences, University of Nebraska at Lincoln, Lincoln, NE, USA
| | | | | |
Collapse
|
22
|
Moskalev AA, Shaposhnikov MV, Plyusnina EN, Zhavoronkov A, Budovsky A, Yanai H, Fraifeld VE. The role of DNA damage and repair in aging through the prism of Koch-like criteria. Ageing Res Rev 2013; 12:661-84. [PMID: 22353384 DOI: 10.1016/j.arr.2012.02.001] [Citation(s) in RCA: 231] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Revised: 01/27/2012] [Accepted: 02/06/2012] [Indexed: 12/21/2022]
Abstract
Since the first publication on Somatic Mutation Theory of Aging (Szilárd, 1959), a great volume of knowledge in the field has been accumulated. Here we attempted to organize the evidence "for" and "against" the hypothesized causal role of DNA damage and mutation accumulation in aging in light of four Koch-like criteria. They are based on the assumption that some quantitative relationship between the levels of DNA damage/mutations and aging rate should exist, so that (i) the longer-lived individuals or species would have a lower rate of damage than the shorter-lived, and (ii) the interventions that modulate the level of DNA damage and repair capacity should also modulate the rate of aging and longevity and vice versa. The analysis of how the existing data meets the proposed criteria showed that many gaps should still be filled in order to reach a clear-cut conclusion. As a perspective, it seems that the main emphasis in future studies should be put on the role of DNA damage in stem cell aging.
Collapse
|
23
|
Holocarboxylase synthetase interacts physically with euchromatic histone-lysine N-methyltransferase, linking histone biotinylation with methylation events. J Nutr Biochem 2013; 24:1446-52. [PMID: 23337344 DOI: 10.1016/j.jnutbio.2012.12.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Revised: 11/27/2012] [Accepted: 12/06/2012] [Indexed: 01/16/2023]
Abstract
Holocarboxylase synthetase (HCS) catalyzes the binding of the vitamin biotin to histones H3 and H4, thereby creating rare histone biotinylation marks in the epigenome. These marks co-localize with K9-methylated histone H3 (H3K9me), an abundant gene repression mark. The abundance of H3K9me marks in transcriptionally competent loci decreases when HCS is knocked down and when cells are depleted of biotin. Here we tested the hypothesis that the creation of H3K9me marks is at least partially explained by physical interactions between HCS and histone-lysine N-methyltransferases. Using a novel in silico protocol, we predicted that HCS-interacting proteins contain a GGGG(K/R)G(I/M)R motif. This motif, with minor variations, is present in the histone-lysine N-methyltransferase EHMT1. Physical interactions between HCS and the N-terminal, ankyrin and SET domains in EHMT1 were confirmed using yeast-two-hybrid assays, limited proteolysis assays and co-immunoprecipitation. The interactions were stronger between HCS and the N-terminus in EHMT1 compared with the ankyrin and SET domains, consistent with the localization of the HCS-binding motif in the EHMT1 N-terminus. HCS has the catalytic activity to biotinylate K161 within the binding motif in EHMT1. Mutation of K161 weakened the physical interaction between EHMT1 and HCS, but it is unknown whether this effect was caused by loss of biotinylation or loss of the motif. Importantly, HCS knockdown decreased the abundance of H3K9me marks in repeats, suggesting that HCS plays a role in creating histone methylation marks in these loci. We conclude that physical interactions between HCS and EHMT1 mediate epigenomic synergies between biotinylation and methylation events.
Collapse
|
24
|
Camara Teixeira D, Malkaram SA, Zempleni J. Enrichment of meiotic recombination hotspot sequences by avidin capture technology. Gene 2012; 516:101-6. [PMID: 23270922 DOI: 10.1016/j.gene.2012.12.042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Revised: 11/09/2012] [Accepted: 12/04/2012] [Indexed: 11/28/2022]
Abstract
About 40% of the hotspots for meiotic recombination contain the degenerate consensus sequence 5'-CCNCCNTNNCCNC-3'. Here we present a novel protocol for enriching hotspot sequences from digested genomic DNA by using biotinylated oligonucleotides and streptavidin-coated magnetic beads. The captured hotspots can be released by simple digestion with restriction enzymes for subsequent characterization by second generation sequencing or PCR. The capture protocol specifically enriches hotspot sequences, judged by using fluorophore-conjugated synthetic oligonucleotides and synthetic double-stranded oligonucleotides in combination with PCR. The capture protocol enriches single-stranded DNA, denatured double-stranded DNA, and large fragments (>3000 bp) of digested plasmid DNA with good efficacy. No false positive and false negatives were detected when enriching digested DNA from human cell cultures and primary human cells. The protocol can probably be adapted to enriching sequences other than the hotspot sequence by altering the sequence in the capture oligonucleotide. We intend to apply this protocol in studies assessing effects of micronutrient status on meiotic recombination events in human sperm.
Collapse
Affiliation(s)
- Daniel Camara Teixeira
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583-0806, USA
| | | | | |
Collapse
|
25
|
Biotinylation of lysine 16 in histone H4 contributes toward nucleosome condensation. Arch Biochem Biophys 2012; 529:105-11. [PMID: 23219734 DOI: 10.1016/j.abb.2012.11.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Revised: 11/07/2012] [Accepted: 11/08/2012] [Indexed: 02/02/2023]
Abstract
Holocarboxylase synthetase (HLCS) is part of a multiprotein gene repression complex and catalyzes the covalent binding of biotin to lysines (K) in histones H3 and H4, thereby creating rare gene repression marks such as K16-biotinylated histone H4 (H4K16bio). We tested the hypothesis that H4K16bio contributes toward nucleosome condensation and gene repression by HLCS. We used recombinant histone H4 in which K16 was mutated to a cysteine (H4K16C) for subsequent chemical biotinylation of the sulfhydryl group to create H4K16Cbio. Nucleosomes were assembled by using H4K16Cbio and the 'Widom 601' nucleosomal DNA position sequence; biotin-free histone H4 and H4K16C were used as controls. Nucleosomal compaction was analyzed using atomic force microscopy (AFM). The length of DNA per nucleosome was ∼30% greater in H4K16Cbio-containing histone octamers (61.14±10.92nm) compared with native H4 (46.89±12.6nm) and H4K16C (47.26±10.32nm), suggesting biotin-dependent chromatin condensation (P<0.001). Likewise, the number of DNA turns around histone core octamers was ∼17.2% greater in in H4K16Cbio-containing octamers (1.78±0.16) compared with native H4 (1.52±0.21) and H4K16C (1.52±0.17), judged by the rotation angle (P<0.001; N=150). We conclude that biotinylation of K16 in histone H4 contributes toward chromatin condensation.
Collapse
|
26
|
Ashlock W, Datta S. Distinguishing endogenous retroviral LTRs from SINE elements using features extracted from evolved side effect machines. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2012; 9:1676-1689. [PMID: 22908128 DOI: 10.1109/tcbb.2012.116] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Side effect machines produce features for classifiers that distinguish different types of DNA sequences. They have the, as yet unexploited, potential to give insight into biological features of the sequences. We introduce several innovations to the production and use of side effect machine sequence features. We compare the results of using consensus sequences and genomic sequences for training classifiers and find that more accurate results can be obtained using genomic sequences. Surprisingly, we were even able to build a classifier that distinguished consensus sequences from genomic sequences with high accuracy, suggesting that consensus sequences are not always representative of their genomic counterparts. We apply our techniques to the problem of distinguishing two types of transposable elements, solo LTRs and SINEs. Identifying these sequences is important because they affect gene expression,genome structure, and genetic diversity, and they serve as genetic markers. They are of similar length, neither codes for protein, and both have many nearly identical copies throughout the genome. Being able to efficiently and automatically distinguish them will aid efforts to improve annotations of genomes. Our approach reveals structural characteristics of the sequences of potential interest to biologists.
Collapse
Affiliation(s)
- Wendy Ashlock
- Department of Computer Science and Engineering, York University, 4700 Keele St., Toronto, ON, M3J 1P3, Canada.
| | | |
Collapse
|
27
|
Bao B, Rodriguez-Melendez R, Zempleni J. Cytosine methylation in miR-153 gene promoters increases the expression of holocarboxylase synthetase, thereby increasing the abundance of histone H4 biotinylation marks in HEK-293 human kidney cells. J Nutr Biochem 2012; 23:635-9. [PMID: 21764280 PMCID: PMC3208029 DOI: 10.1016/j.jnutbio.2011.03.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Revised: 02/27/2011] [Accepted: 03/08/2011] [Indexed: 12/11/2022]
Abstract
Holocarboxylase synthetase (HCS) plays an essential role in catalyzing the biotinylation of carboxylases and histones. Biotinylated carboxylases are important for the metabolism of glucose, lipids and leucine; biotinylation of histones plays important roles in gene regulation and genome stability. Recently, we reported that HCS activity is partly regulated by subcellular translocation events and by miR-539. Here we tested the hypothesis that the HCS 3'-untranslated region (3'-UTR) contains binding sites for miR other than miR-539. A binding site for miR-153 was predicted to reside in the HCS 3'-UTR by using in silico analyses. When miR-153 site was overexpressed in transgenic HEK-293 human embryonic kidney cells, the abundance of HCS mRNA decreased by 77% compared with controls. In silico analyses also predicted three putative cytosine methylation sites in two miR-153 genes; the existence of these sites was confirmed by methylation-sensitive polymerase chain reaction. When cytosines were demethylated by treatment with 5-aza-2'-deoxycytidine, the abundance of miR-153 increased by more than 25 times compared with untreated controls, and this increase coincided with low levels of HCS and histone biotinylation. Together, this study provides novel insights into the mechanisms of novel epigenetic synergies among folate-dependent methylation events, miR and histone biotinylation.
Collapse
Affiliation(s)
- Baolong Bao
- Department of Nutrition and Health Sciences, University of Nebraska at Lincoln, Lincoln, NE, 68583, USA
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Ministry of Education, 201 306 Shanghai, China
| | - Rocio Rodriguez-Melendez
- Department of Nutrition and Health Sciences, University of Nebraska at Lincoln, Lincoln, NE, 68583, USA
| | - Janos Zempleni
- Department of Nutrition and Health Sciences, University of Nebraska at Lincoln, Lincoln, NE, 68583, USA
| |
Collapse
|
28
|
Shenderov BA. Gut indigenous microbiota and epigenetics. MICROBIAL ECOLOGY IN HEALTH AND DISEASE 2012; 23:17195. [PMID: 23990811 PMCID: PMC3744659 DOI: 10.3402/mehd.v23i0.17195] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Accepted: 02/29/2012] [Indexed: 12/13/2022]
Abstract
This review introduces and discusses data regarding fundamental and applied investigations in mammalian epigenomics and gut microbiota received over the last 10 years. Analysis of these data enabled us first to come to the conclusion that the multiple low-molecular-weight substances of indigenous gut microbiota origin should be considered one of the main endogenous factors actively participating in epigenomic mechanisms that are responsible for the mammalian genome reprograming and post-translated modifications. Gut microecological imbalance caused by various biogenic and abiogenic agents and factors can produce different epigenetic abnormalities and the onset and progression of metabolic diseases associated. The authors substantiate the necessity to create an international project 'Human Gut Microbiota and Epigenomics' that facilitates interdisciplinary collaborations among scientists and clinicians engaged in host microbial ecology, nutrition, metagenomics, epigenomics, and metabolomics investigations as well as in disease prevention and treatment. Some priority scientific and applied directions in the current omic technologies coupled with gnotobiological approaches are suggested that can open a new era in characterizing the role of the symbiotic microbiota small metabolic and signal molecules in the host epigenomics. Although the discussed subject is only at an early stage its validation can open novel approaches in drug discovery studies.
Collapse
Affiliation(s)
- Boris Arkadievich Shenderov
- Laboratory of Biology of bifidobacteria, Head of Research Group Probiotics and Functional Foods, Gabrichevsky Research Institute of Epidemiology and Microbiology, Moscow, Russia
| |
Collapse
|
29
|
Rios-Avila L, Pestinger V, Zempleni J. K16-biotinylated histone H4 is overrepresented in repeat regions and participates in the repression of transcriptionally competent genes in human Jurkat lymphoid cells. J Nutr Biochem 2011; 23:1559-64. [PMID: 22192339 DOI: 10.1016/j.jnutbio.2011.10.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Revised: 10/13/2011] [Accepted: 10/14/2011] [Indexed: 12/11/2022]
Abstract
Holocarboxylase synthetase (HCS) catalyzes the binding of biotin to lysine (K) residues in histones H3 and H4. Histone biotinylation marks are enriched in repressed loci, including retrotransposons. Preliminary studies suggested that K16 in histone H4 is a target for biotinylation by HCS. Here we tested the hypotheses that H4K16bio is a real histone mark in human chromatin and that H4K16bio is overrepresented in repressed gene loci and repeat regions. Polyclonal rabbit anti-human H4K16bio was generated and affinity purified. An extensive series of testing with synthetic and natural targets confirmed that this new antibody is specific for H4K16bio. Using anti-H4K16bio and chromatin immunoprecipitation assays, we demonstrated that H4K16bio is overrepresented in repeat regions [pericentromeric alpha satellite repeats and long terminal repeats (LTR)] compared with euchromatin promoters. H4K16bio was also enriched in the repressed interleukin-2 gene promoter in human lymphoid cells; transcriptional activation of the interleukin-2 gene by mitogens and phorbol esters coincided with a depletion of the H4K16bio mark at the gene promoter. The enrichment of H4K16bio depended on biotin supply; the enrichment at LTR22 and promoter 1 of the sodium-dependent multivitamin transporter (SMVT) was greater in biotin-supplemented cells compared with biotin-normal and biotin-deficient cells. The enrichment of H4K16bio at LTR15 and SMVT promoter 1 was significantly lower in fibroblasts from an HCS-deficient patient compared with an HCS wild-type control. We conclude that H4K16bio is a real phenomenon and that this mark, like other biotinylation marks, is overrepresented in repressed loci where it marks HCS docking sites.
Collapse
Affiliation(s)
- Luisa Rios-Avila
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583-0806, USA
| | | | | |
Collapse
|
30
|
Kuroishi T, Rios-Avila L, Pestinger V, Wijeratne SSK, Zempleni J. Biotinylation is a natural, albeit rare, modification of human histones. Mol Genet Metab 2011; 104:537-45. [PMID: 21930408 PMCID: PMC3224183 DOI: 10.1016/j.ymgme.2011.08.030] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Revised: 08/29/2011] [Accepted: 08/30/2011] [Indexed: 01/08/2023]
Abstract
Previous studies suggest that histones H3 and H4 are posttranslationally modified by binding of the vitamin biotin, catalyzed by holocarboxylase synthetase (HCS). Albeit a rare epigenetic mark, biotinylated histones were repeatedly shown to be enriched in repeat regions and repressed loci, participating in the maintenance of genome stability and gene regulation. Recently, a team of investigators failed to detect biotinylated histones and proposed that biotinylation is not a natural modification of histones, but rather an assay artifact. Here, we describe the results of experiments, including the comparison of various analytical protocols, antibodies, cell lines, classes of histones, and radiotracers. These studies provide unambiguous evidence that biotinylation is a natural, albeit rare, histone modification. Less than 0.001% of human histones H3 and H4 are biotinylated, raising concerns that the abundance might too low to elicit biological effects in vivo. We integrated information from this study, previous studies, and ongoing research efforts to present a new working model in which biological effects are caused by a role of HCS in multiprotein complexes in chromatin. In this model, docking of HCS in chromatin causes the occasional binding of biotin to histones as a tracer for HCS binding sites.
Collapse
|
31
|
Effects of single-nucleotide polymorphisms in the human holocarboxylase synthetase gene on enzyme catalysis. Eur J Hum Genet 2011; 20:428-33. [PMID: 22027809 DOI: 10.1038/ejhg.2011.198] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Holocarboxylase synthetase (HLCS) is a biotin protein ligase, which has a pivotal role in biotin-dependent metabolic pathways and epigenetic phenomena in humans. Knockdown of HLCS produces phenotypes such as heat susceptibility and decreased life span in Drosophila melanogaster, whereas knockout of HLCS appears to be embryonic lethal. HLCS comprises 726 amino acids in four domains. More than 2500 single-nucleotide polymorphisms (SNPs) have been identified in human HLCS. Here, we tested the hypotheses that HLCS SNPs impair enzyme activity, and that biotin supplementation restores the activities of HLCS variants to wild-type levels. We used an in silico approach to identify five SNPs that alter the amino acid sequence in the N-terminal, central, and C-terminal domains in human HLCS. Recombinant HLCS was used for enzyme kinetics analyses of HLCS variants, wild-type HLCS, and the L216R mutant, which has a biotin ligase activity near zero. The biotin affinity of variant Q699R is lower than that of the wild-type control, but the maximal activity was restored to that of wild-type HLCS when assay mixtures were supplemented with biotin. In contrast, the biotin affinities of HLCS variants V96F and G510R are not significantly different from the wild-type control, but their maximal activities remained moderately lower than that of wild-type HLCS even when assay mixtures were supplemented with biotin. The V96 L SNP did not alter enzyme kinetics. Our findings suggest that individuals with HLCS SNPs may benefit from supplemental biotin, yet to different extents depending on the genotype.
Collapse
|
32
|
Biotin requirements for DNA damage prevention. Mutat Res 2011; 733:58-60. [PMID: 21871906 DOI: 10.1016/j.mrfmmm.2011.08.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Revised: 08/09/2011] [Accepted: 08/10/2011] [Indexed: 11/22/2022]
Abstract
Biotin serves as a covalently bound coenzyme in five human carboxylases; biotin is also attached to histones H2A, H3, and H4, although the abundance of biotinylated histones is low. Biotinylation of both carboxylases and histones is catalyzed by holocarboxylase synthetase. Human biotin requirements are unknown. Recommendations for adequate intake of biotin are based on the typical intake of biotin in an apparently healthy population, which is only a crude estimate of the true intake due to analytical problems. Importantly, intake recommendations do not take into account possible effects of biotin deficiency on impairing genome stability. Recent studies suggest that biotin deficiency causes de-repression of long terminal repeats, thereby causing genome instability. While it was originally proposed that these effects are caused by loss of biotinylated histones, more recent evidence suggests a more immediate role of holocarboxylase synthetase in forming multiprotein complexes in chromatin that are important for gene repression. Holocarboxylase synthetase appears to interact physically with the methyl-CpG-binding domain protein 2 and, perhaps, histone methyl transferases, thereby creating epigenetic synergies between biotinylation and methylation events. These observations might offer a mechanistic explanation for some of the birth defects seen in biotin-deficient animal models.
Collapse
|
33
|
Human holocarboxylase synthetase with a start site at methionine-58 is the predominant nuclear variant of this protein and has catalytic activity. Biochem Biophys Res Commun 2011; 412:115-20. [PMID: 21802411 DOI: 10.1016/j.bbrc.2011.07.055] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Accepted: 07/14/2011] [Indexed: 11/20/2022]
Abstract
Holocarboxylase synthetase (HLCS) catalyzes the covalent binding of biotin to both carboxylases in extranuclear structures and histones in cell nuclei, thereby mediating important roles in intermediary metabolism, gene regulation, and genome stability. HLCS has three putative translational start sites (methionine-1, -7, and -58), but lacks a strong nuclear localization sequence that would explain its participation in epigenetic events in the cell nucleus. Recent evidence suggests that small quantities of HLCS with a start site in methionine-58 (HLCS58) might be able to enter the nuclear compartment. We generated the following novel insights into HLCS biology. First, we generated a novel HLCS fusion protein vector to demonstrate that methionine-58 is a functional translation start site in human cells. Second, we used confocal microscopy and western blots to demonstrate that HLCS58 enters the cell nucleus in meaningful quantities, and that full-length HLCS localizes predominantly in the cytoplasm but may also enter the nucleus. Third, we produced recombinant HLCS58 to demonstrate its biological activity toward catalyzing the biotinylation of both carboxylases and histones. Collectively, these observations are consistent with roles of HLCS58 and full-length HLCS in nuclear events. We conclude this report by proposing a novel role for HLCS in epigenetic events, mediated by physical interactions between HLCS and other chromatin proteins as part of a larger multiprotein complex that mediates gene repression.
Collapse
|
34
|
Zempleni J, Li Y, Xue J, Cordonier EL. The role of holocarboxylase synthetase in genome stability is mediated partly by epigenomic synergies between methylation and biotinylation events. Epigenetics 2011; 6:892-4. [PMID: 21555910 DOI: 10.4161/epi.6.7.15544] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Holocarboxylase synthetase (HLCS) catalyzes the covalent binding of biotin to histones. Biotinylated histones are gene repression marks and are particularly enriched in long terminal repeats, telomeres, and other repeat regions. The effects of HLCS in gene regulation are mediated by its physical interactions with chromatin proteins such as histone H3, DNMT1, MeCP2, and EHMT-1. It appears that histone biotinylation depends on prior methylation of cytosines. De-repression of long terminal repeats in biotin- or HLCS-deficient cell cultures and organisms is associated with genome instability.
Collapse
Affiliation(s)
- Janos Zempleni
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA.
| | | | | | | |
Collapse
|
35
|
Singh D, Pannier AK, Zempleni J. Identification of holocarboxylase synthetase chromatin binding sites in human mammary cell lines using the DNA adenine methyltransferase identification technology. Anal Biochem 2011; 413:55-9. [PMID: 21303649 PMCID: PMC3070904 DOI: 10.1016/j.ab.2011.02.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Revised: 01/30/2011] [Accepted: 02/01/2011] [Indexed: 12/28/2022]
Abstract
Holocarboxylase synthetase (HCS) is a chromatin protein that is essential for mediating the covalent binding of biotin to histones. Biotinylation of histones plays crucial roles in the repression of genes and repeats in the human genome. We tested the feasibility of DNA adenine methyltransferase identification (DamID) technology to map HCS binding sites in human mammary cell lines. Full-length HCS was fused to DNA adenine methyltransferase (Dam) for subsequent transfection into breast cancer (MCF-7) and normal breast (MCF-10A) cells. HCS docking sites in chromatin were identified by using the unique adenine methylation sites established by Dam in the fusion construct; docking sites were unambiguously identified using methylation-sensitive digestion, cloning, and sequencing. In total, 15 novel HCS binding sites were identified in the two cell lines, and the following 4 of the 15 overlapped between MCF-7 and MCF-10A cells: inositol polyphosphate-5-phosphatase A, corticotropin hormone precursor, ribosome biogenesis regulatory protein, and leptin precursor. We conclude that DamID is a useful technology to map HCS binding sites in human chromatin and propose that the entire set of HCS binding sites could be mapped by combining DamID with microarray technology.
Collapse
Affiliation(s)
- Dipika Singh
- Department of Biological Systems Engineering, University of Nebraska at Lincoln
| | - Angela K. Pannier
- Department of Biological Systems Engineering, University of Nebraska at Lincoln
| | - Janos Zempleni
- Department of Nutrition and Health Sciences, University of Nebraska at Lincoln
| |
Collapse
|
36
|
Castañeda J, Genzor P, Bortvin A. piRNAs, transposon silencing, and germline genome integrity. Mutat Res 2011; 714:95-104. [PMID: 21600904 DOI: 10.1016/j.mrfmmm.2011.05.002] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Accepted: 05/04/2011] [Indexed: 12/17/2022]
Abstract
Integrity of the germline genome is essential for the production of viable gametes and successful reproduction. In mammals, the generation of gametes involves extensive epigenetic changes (DNA methylation and histone modification) in conjunction with changes in chromosome structure to ensure flawless progression through meiotic recombination and packaging of the genome into mature gametes. Although epigenetic reprogramming is essential for mammalian reproduction, reprogramming also provides a permissive window for exploitation by transposable elements (TEs), autonomously replicating endogenous elements. Expression and propagation of TEs during the reprogramming period can result in insertional mutagenesis that compromises genome integrity leading to reproductive problems and sporadic inherited diseases in offspring. Recent work has identified the germ cell associated PIWI Interacting RNA (piRNA) pathway in conjunction with the DNA methylation and histone modification machinery in silencing TEs. In this review we will highlight these recent advances in piRNA mediated regulation of TEs in the mouse germline, as well as mention the repercussions of failure to properly regulate TEs.
Collapse
Affiliation(s)
- Julio Castañeda
- Biology Department, Johns Hopkins University, Baltimore, MD 21218, USA
| | | | | |
Collapse
|
37
|
Bao B, Pestinger V, Hassan YI, Borgstahl GEO, Kolar C, Zempleni J. Holocarboxylase synthetase is a chromatin protein and interacts directly with histone H3 to mediate biotinylation of K9 and K18. J Nutr Biochem 2011; 22:470-5. [PMID: 20688500 PMCID: PMC2975038 DOI: 10.1016/j.jnutbio.2010.04.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2010] [Revised: 03/29/2010] [Accepted: 04/05/2010] [Indexed: 11/17/2022]
Abstract
Holocarboxylase synthetase (HCS) mediates the binding of biotin to lysine (K) residues in histones H2A, H3 and H4; HCS knockdown disturbs gene regulation and decreases stress resistance and lifespan in eukaryotes. We tested the hypothesis that HCS interacts physically with histone H3 for subsequent biotinylation. Co-immunoprecipitation experiments were conducted and provided evidence that HCS co-localizes with histone H3 in human cells; physical interactions between HCS and H3 were confirmed using limited proteolysis assays. Yeast two-hybrid (Y2H) studies revealed that the N-terminal and C-terminal domains in HCS participate in H3 binding. Recombinant human HCS was produced and exhibited biological activity, as evidenced by biotinylation of its known substrate, recombinant p67. Recombinant histone H3.2 and synthetic H3-based peptides were also good targets for biotinylation by recombinant HCS (rHCS) in vitro, based on tracing histone-bound biotin with [(3)H]biotin, streptavidin and anti-biotin antibody. Biotinylation site-specific antibodies were generated and revealed that both K9 and K18 in H3 were biotinylated by HCS. Collectively, these studies provide conclusive evidence that HCS interacts directly with histone H3, causing biotinylation of K9 and K18. We speculate that the targeting of HCS to distinct regions in human chromatin is mediated by DNA sequence, biotin, RNA, epigenetic marks or chromatin proteins.
Collapse
Affiliation(s)
- Baolong Bao
- Department of Nutrition and Health Sciences, University of Nebraska at Lincoln, Lincoln, NE
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Ministry of Education, China
| | - Valerie Pestinger
- Department of Nutrition and Health Sciences, University of Nebraska at Lincoln, Lincoln, NE
| | - Yousef I. Hassan
- Department of Nutrition and Health Sciences, University of Nebraska at Lincoln, Lincoln, NE
| | - Gloria E. O. Borgstahl
- Eppley Institute for Cancer Research and Allied Diseases, University of Nebraska Medical Center, Omaha, NE
| | - Carol Kolar
- Eppley Institute for Cancer Research and Allied Diseases, University of Nebraska Medical Center, Omaha, NE
| | - Janos Zempleni
- Department of Nutrition and Health Sciences, University of Nebraska at Lincoln, Lincoln, NE
| |
Collapse
|
38
|
Rios-Avila L, Prince SA, Wijeratne SSK, Zempleni J. A 96-well plate assay for high-throughput analysis of holocarboxylase synthetase activity. Clin Chim Acta 2011; 412:735-9. [PMID: 21195703 PMCID: PMC3043159 DOI: 10.1016/j.cca.2010.12.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2010] [Revised: 11/12/2010] [Accepted: 12/23/2010] [Indexed: 11/26/2022]
Abstract
BACKGROUND Holocarboxylase synthetase (HCS) catalyzes the covalent binding of biotin to both carboxylases and histones. Biotinylated carboxylases and biotinylated histones play crucial roles in the metabolism of fatty acids, amino acids, and glucose, and in gene regulation and genome stability, respectively. HCS null mammals are not viable whereas HCS deficiency is linked to developmental delays in humans and phenotypes such as short life span and low stress resistance in Drosophila. METHODS HCS-dependent biotinylation of the polypeptide p67 was detected and quantified in a 96-well plate format using IRDye-streptavidin and infrared spectroscopy. RESULTS Biotinylation of p67 by recombinant HCS (rHCS) and HCS from human cell extracts depended on time, temperature, and substrate concentration, all consistent with enzyme catalysis rather than non-enzymatic biotinylation. The Michaelis-Menten constant of rHCS for p67 was 4.1±1.5 μmol/l. The minimal concentration of rHCS that can be detected by this assay is less than 1.08 nmol/l. Jurkat cells contained 0.14±0.02 U of HCS activity [μmol of biotinylated p67 formed/(nmol/l HCSh)] in 400 μg of total protein. CONCLUSIONS We developed a 96-well plate assay for high-throughput analysis of HCS activity in biological samples and studies of synthetic and naturally occurring HCS inhibitors.
Collapse
Affiliation(s)
- Luisa Rios-Avila
- Department of Nutrition & Health Sciences, University of Nebraska-Lincoln, NE 68583-0806
| | - Sara A. Prince
- Department of Nutrition & Health Sciences, University of Nebraska-Lincoln, NE 68583-0806
| | | | - Janos Zempleni
- Department of Nutrition & Health Sciences, University of Nebraska-Lincoln, NE 68583-0806
| |
Collapse
|
39
|
Pestinger V, Wijeratne SSK, Rodriguez-Melendez R, Zempleni J. Novel histone biotinylation marks are enriched in repeat regions and participate in repression of transcriptionally competent genes. J Nutr Biochem 2011; 22:328-33. [PMID: 20691578 PMCID: PMC3008753 DOI: 10.1016/j.jnutbio.2010.02.011] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2009] [Revised: 02/14/2010] [Accepted: 02/23/2010] [Indexed: 11/24/2022]
Abstract
Covalent histone modifications play crucial roles in chromatin structure and genome stability. We previously reported biotinylation of lysine (K) residues in histones H2A, H3 and H4 by holocarboxylase synthetase and demonstrated that K12-biotinylated histone H4 (H4K12bio) is enriched in repeat regions and participates in gene repression. The biological functions of biotinylation marks other than H4K12bio are poorly understood. Here, novel biotinylation site-specific antibodies against H3K9bio, H3K18bio and H4K8bio were used in chromatin immunoprecipitation studies to obtain first insights into possible biological functions of these marks. Chromatin immunoprecipitation assays were conducted in human primary fibroblasts and Jurkat lymphoblastoma cells, and revealed that H3K9bio, H3K18bio and H4K8bio are enriched in repeat regions such as pericentromeric alpha satellite repeats and long-terminal repeats while being depleted in transcriptionally active promoters in euchromatin. Transcriptional stimulation of the repressed interleukin-2 promoter triggered a rapid depletion of histone biotinylation marks at this locus in Jurkat cells, which was paralleled by an increase in interleukin-2 mRNA. Importantly, the enrichment of H3K9bio, H3K18bio and H4K8bio at genomic loci depended on the concentration of biotin in culture media at nutritionally relevant levels, suggesting a novel mechanism of gene regulation by biotin.
Collapse
Affiliation(s)
- Valerie Pestinger
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583-0806, USA
| | | | | | | |
Collapse
|
40
|
Filenko NA, Kolar C, West JT, Smith SA, Hassan YI, Borgstahl GEO, Zempleni J, Lyubchenko YL. The role of histone H4 biotinylation in the structure of nucleosomes. PLoS One 2011; 6:e16299. [PMID: 21298003 PMCID: PMC3029316 DOI: 10.1371/journal.pone.0016299] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Accepted: 12/15/2010] [Indexed: 11/18/2022] Open
Abstract
Background Post-translational modifications of histones play important roles in regulating nucleosome structure and gene transcription. It has been shown that biotinylation of histone H4 at lysine-12 in histone H4 (K12Bio-H4) is associated with repression of a number of genes. We hypothesized that biotinylation modifies the physical structure of nucleosomes, and that biotin-induced conformational changes contribute to gene silencing associated with histone biotinylation. Methodology/Principal Findings To test this hypothesis we used atomic force microscopy to directly analyze structures of nucleosomes formed with biotin-modified and non-modified H4. The analysis of the AFM images revealed a 13% increase in the length of DNA wrapped around the histone core in nucleosomes with biotinylated H4. This statistically significant (p<0.001) difference between native and biotinylated nucleosomes corresponds to adding approximately 20 bp to the classical 147 bp length of nucleosomal DNA. Conclusions/Significance The increase in nucleosomal DNA length is predicted to stabilize the association of DNA with histones and therefore to prevent nucleosomes from unwrapping. This provides a mechanistic explanation for the gene silencing associated with K12Bio-H4. The proposed single-molecule AFM approach will be instrumental for studying the effects of various epigenetic modifications of nucleosomes, in addition to biotinylation.
Collapse
Affiliation(s)
- Nina A. Filenko
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Carol Kolar
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - John T. West
- The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - S. Abbie Smith
- The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Yousef I. Hassan
- Department of Nutrition and Health Sciences, University of Nebraska, Lincoln, Nebraska, United States of America
| | - Gloria E. O. Borgstahl
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Janos Zempleni
- Department of Nutrition and Health Sciences, University of Nebraska, Lincoln, Nebraska, United States of America
| | - Yuri L. Lyubchenko
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- * E-mail:
| |
Collapse
|
41
|
Bao B, Rodriguez-Melendez R, Wijeratne SSK, Zempleni J. Biotin regulates the expression of holocarboxylase synthetase in the miR-539 pathway in HEK-293 cells. J Nutr 2010; 140:1546-51. [PMID: 20592104 PMCID: PMC2924595 DOI: 10.3945/jn.110.126359] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Holocarboxylase synthetase (HCS) catalyzes the covalent binding of biotin to carboxylases and histones. In mammals, the expression of HCS depends on biotin, but the mechanism of regulation is unknown. Here we tested the hypothesis that microRNA (miR) plays a role in the regulation of the HCS gene. Human embryonic kidney cells were used as the primary model, but cell lines from other tissues and primary human cells were also tested. In silico searches revealed an evolutionary conserved binding site for miR-539 in the 3 prime -untranslated region (3 prime -UTR) of HCS mRNA. Transgenic cells and reporter gene constructs were used to demonstrate that miR-539 decreases the expression of HCS at the level of transcription rather than translation; these findings were corroborated in nontransgenic cells. When miR-539 was overexpressed in transgenic cells, the abundance of both HCS and biotinylated histones decreased. The abundance of miR-539 was tissue dependent: fibroblasts gt kidney cells gt intestinal cells gt lymphoid cells. Dose-response studies revealed that the abundance of miR-539 was significantly higher at physiological concentrations of biotin than both biotin-deficient and biotin-supplemented media in all cell lines tested. In kidney cells, the expression of HCS was lower in cells in physiological medium than in deficient and supplemented medium. In contrast, in fibroblasts, lymphoid cells, and intestinal cells, there was no apparent link between miR-539 abundance and HCS expression, suggesting that factors other than miR-539 also contribute to the regulation of HCS expression in some tissues. Collectively, the results of this study suggest that miR-539 is among the factors sensing biotin and regulating HCS.
Collapse
|
42
|
Mall GK, Chew YC, Zempleni J. Biotin requirements are lower in human Jurkat lymphoid cells but homeostatic mechanisms are similar to those of HepG2 liver cells. J Nutr 2010; 140:1086-92. [PMID: 20357078 PMCID: PMC2869498 DOI: 10.3945/jn.110.121475] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2010] [Revised: 02/10/2010] [Accepted: 03/11/2010] [Indexed: 01/17/2023] Open
Abstract
The following proteins are candidates for maintaining biotin homeostasis in humans: the biotin transporters sodium-dependent multivitamin transporter (SMVT) and monocarboxylate transporter 1, the biotinyl-protein ligase holocarboxylase synthetase (HCS), and the lysine-epsilon-biotin hydrolase biotinidase. Liver cells are supplied through the portal vein with high levels of water-soluble vitamins compared with those of peripheral tissues. We hypothesized that the mechanisms of biotin homeostasis are qualitatively and quantitatively different in cells derived from human liver (HepG2 cells) and lymphoid tissues (Jurkat cells). Cells were cultured in biotin-defined media, representing deficient (D), normal (N), and supplemented (S) individuals. Biotinylation of carboxylases depended on biotin availability in both cell types, but HepG2 cells required 3 times more biotin than Jurkat cells to maintain normal levels of holocarboxylases. The expression of biotin transporters was less in both types in medium S compared with cells in media D and N; in contrast, the expression of HCS was higher in cells in medium S compared with the other cells. The abundance of 3-methylcrotonyl-CoA carboxylase mRNA was lower in cells in medium D than cells in media N and S. The enrichment of biotinylated histones was higher at the SMVT promoter 1 in HepG2 and Jurkat cells in medium S compared with the corresponding cells in media D and N, presumably repressing the SMVT gene. The mechanisms of biotin homeostasis are qualitatively similar but quantitatively different in HepG2 and Jurkat cells; HCS, histone biotinylation, and biotin transporters play a role in homeostasis in both.
Collapse
Affiliation(s)
| | | | - Janos Zempleni
- Department of Nutrition and Health Sciences, University of Nebraska, Lincoln, NE 68583
| |
Collapse
|
43
|
Wijeratne SSK, Camporeale G, Zempleni J. K12-biotinylated histone H4 is enriched in telomeric repeats from human lung IMR-90 fibroblasts. J Nutr Biochem 2010; 21:310-6. [PMID: 19369050 PMCID: PMC2854078 DOI: 10.1016/j.jnutbio.2009.01.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2008] [Revised: 12/22/2008] [Accepted: 01/08/2009] [Indexed: 10/20/2022]
Abstract
Covalent modifications of histones play a role in regulating telomere attrition and cellular senescence. Biotinylation of lysine (K) residues in histones, mediated by holocarboxylase synthetase (HCS), is a novel diet-dependent mechanism to regulate chromatin structure and gene expression. We have previously shown that biotinylation of K12 in histone H4 (H4K12bio) is a marker for heterochromatin and is enriched in pericentromeric alpha satellite repeats. Here, we hypothesized that H4K12bio is also enriched in telomeres. We used human IMR-90 lung fibroblasts and immortalized IMR-90 cells overexpressing human telomerase (hTERT) in order to examine histone biotinylation in young and senescent cells. Our studies suggest that one out of three histone H4 molecules in telomeres is biotinylated at K12 in hTERT cells. The abundance of H4K12bio in telomeres decreased by 42% during telomere attrition in senescent IMR-90 cells; overexpression of telomerase prevented the loss of H4K12bio. Possible confounders such as decreased expression of HCS and biotin transporters were formally excluded in this study. Collectively, these data suggest that H4K12bio is enriched in telomeric repeats and represents a novel epigenetic mark for cell senescence.
Collapse
Affiliation(s)
- Subhashinee S. K. Wijeratne
- Department of Nutrition and Health Sciences, University of Nebraska at Lincoln, 316 Ruth Leverton Hall, Lincoln, NE 68583-0806, USA
| | - Gabriela Camporeale
- Department of Nutrition and Health Sciences, University of Nebraska at Lincoln, 316 Ruth Leverton Hall, Lincoln, NE 68583-0806, USA
| | - Janos Zempleni
- Department of Nutrition and Health Sciences, University of Nebraska at Lincoln, 316 Ruth Leverton Hall, Lincoln, NE 68583-0806, USA
| |
Collapse
|
44
|
Hassan YI, Moriyama H, Zempleni J. The polypeptide Syn67 interacts physically with human holocarboxylase synthetase, but is not a target for biotinylation. Arch Biochem Biophys 2010; 495:35-41. [PMID: 20026029 PMCID: PMC2824026 DOI: 10.1016/j.abb.2009.12.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2009] [Revised: 12/11/2009] [Accepted: 12/12/2009] [Indexed: 10/20/2022]
Abstract
Holocarboxylase synthetase (HCS) catalyzes the binding of biotin to lysines in carboxylases and histones in two steps. First, HCS catalyzes the synthesis of biotinyl-5'-AMP; second, the biotinyl moiety is ligated to lysine residues. It has been proposed that step two is fairly promiscuous, and that protein biotinylation may occur in the absence of HCS as long as sufficient exogenous biotinyl-5'-AMP is provided. Here, we identified a novel polypeptide (Syn67) with a basic patch of lysines and arginines. Yeast-two-hybrid assays and limited proteolysis assays revealed that both N- and C-termini of HCS interact with Syn67. A potential target lysine in Syn67 was biotinylated by HCS only after arginine-to-glycine substitutions in Syn67 produced a histone-like peptide. We identified a Syn67 docking site near the active pocket of HCS by in silico modeling and site-directed mutagenesis. Biotinylation of proteins by HCS is more specific than previously assumed.
Collapse
Affiliation(s)
- Yousef I. Hassan
- Department of Nutrition and Health Sciences, University of Nebraska at Lincoln
| | | | - Janos Zempleni
- Department of Nutrition and Health Sciences, University of Nebraska at Lincoln
| |
Collapse
|
45
|
Evertts AG, Zee BM, Garcia BA. Modern approaches for investigating epigenetic signaling pathways. J Appl Physiol (1985) 2010; 109:927-33. [PMID: 20110548 DOI: 10.1152/japplphysiol.00007.2010] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Epigenetics is increasingly being recognized as a central component of physiological processes as diverse as obesity and circadian rhythms. Primarily acting through DNA methylation and histone posttranslational modifications, epigenetic pathways enable both short- and long-term transcriptional activation and silencing, independently of the underlying genetic sequence. To more quantitatively study the molecular basis of epigenetic regulation in physiological processes, the present review informs the latest techniques to identify and compare novel DNA methylation marks and combinatorial histone modifications across different experimental conditions, and to localize both DNA methylation and histone modifications over specific genomic regions.
Collapse
Affiliation(s)
- Adam G Evertts
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | | | | |
Collapse
|
46
|
Zempleni J, Chew YC, Bao B, Pestinger V, Wijeratne SSK. Repression of transposable elements by histone biotinylation. J Nutr 2009; 139:2389-92. [PMID: 19812216 PMCID: PMC2777482 DOI: 10.3945/jn.109.111856] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Transposable elements constitute >40% of the human genome; transposition of these elements increases genome instability and cancer risk. Epigenetic mechanisms are important for transcriptional repression of retrotransposons, thereby preventing transposition events. Binding of biotin to histones, mediated by holocarboxylase synthetase (HCS), is a novel histone mark that plays a role in gene regulation. Here, we review recent findings that biotinylation of lysine-12 in histone H4 (H4K12bio) is an epigenetic mechanism to repress long terminal repeat (LTR) retrotransposons in human and mouse cell lines, primary cells from human adults, and in Drosophila melanogaster. Further, evidence is summarized that supports a causal relationship between the repression of LTR in H4K12bio-depleted cells and increased production of viral particles, increased frequency of retrotransposition events, and increased frequency of chromosomal abnormalities in mammals and Drosophila. Although HCS interacts physically with histones H3 and H4, the mechanism responsible for targeting HCS to retrotransposons to mediate histone biotinylation is uncertain. We hypothesize that HCS binds specifically to genomic regions rich in methylated cytosines and catalyzes increased biotinylation of histone H4 at lysine-12. Further, we hypothesize that this biotinylation promotes the subsequent dimethylation of lysine-9 in histone H3, resulting in an overall synergistic effect of 3 diet-dependent covalent modifications of histones in the repression of LTR.
Collapse
Affiliation(s)
- Janos Zempleni
- Department of Nutrition and Health Sciences, University of Nebraska at Lincoln, Lincoln, NE 68583, USA.
| | | | | | | | | |
Collapse
|
47
|
Hassan YI, Moriyama H, Olsen LJ, Bi X, Zempleni J. N- and C-terminal domains in human holocarboxylase synthetase participate in substrate recognition. Mol Genet Metab 2009; 96:183-8. [PMID: 19157941 PMCID: PMC2728463 DOI: 10.1016/j.ymgme.2008.12.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2008] [Revised: 12/11/2008] [Accepted: 12/11/2008] [Indexed: 10/21/2022]
Abstract
Holocarboxylase synthetase (HCS) catalyzes the binding of the vitamin biotin to carboxylases and histones. Carboxylases mediate essential steps in macronutrient metabolism. For example, propionyl-CoA carboxylase (PCC) catalyzes the carboxylation of propionyl-CoA in the metabolism of odd-chain fatty acids. HCS comprises four putative domains, i.e., the N-terminus, the biotin transfer/ATP-binding domain, a putative linker domain, and the C-terminus. Both N- and C-termini are essential for biotinylation of carboxylases by HCS, but the exact functions of these two domains in enzyme catalysis are unknown. Here we tested the hypothesis that N- and C-termini play roles in substrate recognition by HCS. Yeast-two-hybrid (Y2H) assays were used to study interactions between the four domains of human HCS with p67, a PCC-based polypeptide and HCS substrate. Both N- and C-termini interacted with p67 in Y2H assays, whereas the biotin transfer/ATP-binding and the linker domains did not interact with p67. The essentiality of N- and C-termini for interactions with carboxylases was confirmed in rescue experiments with mutant Saccharomyces cerevisiae, using constructs of truncated human HCS. Finally, a computational biology approach was used to model the 3D structure of human HCS and identify amino acid residues that interact with p67. In silico predictions were consistent with observations from Y2H assays and yeast rescue experiments, and suggested docking of p67 near Arg508 and Ser515 within the central domain of HCS.
Collapse
Affiliation(s)
- Yousef I Hassan
- Department of Nutrition and Health Sciences, University of Nebraska at Lincoln, 316 Ruth Leverton Hall, Lincoln, NE 68583-0806, USA
| | | | | | | | | |
Collapse
|
48
|
Abstract
Biotin is a water-soluble vitamin and serves as a coenzyme for five carboxylases in humans. Biotin is also covalently attached to distinct lysine residues in histones, affecting chromatin structure and mediating gene regulation. This review describes mammalian biotin metabolism, biotin analysis, markers of biotin status, and biological functions of biotin. Proteins such as holocarboxylase synthetase, biotinidase, and the biotin transporters SMVT and MCT1 play crucial roles in biotin homeostasis, and these roles are reviewed here. Possible effects of inadequate biotin intake, drug interactions, and inborn errors of metabolism are discussed, including putative effects on birth defects.
Collapse
Affiliation(s)
- Janos Zempleni
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, 316 Ruth Leverton Hall, Lincoln, NE 68583-0806, USA.
| | | | | |
Collapse
|
49
|
Hassan YI, Zempleni J. A novel, enigmatic histone modification: biotinylation of histones by holocarboxylase synthetase. Nutr Rev 2008; 66:721-5. [PMID: 19019041 DOI: 10.1111/j.1753-4887.2008.00127.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Affiliation(s)
- Yousef I Hassan
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska 68583-0806, USA
| | | |
Collapse
|