1
|
Goyal A, Chopra V, Garg K, Sharma S. Mechanisms coupling the mTOR pathway to chronic obstructive pulmonary disease (COPD) pathogenesis. Cytokine Growth Factor Rev 2025; 82:55-69. [PMID: 39799015 DOI: 10.1016/j.cytogfr.2024.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/10/2024] [Accepted: 12/26/2024] [Indexed: 01/15/2025]
Abstract
Chronic Obstructive Pulmonary Disease (COPD) is a poorly reversible respiratory disorder distinguished by dyspnea, cough, expectoration and exacerbations due to abnormality of airways or emphysema. In this review, we consider the therapeutic potential of targeting Mammalian target of Rapamycin (mTOR) for treating COPD. The mTOR is a highly conserved serine-threonine protein kinase that integrates signals from growth factors and nutrients to control protein synthesis, lipid biogenesis and metabolism. Dysregulated mTOR pathway signaling due to genetic factors or cigarette smoking impairs autophagy, driving the buildup of abnormal cells and damaged proteins, resulting in inflammation and oxidative stress. Persistent mTOR activation also contributes to pulmonary vascular cell proliferation, facilitating the development of pulmonary resistance in COPD. Rapamycin, an inhibitor of mTOR, prevents the buildup of senescent cells in the lungs of COPD patients and inhibits the release of lung tissue-damaging proteases. mTOR also impacts the corticosteroid sensitivity in COPD patients by regulating the levels of histone deacetylases. The emerging role of gut-lung axis dysbiosis in the progression of COPD and its influence on mTOR further highlights the relevance of the mTOR pathway in COPD pathophysiology.
Collapse
Affiliation(s)
- Ankita Goyal
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, India
| | - Vishal Chopra
- Department of Pulmonary Medicine, Government Medical College, Patiala, India
| | - Kranti Garg
- Department of Pulmonary Medicine, Government Medical College, Patiala, India
| | - Siddharth Sharma
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, India.
| |
Collapse
|
2
|
Na S, Fan Y, Chen H, Li L, Li G, Zhang F, Wang R, Yang Y, Shen Z, Peng Z, Wu Y, Zhu Y, Yang Z, Dong G, Ye Q, Yue J. PPAR α affects hepatic lipid homeostasis by perturbing necroptosis signals in the intestinal epithelium. Acta Pharm Sin B 2024; 14:4858-4873. [PMID: 39664413 PMCID: PMC11628832 DOI: 10.1016/j.apsb.2024.08.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/06/2024] [Accepted: 07/10/2024] [Indexed: 12/13/2024] Open
Abstract
Rapid turnover of the intestinal epithelium is a critical strategy to balance the uptake of nutrients and defend against environmental insults, whereas inappropriate death promotes the spread of inflammation. PPARα is highly expressed in the small intestine and regulates the absorption of dietary lipids. However, as a key mediator of inflammation, the impact of intestinal PPARα signaling on cell death pathways is unknown. Here, we show that Pparα deficiency of intestinal epithelium up-regulates necroptosis signals, disrupts the gut vascular barrier, and promotes LPS translocation into the liver. Intestinal Pparα deficiency drives age-related hepatic steatosis and aggravates hepatic fibrosis induced by a high-fat plus high-sucrose diet (HFHS). PPARα levels correlate with TRIM38 and MLKL in the human ileum. Inhibition of PPARα up-regulates necroptosis signals in the intestinal organoids triggered by TNF-α and LPS stimuli via TRIM38/TRIF and CREB3L3/MLKL pathways. Butyric acid ameliorates hepatic steatosis induced by intestinal Pparα deficiency through the inhibition of necroptosis. Our data suggest that intestinal PPARα is essential for the maintenance of microenvironmental homeostasis and the spread of inflammation via the gut-liver axis.
Collapse
Affiliation(s)
- Shufang Na
- Department of Pharmacology, Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan 430071, China
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Provincial Clinical Research Center for Natural Polymer Biological Liver, Wuhan 430071, China
| | - Yanjie Fan
- Department of Pharmacology, Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan 430071, China
| | - HongLei Chen
- Department of Pathology, Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan 430071, China
| | - Ling Li
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Provincial Clinical Research Center for Natural Polymer Biological Liver, Wuhan 430071, China
| | - Guolin Li
- Center for Biomedical Aging, National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Furong Zhang
- Department of Pharmacology, Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan 430071, China
| | - Rongyan Wang
- Department of Pharmacology, Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan 430071, China
| | - Yafei Yang
- Department of Pharmacology, Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan 430071, China
| | - Zixia Shen
- Department of Pharmacology, Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan 430071, China
| | - Zhuang Peng
- Department of Pharmacology, Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan 430071, China
| | - Yafei Wu
- Department of Pharmacology, Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan 430071, China
| | - Yong Zhu
- Department of Pharmacology, Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan 430071, China
| | - Zheqiong Yang
- Department of Pharmacology, Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan 430071, China
| | - Guicheng Dong
- College of Life Science, Inner Mongolia Agricultural University, Hohhot 010011, China
| | - Qifa Ye
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Provincial Clinical Research Center for Natural Polymer Biological Liver, Wuhan 430071, China
| | - Jiang Yue
- Department of Pharmacology, Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan 430071, China
- Hubei Province Key Laboratory of Allergy and Immunology, Wuhan 430060, China
| |
Collapse
|
3
|
Dogani M, Askari N, Hesari AK. A diet enriched with Pistacia atlantica fruits improves the female rats' reproductive system. J Tradit Complement Med 2024; 14:335-342. [PMID: 38707920 PMCID: PMC11068987 DOI: 10.1016/j.jtcme.2023.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 09/09/2023] [Accepted: 09/30/2023] [Indexed: 05/07/2024] Open
Abstract
Background and aim Baneh (Pistacia atlantica) is a plant species that is commonly consumed as food and has a long-standing traditional use as a sexual enhancer. Despite its widespread use, a limited amount of academic and scientific literature is available regarding its potential impact on the reproductive system. The present research aimed to study the effect of a diet enriched with Baneh on the female rats' reproductive system. Experimental procedure Three groups of rats (n = 8) were subjected to the intended diet for six weeks. Subsequently, their histomorphometric parameters, sex hormone levels, as well as the expression of oxytocin (OXT) and oxytocin receptor (OXTR) genes were measured. The rats' serum vitamin D, zinc, and lipid profiles were also evaluated. Results and conclusion Results revealed that compared to the normal food, the diet containing 20 % Baneh significantly increased the progesterone and estradiol levels three and two times, respectively. It decreased the total body weight while increasing the ratio of ovary weight to the body weight. Furthermore, the Baneh-enriched diet raised HDL, zinc, and vitamin D levels, though it reduced the LDL and TG levels by 15 μg/dl and 24 μg/dl, respectively, and the concentration of ovary malondialdehyde decreased by 50 % in the treated group. Also, the diet increased the follicle graph, corpus luteum, the thickness of the epithelium, the number of endometrial glands, and the expression of both OXT and OXTR genes. Our findings suggested that P. atlantica could considerably improve the female sex hormone levels and their reproductive system.
Collapse
Affiliation(s)
- Manijeh Dogani
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Nayere Askari
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
- Immunoregulation Research Center, Shahed University, Tehran, Iran
| | - Ali Kalantari Hesari
- Department of Pathobiology, Faculty of Veterinary Science, Bu-Ali Sina University, Hamedan, Iran
| |
Collapse
|
4
|
Buey B, Forcén A, Grasa L, Layunta E, Mesonero JE, Latorre E. Gut Microbiota-Derived Short-Chain Fatty Acids: Novel Regulators of Intestinal Serotonin Transporter. Life (Basel) 2023; 13:life13051085. [PMID: 37240731 DOI: 10.3390/life13051085] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/28/2023] [Accepted: 04/20/2023] [Indexed: 05/28/2023] Open
Abstract
Serotonin (5-HT) is a key neurotransmitter synthesized both in the gut and the central nervous system. It exerts its signaling through specific receptors (5-HTR), which regulate numerous behaviors and functions such as mood, cognitive function, platelet aggregation, gastrointestinal motility, and inflammation. Serotonin activity is determined mainly by the extracellular availability of 5-HT, which is controlled by the serotonin transporter (SERT). Recent studies indicate that, by activation of innate immunity receptors, gut microbiota can modulate serotonergic signaling by SERT modulation. As part of its function, gut microbiota metabolize nutrients from diet to produce different by-products, including short-chain fatty acids (SCFAs): propionate, acetate, and butyrate. However, it is not known whether these SCFAs regulate the serotonergic system. The objective of this study was to analyze the effect of SCFAs on the gastrointestinal serotonergic system using the Caco-2/TC7 cell line that expresses SERT and several receptors constitutively. Cells were treated with different SCFAs concentrations, and SERT function and expression were evaluated. In addition, the expression of 5-HT receptors 1A, 2A, 2B, 3A, 4, and 7 was also studied. Our results show that the microbiota-derived SCFAs regulate intestinal serotonergic system, both individually and in combination, modulating the function and expression of SERT and the 5-HT1A, 5-HT2B, and 5-HT7 receptors expression. Our data highlight the role of gut microbiota in the modulation of intestinal homeostasis and suggest microbiome modulation as a potential therapeutic treatment for intestinal pathologies and neuropsychiatric disorders involving serotonin.
Collapse
Affiliation(s)
- Berta Buey
- Departamento de Farmacología, Fisiología y Medicina Legal y Forense, Facultad de Veterinaria, Universidad de Zaragoza, 50013 Zaragoza, Spain
| | - Ana Forcén
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Laura Grasa
- Departamento de Farmacología, Fisiología y Medicina Legal y Forense, Facultad de Veterinaria, Universidad de Zaragoza, 50013 Zaragoza, Spain
- Instituto de Investigación Sanitaria de Aragón (IIS Aragón), 50009 Zaragoza, Spain
- Instituto Agroalimentario de Aragón-IA2, Universidad de Zaragoza-CITA, 50013 Zaragoza, Spain
| | - Elena Layunta
- Instituto de Investigación Sanitaria de Aragón (IIS Aragón), 50009 Zaragoza, Spain
| | - Jose Emilio Mesonero
- Departamento de Farmacología, Fisiología y Medicina Legal y Forense, Facultad de Veterinaria, Universidad de Zaragoza, 50013 Zaragoza, Spain
- Instituto de Investigación Sanitaria de Aragón (IIS Aragón), 50009 Zaragoza, Spain
- Instituto Agroalimentario de Aragón-IA2, Universidad de Zaragoza-CITA, 50013 Zaragoza, Spain
| | - Eva Latorre
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, 50009 Zaragoza, Spain
- Instituto de Investigación Sanitaria de Aragón (IIS Aragón), 50009 Zaragoza, Spain
- Instituto Agroalimentario de Aragón-IA2, Universidad de Zaragoza-CITA, 50013 Zaragoza, Spain
| |
Collapse
|
5
|
Rahman MS, Lee Y, Park DS, Kim YS. Bifidobacterium bifidum DS0908 and Bifidobacterium longum DS0950 Culture-Supernatants Ameliorate Obesity-Related Characteristics in Mice with High-Fat Diet-Induced Obesity. J Microbiol Biotechnol 2023; 33:96-105. [PMID: 36457182 PMCID: PMC9899789 DOI: 10.4014/jmb.2210.10046] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/11/2022] [Accepted: 11/14/2022] [Indexed: 12/05/2022]
Abstract
Probiotic supplements have promising therapeutic effects on chronic diseases. In this study, we demonstrated the anti-obesity effects of two potential probiotics, Bifidobacterium bifidum DS0908 (DS0908) and Bifidobacterium longum DS0950 (DS0950). Treatment with DS0908 and DS0950 postbiotics significantly induced the expression of the brown adipocyte-specific markers UCP1, PPARγ, PGC1α, PRDM16 and beige adipocyte-specific markers CD137, FGF21, P2RX5, and COX2 in C3H10T1/2 mesenchymal stem cells (MSCs). In mice with high-fat diet (HFD)-induced obesity, both potential probiotics and postbiotics noticeably reduced body weight and epididymal fat accumulation without affecting food intake. DS0908 and DS0950 also improved insulin sensitivity and glucose use in mice with HFD-induced obesity. In addition, DS0908 and DS0950 improved the plasma lipid profile, proved by reduced triglyceride, low-density lipoprotein, and cholesterol levels. Furthermore, DS0908 and DS0950 improved mitochondrial respiratory function, confirmed by the high expression of oxidative phosphorylation proteins, during thermogenesis induction in the visceral and epididymal fat in mice with HFD-induced obesity. Notably, the physiological and metabolic changes were more significant after treatment with potential probiotic culture-supernatants than those with the bacterial pellet. Finally, gene knockdown and co-treatment with inhibitor-mediated mechanistic analyses showed that both DS0908 and DS0950 exerted anti-obesity-related effects via the PKA/p38 MAPK signaling activation in C3H10T1/2 MSCs. Our observations suggest that DS0908 and DS0950 could potentially alleviate obesity as dietary supplements.
Collapse
Affiliation(s)
- M. Shamim Rahman
- Institute of Tissue Regeneration, College of Medicine, Soonchunhyang University, Cheonan 31151, Republic of Korea,Department of Microbiology, College of Medicine, Soonchunhyang University, Cheonan 31151, Republic of Korea
| | - Youri Lee
- Institute of Tissue Regeneration, College of Medicine, Soonchunhyang University, Cheonan 31151, Republic of Korea,Department of Microbiology, College of Medicine, Soonchunhyang University, Cheonan 31151, Republic of Korea
| | - Doo-Sang Park
- Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup 56212, Republic of Korea
| | - Yong-Sik Kim
- Institute of Tissue Regeneration, College of Medicine, Soonchunhyang University, Cheonan 31151, Republic of Korea,Department of Microbiology, College of Medicine, Soonchunhyang University, Cheonan 31151, Republic of Korea,Corresponding author Phone: +82-41-570-2413 Fax: +82-41-575-2412 E-mail:
| |
Collapse
|
6
|
Molecular Landscape of Tourette's Disorder. Int J Mol Sci 2023; 24:ijms24021428. [PMID: 36674940 PMCID: PMC9865021 DOI: 10.3390/ijms24021428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/29/2022] [Accepted: 01/01/2023] [Indexed: 01/12/2023] Open
Abstract
Tourette's disorder (TD) is a highly heritable childhood-onset neurodevelopmental disorder and is caused by a complex interplay of multiple genetic and environmental factors. Yet, the molecular mechanisms underlying the disorder remain largely elusive. In this study, we used the available omics data to compile a list of TD candidate genes, and we subsequently conducted tissue/cell type specificity and functional enrichment analyses of this list. Using genomic data, we also investigated genetic sharing between TD and blood and cerebrospinal fluid (CSF) metabolite levels. Lastly, we built a molecular landscape of TD through integrating the results from these analyses with an extensive literature search to identify the interactions between the TD candidate genes/proteins and metabolites. We found evidence for an enriched expression of the TD candidate genes in four brain regions and the pituitary. The functional enrichment analyses implicated two pathways ('cAMP-mediated signaling' and 'Endocannabinoid Neuronal Synapse Pathway') and multiple biological functions related to brain development and synaptic transmission in TD etiology. Furthermore, we found genetic sharing between TD and the blood and CSF levels of 39 metabolites. The landscape of TD not only provides insights into the (altered) molecular processes that underlie the disease but, through the identification of potential drug targets (such as FLT3, NAALAD2, CX3CL1-CX3CR1, OPRM1, and HRH2), it also yields clues for developing novel TD treatments.
Collapse
|
7
|
Hou X, Rong C, Zhang Q, Song S, Cong Y, Zhang HT. Cyclic Nucleotide Phosphodiesterases in Alcohol Use Disorders: Involving Gut Microbiota. Int J Neuropsychopharmacol 2022; 26:70-79. [PMID: 36087271 PMCID: PMC9850663 DOI: 10.1093/ijnp/pyac060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 08/18/2022] [Accepted: 09/09/2022] [Indexed: 01/22/2023] Open
Abstract
Alcohol abuse is 1 of the most significant public health problems in the world. Chronic, excessive alcohol consumption not only causes alcohol use disorder (AUD) but also changes the gut and lung microbiota, including bacterial and nonbacterial types. Both types of microbiota can release toxins, further damaging the gastrointestinal and respiratory tracts; causing inflammation; and impairing the functions of the liver, lung, and brain, which in turn deteriorate AUD. Phosphodiesterases (PDEs) are critical in the control of intracellular cyclic nucleotides, including cyclic adenosine monophosphate and cyclic guanosine monophosphate. Inhibition of certain host PDEs reduces alcohol consumption and attenuates alcohol-related impairment. These PDEs are also expressed in the microbiota and may play a role in controlling microbiota-associated inflammation. Here, we summarize the influences of alcohol on gut/lung bacterial and nonbacterial microbiota as well as on the gut-liver/brain/lung axis. We then discuss the relationship between gut and lung microbiota-mediated PDE signaling and AUD consequences in addition to highlighting PDEs as potential targets for treatment of AUD.
Collapse
Affiliation(s)
- Xueqin Hou
- Correspondence: Xueqin Hou, PhD, Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong 271016, P.R. China ()
| | | | - Qiwei Zhang
- Institute of Pharmacology, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, Shandong 271016, P.R. China
| | - Shuangshuang Song
- Institute of Pharmacology, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, Shandong 271016, P.R. China
| | - Yifan Cong
- Institute of Pharmacology, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, Shandong 271016, P.R. China
| | - Han-Ting Zhang
- Han-Ting Zhang, MD, PhD, Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao, Shandong 266073, P.R. China ()
| |
Collapse
|
8
|
Beigrezaei S, Salehi-Abargouei A. Comment on 'Effects of pistachios on anthropometric indices, inflammatory markers, endothelial function and blood pressure in adults: a systematic review and meta-analysis of randomised controlled trials'. Br J Nutr 2022; 128:780-781. [PMID: 34556202 DOI: 10.1017/s0007114521003846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Sara Beigrezaei
- Nutrition and Food Security Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Department of Nutrition, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Amin Salehi-Abargouei
- Nutrition and Food Security Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Department of Nutrition, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
9
|
Tian M, Li L, Tian Z, Zhao H, Chen F, Guan W, Zhang S. Glyceryl butyrate attenuates enterotoxigenic Escherichia coli-induced intestinal inflammation in piglets by inhibiting the NF-κB/MAPK pathways and modulating the gut microbiota. Food Funct 2022; 13:6282-6292. [PMID: 35607985 DOI: 10.1039/d2fo01056a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The aims of this study were to evaluate whether a diet supplemented with glyceryl butyrate could attenuate the immune-inflammatory response in piglets challenged with enterotoxigenic Escherichia coli (ETEC), and to explore the mechanisms of its regulation. Eighteen weaning piglets were assigned to three diets: basal diet (CON), antibiotics diet (ATB), and 0.5% glyceryl butyrate diet (GB group). Significantly lower concentrations of IL-1β, IL-6 and TNF-α in the jejunum and IL-6 in the ileum were observed in the GB group than that in the CON group (P < 0.05). Moreover, a decreasing trend of IL-1β (P = 0.075) and TNF-α (P = 0.070) was observed in the ileum in the GB group. Correspondingly, the GB group had significantly increased mRNA expression of porcine beta defensins (pBDs) in the jejunum (pBD1, pBD2, pBD114 and pBD129) and ileum (pBD2, pBD3, pBD114 and pBD129) (P < 0.05), and protein abundance of Claudin 1, Occludin, and ZO-1 in the jejunum and ileum (P < 0.05). Further research results showed that the improvement of beta defensins and tight junctions in the GB group was related to the decreased phosphorylation of the NFκB/MAPK pathway. In addition, the results of 16S rDNA sequencing showed that glycerol butyrate supplementation altered the ileal microbiota composition of piglets, increasing the relative abundance of Lactobacillus reuteri, Lactobacillus salivarius, and Lactobacillus agrilis. In summary, glyceryl butyrate attenuated the immune-inflammatory response in piglets challenged with ETEC by inhibiting the NF-κB/MAPK pathways and modulating the gut microbiota, and thus improved piglet intestinal health.
Collapse
Affiliation(s)
- Min Tian
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China.
| | - Lilang Li
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China.
| | - Zhezhe Tian
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China.
| | - Hao Zhao
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China.
| | - Fang Chen
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China. .,College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China
| | - Wutai Guan
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China. .,College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China
| | - Shihai Zhang
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China. .,College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
10
|
Kohoutek J, Maráček M, Ng K, Hamrik Z. Test-retest reliability of selected HBSC items in Vietnam: well-being, physical and sedentary activities, and eating behaviours. BMC Med Res Methodol 2022; 22:135. [PMID: 35549896 PMCID: PMC9097099 DOI: 10.1186/s12874-022-01624-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 05/04/2022] [Indexed: 11/17/2022] Open
Abstract
Background Valid and reliable research tools to assess children’s and adolescent’s health-related behaviour are highly needed across the globe. Rapid economic development, globalization, and associated lifestyle challenges observed in most countries support the need for high-quality evidence in adolescents to target health-promoting policies and interventions. This study aims to examine the test–retest reliability of selected well-being, physical and screen-time related siting activities, and eating behaviour items of the Health Behaviour in School-Aged Children (HBSC) questionnaire in a sample of Vietnamese adolescents. Methods Data were collected in autumn 2018 in Vietnam (3-week interval). The sample consisted of 410 adolescents (41.0% of boys; mean age = 12.61; SD = 1.24).Test–retest reliability was evaluated using the single measure Intraclass Correlation Coefficients (ICC) and Cohen’s kappa statistic stratified by sex, grade and place of residence (urban or rural). Results The reliability analyses of the well-being items were poor to good ICC values (0.43–0.79) and moderate to large Cohen’s kappa values (0.33–0.77). The physical activity and eating behaviour items were moderate (ICC = 0.54–0.65; Cohen’s kappa = 0.38–0.57). The screen-time related siting activities items were moderate to large (ICC = 0.51–0.72; Cohen’s kappa = 0.42–0.53). There was more item stability among females than males. The social media item was not as stable for 6th graders (ICC = 0.45) compared with older adolescents (ICC 0.68–0.77). Conclusions The findings show that with regards to age, sex and place of residence, self-reported health, life satisfaction, physical and screen-time related siting activities, as well as eating behaviour items of the HBSC questionnaire have a sufficient test–retest reliability to be used in national self-report surveys for Vietnamese adolescents while health complaints items showed borderline reliability.
Collapse
Affiliation(s)
- Jaroslav Kohoutek
- Department of Recreation and Leisure Studies, Faculty of Physical Culture, Palacký University Olomouc, 77147, Olomouc, Czech Republic.
| | - Marek Maráček
- Department of Recreation and Leisure Studies, Faculty of Physical Culture, Palacký University Olomouc, 77147, Olomouc, Czech Republic
| | - Kwok Ng
- Physical Activity for Health Research Cluster, Department of Physical Education and Sport Sciences, University of Limerick, Limerick, V94 T9PX, Ireland.,School of Educational Sciences and Psychology, University of Eastern Finland, Joensuu, 80101, Finland
| | - Zdenek Hamrik
- Department of Recreation and Leisure Studies, Faculty of Physical Culture, Palacký University Olomouc, 77147, Olomouc, Czech Republic
| |
Collapse
|
11
|
The microbiota-gut-kidney axis mediates host osmoregulation in a small desert mammal. NPJ Biofilms Microbiomes 2022; 8:16. [PMID: 35379849 PMCID: PMC8980004 DOI: 10.1038/s41522-022-00280-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 02/21/2022] [Indexed: 12/17/2022] Open
Abstract
Regulating sodium and water balances is crucial for survival of small, desert mammals. Studies demonstrate that the gut microbiota and their metabolites are involved in host energy homeostasis, but little is known on the interactions among salt loading, gut microbiota, and osmoregulation. The aim of this study was to fill this gap. Mongolian gerbils (Meriones unguiculatus) were offered drinking water (Con) and either water containing moderate (4%, MS) or high NaCl (8%, HS) ad libitum. Intake of HS reduced α diversity of the microbial community and, at the genus level, reduced the relative abundances of Rikenella and Christensenella but increased Atopobium. To confirm the function of gut microbiota in host osmoregulation, we transplanted caecal microbiota in HS gerbils. To cope with salt loading, the gerbils concentrated urine, resulting in negative energy balance and systemic inflammation. The HS gerbils increased hypothalamic arginine vasopressin and intestinal and renal aquaporin 2 to support water retention, and reduced intestinal and renal epithelial sodium channel α to promote sodium excretion. However, HS gerbils with caecal microbiota transplant (CMT) from Con donors maintained energy balance and osmoregulation, and had a much reduced systemic inflammation. Further, CMT from Con donors to HS recipients reshaped the gut microbiota, particularly by reducing Parabacteroides distasonis and Prevotella copri, and increasing Lactobacillus reuteri abundances, with a resulting increase in bacterial metabolites such as butyrate. These findings highlight a vital role of the microbiota-gut-kidney axis in mediating salt-related osmoregulation, allowing small mammals to adapt to high salt loads in a desert habitat.
Collapse
|
12
|
Song L, He M, Sun Q, Wang Y, Zhang J, Fang Y, Liu S, Duan L. Roseburia hominis Increases Intestinal Melatonin Level by Activating p-CREB-AANAT Pathway. Nutrients 2021; 14:nu14010117. [PMID: 35010992 PMCID: PMC8746519 DOI: 10.3390/nu14010117] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/23/2021] [Accepted: 12/24/2021] [Indexed: 02/06/2023] Open
Abstract
Intestinal melatonin exerts diverse biological effects on the body. Our previous research showed that the abundance of the butyrate-producing bacteria, Roseburia, is positively related to the expression of colonic mucosal melatonin. However, the detailed relationship is unclear. Therefore, we aimed to explore whether Roseburia regulates intestinal melatonin and its underlying mechanisms. Male Sprague–Dawley germfree rats were orally administered with or without Roseburia hominis. R. hominis treatment significantly increased the intestinal melatonin level. The concentrations of propionate and butyrate in the intestinal contents were significantly elevated after gavage of R. hominis. Propionate or butyrate treatment increased melatonin, 5-hydroxytryptamine (5-HT), arylalkylamine N-acetyltransferase (AANAT), and phosphorylated cAMP-response element-binding protein (p-CREB) levels. When pretreated with telotristat ethyl, the inhibitor of tryptophan hydroxylase (TPH), or siRNA of Aanat, or 666-15, i.e., an inhibitor of CREB, propionate, or butyrate, could not promote melatonin production in the pheochromocytoma cell line BON-1. Metabolomics analysis showed that propionate and butyrate stimulation regulated levels of some metabolites and some metabolic pathways in BON-1 cell supernatants. In conclusion, propionate and butyrate, i.e., metabolites of R. hominis, can promote intestinal melatonin synthesis by increasing 5-HT levels and promoting p-CREB-mediated Aanat transcription, thereby offering a potential target for ameliorating intestinal diseases.
Collapse
Affiliation(s)
- Lijin Song
- Department of Gastroenterology, Peking University Third Hospital, Beijing 100191, China; (L.S.); (Q.S.); (J.Z.); (Y.F.)
| | - Meibo He
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China;
| | - Qinghua Sun
- Department of Gastroenterology, Peking University Third Hospital, Beijing 100191, China; (L.S.); (Q.S.); (J.Z.); (Y.F.)
| | - Yujing Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (Y.W.); (S.L.)
| | - Jindong Zhang
- Department of Gastroenterology, Peking University Third Hospital, Beijing 100191, China; (L.S.); (Q.S.); (J.Z.); (Y.F.)
| | - Yuan Fang
- Department of Gastroenterology, Peking University Third Hospital, Beijing 100191, China; (L.S.); (Q.S.); (J.Z.); (Y.F.)
| | - Shuangjiang Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (Y.W.); (S.L.)
| | - Liping Duan
- Department of Gastroenterology, Peking University Third Hospital, Beijing 100191, China; (L.S.); (Q.S.); (J.Z.); (Y.F.)
- Correspondence: ; Tel.: +86-10-82806003
| |
Collapse
|
13
|
Dogani M, Askari N, Kalantari-Hesari A, Hosseini Rahbar F. The effects of P. atlantica as a libido booster and sexual enhancer on the reproductive system of male rats. J Tradit Complement Med 2021; 12:345-353. [PMID: 35747351 PMCID: PMC9209825 DOI: 10.1016/j.jtcme.2021.09.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 09/21/2021] [Accepted: 09/24/2021] [Indexed: 11/18/2022] Open
Abstract
Background and aim Experimental procedure Results and conclusion Fertility and infertility are among the most complex issues in medical sciences. Baneh (wild pistachio) traditionally is known as a sexual enhancer. It enhances testosterone and oxytocin level in favour of increasing sperm counts. Baneh improves lipid metabolism and increases the serum level of Zinc and vitamin D.
Collapse
Affiliation(s)
- Manijeh Dogani
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, I.R, Iran
| | - Nayere Askari
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, I.R, Iran
- Immunoregulation Research Center, Shahed University, Tehran, I.R, Iran
- Corresponding author. Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, 76135, Iran.
| | - Ali Kalantari-Hesari
- Department of Pathobiology, Faculty of Veterinary Science, Bu-Ali Sina University, Hamedan, Iran
| | - Fatemeh Hosseini Rahbar
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, I.R, Iran
| |
Collapse
|
14
|
Phillips-Farfán B, Gómez-Chávez F, Medina-Torres EA, Vargas-Villavicencio JA, Carvajal-Aguilera K, Camacho L. Microbiota Signals during the Neonatal Period Forge Life-Long Immune Responses. Int J Mol Sci 2021; 22:ijms22158162. [PMID: 34360926 PMCID: PMC8348731 DOI: 10.3390/ijms22158162] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/01/2021] [Accepted: 07/02/2021] [Indexed: 12/27/2022] Open
Abstract
The microbiota regulates immunological development during early human life, with long-term effects on health and disease. Microbial products include short-chain fatty acids (SCFAs), formyl peptides (FPs), polysaccharide A (PSA), polyamines (PAs), sphingolipids (SLPs) and aryl hydrocarbon receptor (AhR) ligands. Anti-inflammatory SCFAs are produced by Actinobacteria, Bacteroidetes, Firmicutes, Spirochaetes and Verrucomicrobia by undigested-carbohydrate fermentation. Thus, fiber amount and type determine their occurrence. FPs bind receptors from the pattern recognition family, those from commensal bacteria induce a different response than those from pathogens. PSA is a capsular polysaccharide from B. fragilis stimulating immunoregulatory protein expression, promoting IL-2, STAT1 and STAT4 gene expression, affecting cytokine production and response modulation. PAs interact with neonatal immunity, contribute to gut maturation, modulate the gut–brain axis and regulate host immunity. SLPs are composed of a sphingoid attached to a fatty acid. Prokaryotic SLPs are mostly found in anaerobes. SLPs are involved in proliferation, apoptosis and immune regulation as signaling molecules. The AhR is a transcription factor regulating development, reproduction and metabolism. AhR binds many ligands due to its promiscuous binding site. It participates in immune tolerance, involving lymphocytes and antigen-presenting cells during early development in exposed humans.
Collapse
Affiliation(s)
- Bryan Phillips-Farfán
- Laboratorio de Nutrición Experimental, Instituto Nacional de Pediatría, México City 04530, Mexico; (B.P.-F.); (K.C.-A.)
| | - Fernando Gómez-Chávez
- Laboratorio de Inmunología Experimental, Instituto Nacional de Pediatría, México City 04530, Mexico; (F.G.-C.); (J.A.V.-V.)
- Cátedras CONACyT-Instituto Nacional de Pediatría, México City 04530, Mexico
- Departamento de Formación Básica Disciplinaria, Escuela Nacional de Medicina y Homeopatía del Instituto Politécnico Nacional, Mexico City 07320, Mexico
| | | | | | - Karla Carvajal-Aguilera
- Laboratorio de Nutrición Experimental, Instituto Nacional de Pediatría, México City 04530, Mexico; (B.P.-F.); (K.C.-A.)
| | - Luz Camacho
- Laboratorio de Nutrición Experimental, Instituto Nacional de Pediatría, México City 04530, Mexico; (B.P.-F.); (K.C.-A.)
- Correspondence:
| |
Collapse
|
15
|
Zhang Q, Koser SL, Donkin SS. Identification of promoter response elements that mediate propionate induction of bovine cytosolic phosphoenolpyruvate carboxykinase (PCK1) gene transcription. J Dairy Sci 2021; 104:7252-7261. [PMID: 33741163 DOI: 10.3168/jds.2020-18993] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 12/08/2020] [Indexed: 11/19/2022]
Abstract
Cytosolic phosphoenolpyruvate carboxykinase (PCK1) is a key enzyme for gluconeogenesis that is positively regulated by propionate in bovines at the transcription level. The specific elements that determine propionate responsiveness within the bovine PCK1 promoter are unknown. In silico promoter analysis of the bovine PCK1 gene revealed several clusters of transcription factor binding sites. In the present study, we determined the essentiality of the putative cyclic AMP response element (CRE) at -94 through -87 bp and the 2 putative hepatic nuclear factor 4α (HNF4α) binding elements at +68 through +72 and -1,078 through -1,074, respectively, in mediating bovine PCK1 promoter responses to propionate and other regulators, including butyrate, cyclic AMP (cAMP), and glucocorticoids. The wild-type bovine PCK1 promoter [PCK1(WT)] was ligated to a luciferase reporter gene and transfected into rat hepatoma (H4IIE) cells. Activities of PCK1(WT) were induced by approximately 2-, 2-, 4-, 8-, 9-, 18-, and 16-fold respectively when exposed to cAMP (as 1.0 mM 8-Br-cAMP), 5.0 μM dexamethasone, cAMP + dexamethasone, 2.5 mM propionate, cAMP + propionate, cAMP + dexamethasone + propionate, and 2.5 mM butyrate. Seven mutants lacking either one single site, 2 of the 3 sites, or all 3 sites, generated by site-directed mutagenesis, were tested. Responses to propionate and all other treatments were completely abolished when CRE at -94 through -87 bp and HNF4α at +68 through +72 bp were both deleted. Our data indicate that these 2 regulatory elements act synergistically to mediate the bovine PCK1 promoter responses to propionate as well as butyrate, cAMP, and dexamethasone. The activation of PCK1 through these regulatory elements serves to activate the metabolic potential of bovine toward gluconeogenesis when the primary substrate for gluconeogenesis, propionate, is also present.
Collapse
Affiliation(s)
- Q Zhang
- Adisseo Life Science Co. Ltd., Shanghai 201204, PR China
| | - S L Koser
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907
| | - S S Donkin
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907.
| |
Collapse
|
16
|
Qin D, Zheng Q, Zhang P, Lin S, Huang S, Cheng D, Zhang Z. Azadirachtin directly or indirectly affects the abundance of intestinal flora of Spodoptera litura and the energy conversion of intestinal contents mediates the energy balance of intestine-brain axis, and along with decreased expression CREB in the brain neurons. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2021; 173:104778. [PMID: 33771257 DOI: 10.1016/j.pestbp.2021.104778] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/07/2021] [Accepted: 01/11/2021] [Indexed: 06/12/2023]
Abstract
Azadirachtin is a good growth inhibitor for Lepidopteran larvae, but its effect on the brain neurons, intestinal flora and intestinal contents caused by the growth inhibition mechanism has not been reported yet. This study explored the mechanism of azadirachtin on the growth and development of Spodoptera litura larvae and brain neurons through three aspects: intestinal pathology observation, intestinal flora sequencing, and intestinal content analysis. The results showed that the treatment of azadirachtin led to the pathological changes in the structure of the midgut and the goblet cells in the intestinal wall cells to undergo apoptosis. Changes in the host environment of the intestinal flora lead to changes in the abundance value of the intestinal flora, showing an increase in the abundance value of harmful bacteria such as Sphingomonas and Enterococcus, as well as an increase in the abundance value of excellent flora such as Lactobacillus and Bifidobacterium. Changes in the abundance of intestinal flora will result in changes in intestinal contents and metabolites. The test results show that after azadirachtin treatment, the alkane compounds in the intestinal contents of the larvae are greatly reduced, and the number of the long carbon chain and multi-branched hydrocarbon compounds is increased, unsaturated fatty acids, silicon‑oxygen compounds and ethers. The production of similar substances indicates that azadirachtin has an inhibitory effect on digestive enzymes in the intestines, which results in the inhibition of substance absorption and energy transmission, and ultimately the inhibition of larval growth and brain neurons.
Collapse
Affiliation(s)
- Deqiang Qin
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China
| | - Qun Zheng
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China
| | - Peiwen Zhang
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China
| | - Sukun Lin
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China
| | - Suqing Huang
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou 510642, China
| | - Dongmei Cheng
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou 510642, China.
| | - Zhixiang Zhang
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
17
|
Dietary supplementation with a microencapsulated blend of organic acids and botanicals alters the kinome in the ileum and jejunum of Gallus gallus. PLoS One 2020; 15:e0236950. [PMID: 32730335 PMCID: PMC7392328 DOI: 10.1371/journal.pone.0236950] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 07/16/2020] [Indexed: 12/30/2022] Open
Abstract
The use of natural products as feed additives in the poultry industry is increasing; however, most studies focus on performance and growth with little regard for determining mechanism. Our laboratory designed a chicken (Gallus gallus)-specific immunometabolic kinome peptide array. Using this tool to examine the active enzymes responsible for phosphorylation events (kinases) provides important information on host and cellular functions. The objective of this project was to determine if feeding a microencapsulated product comprised of a blend of organic acids and botanicals (AviPlus®P) impacts the intestinal kinome of broiler chickens (Gallus gallus). Day-of-hatch chicks were provided 0 or 500g/MT of the additive and jejunal and ileal segments collected for kinome analysis to determine the mode-of-action of the additive. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis was performed by uploading the statistically significant peptides to the Search Tool for the Retrieval of Interacting Genes database. As a whole, GO and KEGG analysis showed similar activities in the ileum and jejunum. However, there were a small number of KEGG pathways that were only activated in either the ileum or jejunum, but not both. Analysis of the adipocytokine and PI3K-AKT signaling pathways showed differences between ileal and jejunal activity that were controlled, in part, by AKT3. Additionally, cytokine/chemokine evaluation showed the ileum had higher IL1β, IL6, IL10, TNFα, IFNγ, CXCL8, and CCL4 mRNA expression levels (P<0.05). As a whole, the data showed the addition of microencapsulated organic acids and botanicals to a broiler diet activated many of the same signaling pathways in the ileum and jejunum; however, distinctions were observed. Taken together, the findings of this study begin to define the mode-of-action that microencapsulated organic acids and botanicals have on two important intestinal segments responsible for nutrient digestion and absorption in chickens.
Collapse
|
18
|
Chen T, Chen D, Tian G, Zheng P, Mao X, Yu J, He J, Huang Z, Luo Y, Luo J, Yu B. Effects of soluble and insoluble dietary fiber supplementation on growth performance, nutrient digestibility, intestinal microbe and barrier function in weaning piglet. Anim Feed Sci Technol 2020. [DOI: 10.1016/j.anifeedsci.2019.114335] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
19
|
Baaske L, Masur F, Dengler F, Rackwitz R, Kaiser B, Pfannkuche H, Gäbel G. Possible influence of free fatty acid receptors on pH regulation in the ruminal epithelium of sheep. J Anim Physiol Anim Nutr (Berl) 2020; 104:776-789. [PMID: 31985122 DOI: 10.1111/jpn.13308] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 11/07/2019] [Accepted: 12/11/2019] [Indexed: 12/14/2022]
Abstract
High amounts of short-chain fatty acids (SCFAs) occur in the ovine rumen and constitute the animal's main energy source. However, they lead to an acidification of the ruminal epithelium. Therefore, effective intracellular pH (pHi ) regulation by transport proteins like monocarboxylate transporter 1 (MCT1) and Na+ /H+ exchangers (NHEs) is pivotal to ruminants to avoid epithelial damage. SCFAs might function not only as nutrients but also as signalling molecules by activating free fatty acid receptors (FFARs) in the ruminal epithelium and thus influence pHi regulation. FFARs work as nutrient sensors, transducing their information by modulating cyclic adenosine monophosphate (cAMP) levels. We hypothesized that (FFAR-modulated) decreases in cAMP levels stimulate the activity of MCT1 and NHEs in the ruminal epithelium of sheep. We detected two FFARs (GPR109A and FFAR2) immunohistochemically in the ovine ruminal epithelium. Administration of 10 mM butyrate to Ussing chamber-mounted epithelia provoked a significant reduction in intraepithelial cAMP levels. However, application of the GPR109A agonist niacin did not affect cAMP levels. MCT1 activity was analysed by measuring transepithelial 14 C-acetate fluxes, which were not inhibited by forskolin-induced increased cAMP levels. The recovery of pHi after acidification was assessed as an indicator of NHE activity in primary cultured ruminal epithelial cells. Recovery was significantly reduced when cells with increased cAMP levels were subjected to the NHE inhibitor 5-(N-ethyl-N-isopropyl)-amiloride (10 µM). Nonetheless, with augmented cAMP levels alone, NHE activity tended to decline. We hypothesize that modulation of cAMP levels by butyrate is accomplished by FFAR2 activation, regulating NHE activity for pHi homoeostasis at least in part.
Collapse
Affiliation(s)
- Lisa Baaske
- Institute of Veterinary Physiology, Faculty of Veterinary Medicine, Leipzig University, Leipzig, Germany
| | - Franziska Masur
- Institute of Veterinary Physiology, Faculty of Veterinary Medicine, Leipzig University, Leipzig, Germany
| | - Franziska Dengler
- Institute of Veterinary Physiology, Faculty of Veterinary Medicine, Leipzig University, Leipzig, Germany
| | - Reiko Rackwitz
- Institute of Veterinary Physiology, Faculty of Veterinary Medicine, Leipzig University, Leipzig, Germany
| | - Bastian Kaiser
- Institute of Veterinary Physiology, Faculty of Veterinary Medicine, Leipzig University, Leipzig, Germany
| | - Helga Pfannkuche
- Institute of Veterinary Physiology, Faculty of Veterinary Medicine, Leipzig University, Leipzig, Germany
| | - Gotthold Gäbel
- Institute of Veterinary Physiology, Faculty of Veterinary Medicine, Leipzig University, Leipzig, Germany
| |
Collapse
|
20
|
Gut microbiota as an "invisible organ" that modulates the function of drugs. Biomed Pharmacother 2019; 121:109653. [PMID: 31810138 DOI: 10.1016/j.biopha.2019.109653] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 10/30/2019] [Accepted: 11/06/2019] [Indexed: 02/08/2023] Open
Abstract
Gut microbiota plays an important role in the gut and have become a hotspot of recent research interests. Commensal microbiota in gut exert a variety of effects on the host, from shaping the structure and function of the gut and the immune system to the modulation of nutrient status of the host and the treatment outcomes of some drugs. Gut microbiota and its enzyme product and subsequent products, such as short-chain fatty acid and bile acid, play important roles in the biotransformation of drugs via directly or indirectly affecting drug absorption, toxicity, metabolism and bioavailability. Drugs, especially antibiotics, also affect the homeostasis of probiotics and the integrity and function of the intestinal mucosa. These interplaying processes produce a variety of important metabolites of the host and drugs and affect the balance of microbiota and the mucosal barrier then modulate the function of drugs. Gut microbiota imbalance is associated with a broad range of disease mechanisms, and this association denotes a new drug-therapeutic avenue. The present review summarizes how gut microbiota acts as an "invisible organ" to directly or indirectly modulate the function of drugs, on the aspects of probiotic homeostasis, drugs and host nutritional metabolism, AJC, mucus layer and microfold cells.
Collapse
|
21
|
Bo TB, Zhang XY, Wen J, Deng K, Qin XW, Wang DH. The microbiota-gut-brain interaction in regulating host metabolic adaptation to cold in male Brandt's voles (Lasiopodomys brandtii). ISME JOURNAL 2019; 13:3037-3053. [PMID: 31455805 DOI: 10.1038/s41396-019-0492-y] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 07/20/2019] [Accepted: 07/24/2019] [Indexed: 12/25/2022]
Abstract
Gut microbiota play a critical role in orchestrating metabolic homeostasis of the host. However, the crosstalk between host and microbial symbionts in small mammals are rarely illustrated. We used male Brandt's voles (Lasiopodomys brandtii) to test the hypothesis that gut microbiota and host neurotransmitters, such as norepinephrine (NE), interact to regulate energetics and thermogenesis during cold acclimation. We found that increases in food intake and thermogenesis were associated with increased monoamine neurotransmitters, ghrelin, short-chain fatty acids, and altered cecal microbiota during cold acclimation. Further, our pair-fed study showed that cold temperature can alter the cecal microbiota independently of overfeeding. Using cecal microbiota transplant along with β3-adrenoceptor antagonism and PKA inhibition, we confirmed that transplant of cold-acclimated microbiota increased thermogenesis through activation of cAMP-PKA-pCREB signaling. In addition, NE manipulation induced a long-term alteration in gut microbiota structure. These data demonstrate that gut microbiota-NE crosstalk via cAMP signaling regulates energetics and thermogenesis during cold acclimation in male Brandt's voles.
Collapse
Affiliation(s)
- Ting-Bei Bo
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Xue-Ying Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China. .,University of Chinese Academy of Sciences, 100049, Beijing, China.
| | - Jing Wen
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Ke Deng
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China.,Chengdu Institute of Biology, Chinese Academy of Sciences, 610041, Chengdu, Sichuan, China
| | - Xiao-Wei Qin
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China
| | - De-Hua Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China. .,University of Chinese Academy of Sciences, 100049, Beijing, China.
| |
Collapse
|
22
|
Metabolite-Sensing G Protein-Coupled Receptors Connect the Diet-Microbiota-Metabolites Axis to Inflammatory Bowel Disease. Cells 2019; 8:cells8050450. [PMID: 31091682 PMCID: PMC6562883 DOI: 10.3390/cells8050450] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 05/08/2019] [Accepted: 05/09/2019] [Indexed: 02/06/2023] Open
Abstract
Increasing evidence has indicated that diet and metabolites, including bacteria- and host-derived metabolites, orchestrate host pathophysiology by regulating metabolism, immune system and inflammation. Indeed, autoimmune diseases such as inflammatory bowel disease (IBD) are associated with the modulation of host response to diets. One crucial mechanism by which the microbiota affects the host is signaling through G protein-coupled receptors (GPCRs) termed metabolite-sensing GPCRs. In the gut, both immune and nonimmune cells express GPCRs and their activation generally provide anti-inflammatory signals through regulation of both the immune system functions and the epithelial integrity. Members of GPCR family serve as a link between microbiota, immune system and intestinal epithelium by which all these components crucially participate to maintain the gut homeostasis. Conversely, impaired GPCR signaling is associated with IBD and other diseases, including hepatic steatosis, diabetes, cardiovascular disease, and asthma. In this review, we first outline the signaling, function, expression and the physiological role of several groups of metabolite-sensing GPCRs. We then discuss recent findings on their role in the regulation of the inflammation, their existing endogenous and synthetic ligands and innovative approaches to therapeutically target inflammatory bowel disease.
Collapse
|
23
|
Zhong X, Zhang Z, Wang S, Cao L, Zhou L, Sun A, Zhong Z, Nabben M. Microbial-Driven Butyrate Regulates Jejunal Homeostasis in Piglets During the Weaning Stage. Front Microbiol 2019; 9:3335. [PMID: 30713531 PMCID: PMC6345722 DOI: 10.3389/fmicb.2018.03335] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 12/24/2018] [Indexed: 02/05/2023] Open
Abstract
Microbe-derived butyrate plays an important role in the gut health of young mammals during the weaning stage. A greater understanding of how butyrate regulates intestinal development is necessary for overcoming post-weaning diarrheal diseases. We aimed to investigate whether jejunal microbial metabolite butyrate modulates the apoptosis/proliferation balance and immune response in piglets during the post-weaning period of the first 3 weeks of life. On the one hand, during the first week post-weaning, the relative abundances of the dominant bacterial families Erysipelotrichaceae (P < 0.01) and Lachnospiraceae (P < 0.01) were increased, which induced decreases in both butyrate production (P < 0.05) and its receptor (G-protein coupled receptor 43) expression (P < 0.01). The resulting intestinal inflammation (inferred from increased TNF-α and IFN-γ expression) contributed to the onset of cell apoptosis and the inhibition of cell-proliferation along the crypt-villus axis, which were followed by impaired jejunal morphology (i.e., increased crypt-depth) (P < 0.05) and intestinal dysfunction (i.e., decreased creatine kinase, and lactate dehydrogenase) (P < 0.05). On the other hand, during the second week post-weaning, the relative abundances of Lactobacillaceae (P < 0.01) and Ruminococcaceae (P < 0.05) were increased. The increases were accompanied by increased butyrate production (P < 0.05) and its receptor expression (P < 0.01), leading to the inhibition of cell apoptosis and the stimulation of cell proliferation via decreased pro-inflammatory cytokines and thereby the improvement of intestinal development and function. Herein, this study demonstrates that microbial-driven butyrate might be a key modulator in the maintenance of intestinal homeostasis after weaning. The findings suggest that strategies to promote butyrate production can maintain the apoptosis/proliferation balance via minimizing intestinal inflammation, and thereby improving post-weaning jejunal adaptation toward gut health.
Collapse
Affiliation(s)
- Xi Zhong
- Intensive Care Unit, West China Hospital, Sichuan University, Chengdu, China
| | - Zhongwei Zhang
- Intensive Care Unit, West China Hospital, Sichuan University, Chengdu, China
| | - Shujin Wang
- Department of Genetics and Cell Biology, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, Netherlands
| | - Lili Cao
- Medical School, Chengdu University, Chengdu, China
| | - Lin Zhou
- Shenzhen Premix Inve Nutrition, Co., Ltd., Shenzhen, China
| | - Aomin Sun
- Department of Genetics and Cell Biology, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, Netherlands
| | | | - Miranda Nabben
- Department of Genetics and Cell Biology, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, Netherlands
| |
Collapse
|
24
|
Abstract
Ulcerative colitis (UC) is a kind of inflammatory bowel disease that damages health seriously, and it is reported that butyrate could be used to treat UC. The underlying mechanism is that butyrate can activate G protein-coupled receptors to influence the downstream signaling pathways, thereby inhibiting the expression of cytokines and the differentiation and migration of immune cells. Besides, butyrate can activate peroxisome proliferator-activated receptor gamma, thus decreasing cell permeability and protecting the integrity of the intestinal mucosa. Butyrate can also inhibit the nuclear factor-kappa B signaling pathway, inhibiting the expression of cytokines, accelerating the apoptosis of T cells, and promoting the secretion of human defense peptides. Based on the recent research, we review the underlying mechanisms by which butyrate relieves UC to provide evidence for the clinical application of butyrate.
Collapse
Affiliation(s)
- Shu-Wen Ran
- Jiangsu Provincial Key Laboratory of Gastrointestinal Nutrition and Animal Health; Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agriculture University, Nanjing 210095, Jiangsu Province, China
| | - Chun-Long Mu
- Jiangsu Provincial Key Laboratory of Gastrointestinal Nutrition and Animal Health; Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agriculture University, Nanjing 210095, Jiangsu Province, China
| | - Wei-Yun Zhu
- Jiangsu Provincial Key Laboratory of Gastrointestinal Nutrition and Animal Health; Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agriculture University, Nanjing 210095, Jiangsu Province, China
| |
Collapse
|
25
|
McKenzie C, Tan J, Macia L, Mackay CR. The nutrition-gut microbiome-physiology axis and allergic diseases. Immunol Rev 2018; 278:277-295. [PMID: 28658542 DOI: 10.1111/imr.12556] [Citation(s) in RCA: 210] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Indexed: 02/06/2023]
Abstract
Dietary and bacterial metabolites influence immune responses. This raises the question whether the increased incidence of allergies, asthma, some autoimmune diseases, cardiovascular disease, and others might relate to intake of unhealthy foods, and the decreased intake of dietary fiber. In recent years, new knowledge on the molecular mechanisms underpinning a 'diet-gut microbiota-physiology axis' has emerged to substantiate this idea. Fiber is fermented to short chain fatty acids (SCFAs), particularly acetate, butyrate, and propionate. These metabolites bind 'metabolite-sensing' G-protein-coupled receptors such as GPR43, GPR41, and GPR109A. These receptors play fundamental roles in the promotion of gut homeostasis and the regulation of inflammatory responses. For instance, these receptors and their metabolites influence Treg biology, epithelial integrity, gut homeostasis, DC biology, and IgA antibody responses. The SCFAs also influence gene transcription in many cells and tissues, through their inhibition of histone deacetylase expression or function. Contained in this mix is the gut microbiome, as commensal bacteria in the gut have the necessary enzymes to digest dietary fiber to SCFAs, and dysbiosis in the gut may affect the production of SCFAs and their distribution to tissues throughout the body. SCFAs can epigenetically modify DNA, and so may be one mechanism to account for diseases with a 'developmental origin', whereby in utero or post-natal exposure to environmental factors (such as nutrition of the mother) may account for disease later in life. If the nutrition-gut microbiome-physiology axis does underpin at least some of the Western lifestyle influence on asthma and allergies, then there is tremendous scope to correct this with healthy foodstuffs, probiotics, and prebiotics.
Collapse
Affiliation(s)
- Craig McKenzie
- Infection and Immunity Program, Department of Biochemistry, Biomedicine Discovery Institute, Monash University, Clayton, Vic., Australia
| | - Jian Tan
- Infection and Immunity Program, Department of Biochemistry, Biomedicine Discovery Institute, Monash University, Clayton, Vic., Australia
| | - Laurence Macia
- Nutritional Immunometabolism Node Laboratory, Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia.,School of Medical Sciences, University of Sydney, Sydney, NSW, Australia
| | - Charles R Mackay
- Infection and Immunity Program, Department of Biochemistry, Biomedicine Discovery Institute, Monash University, Clayton, Vic., Australia
| |
Collapse
|
26
|
Sim JR, Kang SS, Lee D, Yun CH, Han SH. Killed Whole-Cell Oral Cholera Vaccine Induces CCL20 Secretion by Human Intestinal Epithelial Cells in the Presence of the Short-Chain Fatty Acid, Butyrate. Front Immunol 2018; 9:55. [PMID: 29434590 PMCID: PMC5796904 DOI: 10.3389/fimmu.2018.00055] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 01/09/2018] [Indexed: 01/09/2023] Open
Abstract
Short-chain fatty acids (SCFAs), such as acetate, butyrate, and propionate, modulate immune responses in the gut. However, the effect of SCFAs on mucosal vaccine-induced immune cell migration is poorly understood. Here, we investigated whether SCFAs modulate chemokine expression induced by the killed whole-cell oral cholera vaccine, Shanchol™, in human intestinal epithelial cells. Shanchol™ induced expression of CCL2, CCL5, CCL20, and CXCL10 at the mRNA level, but not at the protein level. Interestingly, CCL20 secretion was substantially increased by co-stimulation with Shanchol™ and butyrate, while neither acetate nor propionate showed such effect. Enhanced CCL20 secretion was associated with GPR109A activation, and histone deacetylase (HDAC) inhibition. In addition, co-treatment with Shanchol™ and butyrate synergistically increased the secretion of adenosine triphosphate (ATP). Moreover, CCL20 secretion was decreased by inhibiting the extracellular ATP receptor P2X7. However, neither inflammasomes nor caspases were involved in CCL20 production. The culture supernatant of cells treated with Shanchol™ and butyrate augmented human immature dendritic cell migration. Collectively, these results suggest that butyrate enhances Shanchol™-induced CCL20 production in human intestinal epithelial cells via HDAC inhibition and ATP-P2X7 signaling by activating GPR109A. These effects potentially enhance the mucosal immune responses in the gut induced by this oral cholera vaccine.
Collapse
Affiliation(s)
- Ju-Ri Sim
- Department of Oral Microbiology and Immunology, DRI, and BK21 Plus Program, School of Dentistry, Seoul National University, Seoul, South Korea
| | - Seok-Seong Kang
- Department of Food Science and Biotechnology, Dongguk University Seoul, Goyang, South Korea
| | - Daesang Lee
- The 5th R&D Institute, Agency for Defense Development, Daejeon, South Korea
| | - Cheol-Heui Yun
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Seung Hyun Han
- Department of Oral Microbiology and Immunology, DRI, and BK21 Plus Program, School of Dentistry, Seoul National University, Seoul, South Korea
| |
Collapse
|
27
|
Nuts and Human Health Outcomes: A Systematic Review. Nutrients 2017; 9:nu9121311. [PMID: 29207471 PMCID: PMC5748761 DOI: 10.3390/nu9121311] [Citation(s) in RCA: 135] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 11/08/2017] [Accepted: 11/09/2017] [Indexed: 01/17/2023] Open
Abstract
There has been increasing interest in nuts and their outcome regarding human health. The consumption of nuts is frequently associated with reduction in risk factors for chronic diseases. Although nuts are high calorie foods, several studies have reported beneficial effects after nut consumption, due to fatty acid profiles, vegetable proteins, fibers, vitamins, minerals, carotenoids, and phytosterols with potential antioxidant action. However, the current findings about the benefits of nut consumption on human health have not yet been clearly discussed. This review highlights the effects of nut consumption on the context of human health.
Collapse
|
28
|
Lu N, Li M, Lei H, Jiang X, Tu W, Lu Y, Xia D. Butyric acid regulates progesterone and estradiol secretion via cAMP signaling pathway in porcine granulosa cells. J Steroid Biochem Mol Biol 2017; 172:89-97. [PMID: 28602959 DOI: 10.1016/j.jsbmb.2017.06.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 06/05/2017] [Accepted: 06/06/2017] [Indexed: 12/18/2022]
Abstract
Butyric acid (BA), one of the short chain fatty acids (SCFAs), has positive actions on the metabolism, inflammation, etc. However, whether it influences the reproductive physiology and if so the detail mechanism involved has not yet been determined. In this study, the porcine granulosa cells (PGCs) were treated with gradient concentrations of BA. After 24h culture, 0.05mM BA significantly stimulated the progesterone (P4) secretion (P<0.05), 5mM and 10mM BA significantly inhibited the P4 secretion (P<0.05). Simultaneously, BA up-regulated the estradiol (E2) secretion in a dose dependent manner, 5mM and 10mM BA significantly promoted the E2 level (P<0.05). In addition, 10mM BA significantly promoted the G-protein-coupled receptor 41/43 mRNA (P<0.05). Interestingly, 5mM BA treatment significantly down-regulated cyclic adenosine monophosphate (cAMP) content (P<0.05), steroidogenic acute regulatory (StAR), steroidogenic factor 1 (SF1), P450scc in the mRNA and/or protein level (P<0.05), and these actions were reversed by cAMP activator forskolin (FK). Moreover, the co-treatment of 5mM BA and bupivacaine (BPC, the cAMP inhibitor) significantly accumulated the inhibition action of BPC on cAMP, the secretion of P4, and the abundance of StAR mRNA (P<0.05), inhibited the up-regulation of 5mM BA on the E2 secretion (P<0.05). Further, the Global Proteome and KEGG pathway analysis found that 5mM BA significantly up-regulated the I3LM80 proteins (P<0.05), which is involved in the steroid biosynthesis signaling pathway. 5mM BA significantly decreased the F2Z5G3 protein level (P<0.05), and the cAMP signaling pathway. In conclusion, present findings for the first time demonstrated that BA could regulate the P4 and E2 hormone synthesis in PGCs via the cAMP signaling pathway.
Collapse
Affiliation(s)
- Naisheng Lu
- Shanghai Engineering Research Center of Breeding Pig, Institute of Animal Husbandry & Veterinary Sciences, Shanghai Academy of Agricultural Sciences, Shanghai, 201106, PR China.
| | - Mengjiao Li
- Shanghai Engineering Research Center of Breeding Pig, Institute of Animal Husbandry & Veterinary Sciences, Shanghai Academy of Agricultural Sciences, Shanghai, 201106, PR China.
| | - Hulong Lei
- Shanghai Engineering Research Center of Breeding Pig, Institute of Animal Husbandry & Veterinary Sciences, Shanghai Academy of Agricultural Sciences, Shanghai, 201106, PR China.
| | - Xueyuan Jiang
- Shanghai Engineering Research Center of Breeding Pig, Institute of Animal Husbandry & Veterinary Sciences, Shanghai Academy of Agricultural Sciences, Shanghai, 201106, PR China.
| | - Weilong Tu
- Shanghai Engineering Research Center of Breeding Pig, Institute of Animal Husbandry & Veterinary Sciences, Shanghai Academy of Agricultural Sciences, Shanghai, 201106, PR China.
| | - Yang Lu
- Shanghai Engineering Research Center of Breeding Pig, Institute of Animal Husbandry & Veterinary Sciences, Shanghai Academy of Agricultural Sciences, Shanghai, 201106, PR China.
| | - Dong Xia
- Shanghai Engineering Research Center of Breeding Pig, Institute of Animal Husbandry & Veterinary Sciences, Shanghai Academy of Agricultural Sciences, Shanghai, 201106, PR China.
| |
Collapse
|
29
|
Chen T, Kim CY, Kaur A, Lamothe L, Shaikh M, Keshavarzian A, Hamaker BR. Dietary fibre-based SCFA mixtures promote both protection and repair of intestinal epithelial barrier function in a Caco-2 cell model. Food Funct 2017; 8:1166-1173. [PMID: 28174773 DOI: 10.1039/c6fo01532h] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Impaired gut barrier function plays an important role in the development of many diseases such as obesity, inflammatory bowel disease, and in HIV infection. Dietary fibres have been shown to improve intestinal barrier function through their fermentation products, short chain fatty acids (SCFAs), and the effects of individual SCFAs have been studied. Here, different SCFA mixtures representing possible compositions from fibre fermentation products were studied for protective and reparative effects on intestinal barrier function. The effect of fermentation products from four dietary fibres, i.e. resistant starch, fructooligosaccharides, and sorghum and corn arabinoxylan (varying in their branched structure) on barrier function was positively correlated with their SCFA concentration. Pure SCFA mixtures of various concentrations and compositions were tested using a Caco-2 cell model. SCFAs at a moderate concentration (40-80 mM) improved barrier function without causing damage to the monolayer. In a 40 mM SCFA mixture, the butyrate proportion at 20% and 50% showed both a protective and a reparative effect on the monolayer to disrupting agents (LPS/TNF-α) applied simultaneously or prior to the SCFA mixtures. Relating this result to dietary fibre selection, slow fermenting fibres that deliver appropriate concentrations of SCFAs to the epithelium with a high proportion of butyrate may improve barrier function.
Collapse
Affiliation(s)
- Tingting Chen
- Whistler Center for Carbohydrate Research, Department of Food Science, Purdue University, 745 Agriculture Mall Drive, West Lafayette, IN 47907, USA.
| | - Choon Young Kim
- Whistler Center for Carbohydrate Research, Department of Food Science, Purdue University, 745 Agriculture Mall Drive, West Lafayette, IN 47907, USA. and Department of Food and Nutrition, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Republic of Korea
| | - Amandeep Kaur
- Whistler Center for Carbohydrate Research, Department of Food Science, Purdue University, 745 Agriculture Mall Drive, West Lafayette, IN 47907, USA.
| | - Lisa Lamothe
- Whistler Center for Carbohydrate Research, Department of Food Science, Purdue University, 745 Agriculture Mall Drive, West Lafayette, IN 47907, USA.
| | - Maliha Shaikh
- Department of Internal Medicine, Division of Gastroenterology, Rush University Medical Center, Chicago, IL 60612, USA
| | - Ali Keshavarzian
- Department of Internal Medicine, Division of Gastroenterology, Rush University Medical Center, Chicago, IL 60612, USA
| | - Bruce R Hamaker
- Whistler Center for Carbohydrate Research, Department of Food Science, Purdue University, 745 Agriculture Mall Drive, West Lafayette, IN 47907, USA.
| |
Collapse
|
30
|
MUC2 Mucin and Butyrate Contribute to the Synthesis of the Antimicrobial Peptide Cathelicidin in Response to Entamoeba histolytica- and Dextran Sodium Sulfate-Induced Colitis. Infect Immun 2017; 85:IAI.00905-16. [PMID: 28069814 DOI: 10.1128/iai.00905-16] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 12/21/2016] [Indexed: 12/14/2022] Open
Abstract
Embedded in the colonic mucus are cathelicidins, small cationic peptides secreted by colonic epithelial cells. Humans and mice have one cathelicidin-related antimicrobial peptide (CRAMP) each, LL-37/hCAP-18 and Cramp, respectively, with related structure and functions. Altered production of MUC2 mucin and antimicrobial peptides is characteristic of intestinal amebiasis. The interactions between MUC2 mucin and cathelicidins in conferring innate immunity against Entamoeba histolytica are not well characterized. In this study, we quantified whether MUC2 expression and release could regulate the expression and secretion of cathelicidin LL-37 in colonic epithelial cells and in the colon. The synthesis of LL-37 was enhanced with butyrate (a product of bacterial fermentation) and interleukin-1β (IL-1β) (a proinflammatory cytokine in colitis) in the presence of exogenously added purified MUC2. The LL-37 responses to butyrate and IL-1β were higher in high-MUC2-producing cells than in lentivirus short hairpin RNA (shRNA) MUC2-silenced cells. Activation of cyclic adenylyl cyclase (AMP) and mitogen-activated protein kinase (MAPK) signaling pathways was necessary for the simultaneous expression of MUC2 and cathelicidins. In Muc2 mucin-deficient (Muc2-/-) mice, murine cathelicidin (Cramp) was significantly reduced compared to that in Muc2+/- and Muc2+/+ littermates. E. histolytica-induced acute inflammation in colonic loops stimulated high levels of cathelicidin in Muc2+/+ but not in Muc2-/- littermates. In dextran sodium sulfate (DSS)-induced colitis in Muc2+/+ mice, which depletes the mucus barrier and goblet cell mucin, Cramp expression was significantly enhanced during restitution. These studies demonstrate regulatory mechanisms between MUC2 and cathelicidins in the colonic mucosa where an intact mucus barrier is essential for expression and secretion of cathelicidins in response to E. histolytica- and DSS-induced colitis.
Collapse
|
31
|
Liu D, Andrade SP, Castro PR, Treacy J, Ashworth J, Slevin M. Low Concentration of Sodium Butyrate from Ultrabraid+NaBu suture, Promotes Angiogenesis and Tissue Remodelling in Tendon-bones Injury. Sci Rep 2016; 6:34649. [PMID: 27694930 PMCID: PMC5046145 DOI: 10.1038/srep34649] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 09/16/2016] [Indexed: 11/18/2022] Open
Abstract
Sodium butyrate (NaBu), a form of short-chain fatty acid (SCFA), acts classically as a potent anti-angiogenic agent in tumour angiogenesis models, some authors demonstrated that low concentrations of NaBu may contribute to healing of tendon-bone injury in part at least through promotion of tissue remodelling. Here, we investigated the effects of low-range concentrations of NaBu using in vitro and in vivo assays using angiogenesis as the primary outcome measure and the mechanisms through which it acts. We demonstrated that NaBu, alone or perfused from the UltraBraid+NaBu suture was pro-angiogenic at very low-range doses promoting migration, tube formation and cell invasion in bovine aortic endothelial cells (BAECs). Furthermore, cell exposure to low NaBu concentrations increased expression of proteins involved in angiogenic cell signalling, including p-PKCβ1, p-FAK, p-ERK1/2, p-NFκβ, p-PLCγ1 and p-VEGFR2. In addition, inhibitors of both VEGFR2 and PKCβ1 blocked the angiogenic response. In in vivo assays, low concentrations of NaBu induced neovascularization in sponge implants in mice, evidenced by increased numbers of vessels and haemoglobin content in these implants. The findings in this study indicate that low concentrations of NaBu could be an important compound to stimulate angiogenesis at a site where vasculature is deficient and healing is compromised.
Collapse
Affiliation(s)
- Donghui Liu
- School of Healthcare Science, GMBC, Manchester Metropolitan University, Manchester, United Kingdom
| | - Silvia Passos Andrade
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Brazil
| | - Pollyana Ribeiro Castro
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Brazil
| | - John Treacy
- Smith &Nephew Research Centre, York Science, Park Heslington, York, UK
| | - Jason Ashworth
- School of Healthcare Science, GMBC, Manchester Metropolitan University, Manchester, United Kingdom
| | - Mark Slevin
- School of Healthcare Science, GMBC, Manchester Metropolitan University, Manchester, United Kingdom.,University of Medicine and Pharmacy, Tirgu Mures, Romania
| |
Collapse
|
32
|
Zhou J, Gao S, Chen J, Zhao R, Yang X. Maternal sodium butyrate supplement elevates the lipolysis in adipose tissue and leads to lipid accumulation in offspring liver of weaning-age rats. Lipids Health Dis 2016; 15:119. [PMID: 27449927 PMCID: PMC4957328 DOI: 10.1186/s12944-016-0289-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 07/12/2016] [Indexed: 01/22/2023] Open
Abstract
Background Sodium butyrate (SB) is reported to regulate lipid metabolism in mammals, and the relationship between maternal nutrition and offspring growth has drawn much attention in the last several years. Methods To elucidate the effects of maternal dietary SB supplementation on hepatic lipid metabolism in weaning rats, we fed 16 primiparous purebred female SD rats either a chow-diet or a 1 % sodium butyrate diet throughout pregnancy and lactation. At weaning age, samples of the maternal subcutaneous adipose tissue and offspring liver were taken. The serum indexes and expressions of proteins related to lipid metabolism were detected in the mother and offspring, respectively. Results The results showed that the maternal SB supplement increased the concentration of non-esterified fatty acid (NEFA) in the maternal and offspring serum (P < 0.05). Total cholesterol (Tch) increased significantly in the weaning-rat serum (P < 0.05). Maternal adipose tissue from the SB-supplemented rats showed higher content of protein G-coupled protein (GPR43) and protein kinase A (PKA) (P < 0.05). The expression of protein adipose triglyceride lipase (ATGL), and of total and phosphorylated hormone sensitive lipase (HSL), in the maternal adipose tissue increased significantly (P < 0.05) compared to the control group. However the proteins related to lipogenesis showed no significant changes. Moreover, the concentration of triglyceride in the offspring liver increased significantly, and this likely resulted from an increase in the levels of fatty acids binding protein (FABP) and fatty acid translocase (CD36) protein (P < 0.05). SB exposure during pregnancy and lactation increased the hepatic total cholesterol (Tch) content (P < 0.01), which was related to a significantly up-regulated offspring hepatic expression of low density lipoprotein receptor (LDLR) protein (P < 0.05). Conclusion These results indicate that a maternal SB supplement during pregnancy and the lactation period promotes maternal fat mobilization, which may result in fatty acid uptake and lipid accumulation in the liver of the offspring.
Collapse
Affiliation(s)
- Jiabin Zhou
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Shixing Gao
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Jinglong Chen
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Ruqian Zhao
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.,Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing, 210095, People's Republic of China
| | - Xiaojing Yang
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.
| |
Collapse
|
33
|
Thakur BK, Dasgupta N, Ta A, Das S. Physiological TLR5 expression in the intestine is regulated by differential DNA binding of Sp1/Sp3 through simultaneous Sp1 dephosphorylation and Sp3 phosphorylation by two different PKC isoforms. Nucleic Acids Res 2016; 44:5658-72. [PMID: 27060138 PMCID: PMC4937308 DOI: 10.1093/nar/gkw189] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 03/10/2016] [Indexed: 12/24/2022] Open
Abstract
Toll-like receptor 5 (TLR5) expression in the intestinal epithelial cells (IECs) is critical to maintain health, as underscored by multiple intestinal and extra-intestinal diseases in mice genetically engineered for IEC-specific TLR5 knockout. A gradient of expression exists in the colonic epithelial cells from the cecum to the distal colon. Intriguingly, an identical gradient for the dietary metabolite, butyrate also exists in the luminal contents. However, both being critical for intestinal homeostasis and immune response, no studies examined the role of butyrate in the regulation of TLR5 expression. We showed that butyrate transcriptionally upregulates TLR5 in the IECs and augments flagellin-induced immune responses. Both basal and butyrate-induced transcription is regulated by differential binding of Sp-family transcription factors to the GC-box sequences over the TLR5 promoter. Butyrate activates two different protein kinase C isoforms to dephosphorylate/acetylate Sp1 by serine/threonine phosphatases and phosphorylate Sp3 by ERK-MAPK, respectively. This resulted in Sp1 displacement from the promoter and binding of Sp3 to it, leading to p300 recruitment and histone acetylation, activating transcription. This is the first study addressing the mechanisms of physiological TLR5 expression in the intestine. Additionally, a novel insight is gained into Sp1/Sp3-mediated gene regulation that may apply to other genes.
Collapse
Affiliation(s)
- Bhupesh Kumar Thakur
- Division of Clinical Medicine, National Institute of Cholera and Enteric Diseases, P-33, CIT Road, Scheme XM, Beliaghata, Kolkata 700010, India
| | - Nirmalya Dasgupta
- Division of Clinical Medicine, National Institute of Cholera and Enteric Diseases, P-33, CIT Road, Scheme XM, Beliaghata, Kolkata 700010, India
| | - Atri Ta
- Division of Clinical Medicine, National Institute of Cholera and Enteric Diseases, P-33, CIT Road, Scheme XM, Beliaghata, Kolkata 700010, India
| | - Santasabuj Das
- Division of Clinical Medicine, National Institute of Cholera and Enteric Diseases, P-33, CIT Road, Scheme XM, Beliaghata, Kolkata 700010, India
| |
Collapse
|
34
|
Woting A, Blaut M. The Intestinal Microbiota in Metabolic Disease. Nutrients 2016; 8:202. [PMID: 27058556 PMCID: PMC4848671 DOI: 10.3390/nu8040202] [Citation(s) in RCA: 203] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 03/17/2016] [Accepted: 03/29/2016] [Indexed: 02/06/2023] Open
Abstract
Gut bacteria exert beneficial and harmful effects in metabolic diseases as deduced from the comparison of germfree and conventional mice and from fecal transplantation studies. Compositional microbial changes in diseased subjects have been linked to adiposity, type 2 diabetes and dyslipidemia. Promotion of an increased expression of intestinal nutrient transporters or a modified lipid and bile acid metabolism by the intestinal microbiota could result in an increased nutrient absorption by the host. The degradation of dietary fiber and the subsequent fermentation of monosaccharides to short-chain fatty acids (SCFA) is one of the most controversially discussed mechanisms of how gut bacteria impact host physiology. Fibers reduce the energy density of the diet, and the resulting SCFA promote intestinal gluconeogenesis, incretin formation and subsequently satiety. However, SCFA also deliver energy to the host and support liponeogenesis. Thus far, there is little knowledge on bacterial species that promote or prevent metabolic disease. Clostridium ramosum and Enterococcus cloacae were demonstrated to promote obesity in gnotobiotic mouse models, whereas bifidobacteria and Akkermansia muciniphila were associated with favorable phenotypes in conventional mice, especially when oligofructose was fed. How diet modulates the gut microbiota towards a beneficial or harmful composition needs further research. Gnotobiotic animals are a valuable tool to elucidate mechanisms underlying diet–host–microbe interactions.
Collapse
Affiliation(s)
- Anni Woting
- Department of Gastrointestinal Microbiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany.
| | - Michael Blaut
- Department of Gastrointestinal Microbiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany.
| |
Collapse
|
35
|
Li G, Yao W, Jiang H. Short-chain fatty acids enhance adipocyte differentiation in the stromal vascular fraction of porcine adipose tissue. J Nutr 2014; 144:1887-95. [PMID: 25320182 DOI: 10.3945/jn.114.198531] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Short-chain fatty acids (SCFAs), including acetate, propionate, and butyrate, are the main products of microbial fermentation in the gut and might mediate some of the effects of gut microbiota and nutrition on development, metabolism, and pathogenesis of obesity and other diseases. OBJECTIVE The objective of this study was to determine the effects of SCFAs on adipocyte differentiation and the underlying mechanism. METHODS The stromal vascular fraction (SVF) of the porcine subcutaneous fat was used as the preadipocyte model. Adipocyte differentiation was assessed by Oil Red O staining and gene expression analysis of adipocyte markers. Chromatin immunoprecipitation was used to assess the histone acetylation amounts at the peroxisome proliferator-activated receptor γ (PPARG) and CCAAT/enhancer binding protein α (CEBPA) promoters. RESULTS Compared with control, propionate and butyrate enhanced the formation of adipocytes by 10-20% and mRNA expression of adipocyte markers by 20-200% in porcine SVF undergoing adipocyte differentiation. Compared with control, short-term treatment of propionate and butyrate enhanced PPARG and CEBPA mRNA expression in porcine SVF by 50-100%. Neither free fatty acid receptor (FFAR) 2 nor FFAR3 mRNA was detectable in porcine SVF before or during differentiation. Neither a cAMP analogue nor an activator of AMP-activated protein kinase (AMPK) affected propionate- or butyrate-enhanced expression of PPARG or CEBPA mRNA. Trichostatin A, a specific inhibitor of histone deacetylases (HDACs), enhanced the formation of adipocytes in porcine SVF by nearly 100% and the expression of PPARG and CEBPA mRNAs by 150% and 50%, respectively. Butyrate increased whereas propionate had no significant effect on histone H3 acetylation at the CEBPA promoter in porcine SVF. CONCLUSIONS Propionate and butyrate enhance adipocyte differentiation in porcine SVF. These effects are unlikely mediated through FFAR2, FFAR3, cAMP, or AMPK. The effect of butyrate may be partially mediated by its HDAC inhibitory activity, whereas that of propionate is independent of its HDAC inhibitory activity.
Collapse
Affiliation(s)
- Genlai Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China; and
| | - Wen Yao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China; and
| | - Honglin Jiang
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA
| |
Collapse
|
36
|
Walthouwer MJL, Oenema A, Soetens K, Lechner L, de Vries H. Are clusters of dietary patterns and cluster membership stable over time? Results of a longitudinal cluster analysis study. Appetite 2014; 82:154-9. [DOI: 10.1016/j.appet.2014.07.025] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 06/30/2014] [Accepted: 07/21/2014] [Indexed: 12/20/2022]
|
37
|
Kim CY, Lee GY, Park GH, Lee J, Jang JH. Protective Effect of Arabinoxylan against Scopolamine-Induced Learning and Memory Impairment. Biomol Ther (Seoul) 2014; 22:467-73. [PMID: 25414779 PMCID: PMC4201221 DOI: 10.4062/biomolther.2014.063] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 07/07/2014] [Accepted: 07/08/2014] [Indexed: 12/11/2022] Open
Abstract
The purpose of this study is to investigate the memory enhancing effect and underlying molecular mechanism of arabinoxylan (AX), a major component of dietary fiber in wheat against scopolamine (SCO)-induced amnesia in Sprague-Dawley (SD) rats. Diverse behavior tests including Y-maze, Morris water maze, and passive avoidance tests were performed to measure cognitive functions. SCO significantly decreased the spontaneous alterations in Y-maze test and step-through latency in passive avoidance test, whereas increased time spent to find the hidden platform in Morris water maze test compared with the sham control group. In contrast, oral administration of AX (25 mg/kg and 50 mg/kg) effectively reversed the SCO-induced cognitive impairments in SD rats. Furthermore, AX treatment up-regulated the expression of brain-derived neurotrophic factor (BDNF) in the cortex and hippo-campus via promoting activation of cAMP response element binding protein (CREB). Therefore, our findings suggest that AX can improve SCO-induced learning and memory impairment possibly through activation of CREB and up-regulation of BDNF levels, thereby exhibiting a cognition-enhancing potential.
Collapse
Affiliation(s)
- Chang-Yul Kim
- Department of Pathology, College of Oriental Medicine, Daegu Haany University, Daegu 706-828
| | - Gil-Yong Lee
- Department of Pathology, College of Oriental Medicine, Daegu Haany University, Daegu 706-828
| | - Gyu Hwan Park
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Kyungpook National University, Daegu 702-701
| | - Jongwon Lee
- Deparment of Biochemistry, School of Medicine, Catholic University of Daegu, Daegu 705-718
| | - Jung-Hee Jang
- Department of Pharmacology, School of Medicine, Keimyung University, Daegu 704-701, Republic of Korea
| |
Collapse
|
38
|
Kitessa SM, Abeywardena M, Wijesundera C, Nichols PD. DHA-containing oilseed: a timely solution for the sustainability issues surrounding fish oil sources of the health-benefitting long-chain omega-3 oils. Nutrients 2014; 6:2035-58. [PMID: 24858407 PMCID: PMC4042577 DOI: 10.3390/nu6052035] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 05/08/2014] [Accepted: 05/15/2014] [Indexed: 11/17/2022] Open
Abstract
Benefits of long-chain (≥C20) omega-3 oils (LC omega-3 oils) for reduction of the risk of a range of disorders are well documented. The benefits result from eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA); optimal intake levels of these bioactive fatty acids for maintenance of normal health and prevention of diseases have been developed and adopted by national and international health agencies and science bodies. These developments have led to increased consumer demand for LC omega-3 oils and, coupled with increasing global population, will impact on future sustainable supply of fish. Seafood supply from aquaculture has risen over the past decades and it relies on harvest of wild catch fisheries also for its fish oil needs. Alternate sources of LC omega-3 oils are being pursued, including genetically modified soybean rich in shorter-chain stearidonic acid (SDA, 18:4ω3). However, neither oils from traditional oilseeds such as linseed, nor the SDA soybean oil have shown efficient conversion to DHA. A recent breakthrough has seen the demonstration of a land plant-based oil enriched in DHA, and with omega-6 PUFA levels close to that occurring in marine sources of EPA and DHA. We review alternative sources of DHA supply with emphasis on the need for land plant oils containing EPA and DHA.
Collapse
Affiliation(s)
- Soressa M Kitessa
- CSIRO Animal, Foods and Health Sciences, P.O. Box 10041, Adelaide BC, SA 5000, Australia.
| | - Mahinda Abeywardena
- CSIRO Animal, Foods and Health Sciences, P.O. Box 10041, Adelaide BC, SA 5000, Australia.
| | - Chakra Wijesundera
- CSIRO Animal, Foods and Health Sciences, Werribee, Victoria, VIC 3030, Australia.
| | - Peter D Nichols
- Food Futures Flagship, Division of Marine and Atmospheric Research, Hobart, TAS 7000, Australia.
| |
Collapse
|
39
|
De Vadder F, Kovatcheva-Datchary P, Goncalves D, Vinera J, Zitoun C, Duchampt A, Bäckhed F, Mithieux G. Microbiota-generated metabolites promote metabolic benefits via gut-brain neural circuits. Cell 2014; 156:84-96. [PMID: 24412651 DOI: 10.1016/j.cell.2013.12.016] [Citation(s) in RCA: 1590] [Impact Index Per Article: 144.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 10/15/2013] [Accepted: 12/11/2013] [Indexed: 12/22/2022]
Abstract
Soluble dietary fibers promote metabolic benefits on body weight and glucose control, but underlying mechanisms are poorly understood. Recent evidence indicates that intestinal gluconeogenesis (IGN) has beneficial effects on glucose and energy homeostasis. Here, we show that the short-chain fatty acids (SCFAs) propionate and butyrate, which are generated by fermentation of soluble fiber by the gut microbiota, activate IGN via complementary mechanisms. Butyrate activates IGN gene expression through a cAMP-dependent mechanism, while propionate, itself a substrate of IGN, activates IGN gene expression via a gut-brain neural circuit involving the fatty acid receptor FFAR3. The metabolic benefits on body weight and glucose control induced by SCFAs or dietary fiber in normal mice are absent in mice deficient for IGN, despite similar modifications in gut microbiota composition. Thus, the regulation of IGN is necessary for the metabolic benefits associated with SCFAs and soluble fiber.
Collapse
Affiliation(s)
- Filipe De Vadder
- Institut de la Santé et de la Recherche Médicale, U855, Lyon 69372, France; Université de Lyon, Lyon 69008, France; Université Lyon 1, Villeurbanne 69622, France
| | - Petia Kovatcheva-Datchary
- Wallenberg Laboratory and Department of Molecular and Clinical Medicine, University of Gothenburg 41345, Sweden
| | - Daisy Goncalves
- Institut de la Santé et de la Recherche Médicale, U855, Lyon 69372, France; Université de Lyon, Lyon 69008, France; Université Lyon 1, Villeurbanne 69622, France
| | - Jennifer Vinera
- Institut de la Santé et de la Recherche Médicale, U855, Lyon 69372, France; Université de Lyon, Lyon 69008, France; Université Lyon 1, Villeurbanne 69622, France
| | - Carine Zitoun
- Institut de la Santé et de la Recherche Médicale, U855, Lyon 69372, France; Université de Lyon, Lyon 69008, France; Université Lyon 1, Villeurbanne 69622, France
| | - Adeline Duchampt
- Institut de la Santé et de la Recherche Médicale, U855, Lyon 69372, France; Université de Lyon, Lyon 69008, France; Université Lyon 1, Villeurbanne 69622, France
| | - Fredrik Bäckhed
- Wallenberg Laboratory and Department of Molecular and Clinical Medicine, University of Gothenburg 41345, Sweden; Novo Nordisk Foundation Center for Basic Metabolic Research, Section for Metabolic Receptology and Enteroendocrinology, Faculty of Health Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| | - Gilles Mithieux
- Institut de la Santé et de la Recherche Médicale, U855, Lyon 69372, France; Université de Lyon, Lyon 69008, France; Université Lyon 1, Villeurbanne 69622, France.
| |
Collapse
|
40
|
Elamin EE, Masclee AA, Dekker J, Pieters HJ, Jonkers DM. Short-chain fatty acids activate AMP-activated protein kinase and ameliorate ethanol-induced intestinal barrier dysfunction in Caco-2 cell monolayers. J Nutr 2013; 143:1872-81. [PMID: 24132573 DOI: 10.3945/jn.113.179549] [Citation(s) in RCA: 180] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Short-chain fatty acids (SCFAs) have been shown to promote intestinal barrier function, but their protective effects against ethanol-induced intestinal injury and underlying mechanisms remain essentially unknown. The aim of the study was to analyze the influence of SCFAs on ethanol-induced barrier dysfunction and to examine the role of AMP-activated protein kinase (AMPK) as a possible mechanism using Caco-2 monolayers. The monolayers were treated apically with butyrate (2, 10, or 20 mmol/L), propionate (4, 20, or 40 mmol/L), or acetate (8, 40, or 80 mmol/L) for 1 h before ethanol (40 mmol/L) for 3 h. Barrier function was analyzed by measurement of transepithelial resistance and permeation of fluorescein isothiocyanate-labeled dextran. Distribution of the tight junction (TJ) proteins zona occludens-1, occludin, and filamentous-actin (F-actin) was examined by immunofluorescence. Metabolic stress was determined by measuring oxidative stress, mitochondrial function, and ATP using dichlorofluorescein diacetate, dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide, and bioluminescence assay, respectively. AMPK was knocked down by small interfering RNA (siRNA), and its activity was assessed by a cell-based ELISA. Exposure to ethanol significantly impaired barrier function compared with controls (P < 0.0001), disrupted TJ and F-actin cytoskeleton integrity, and induced metabolic stress. However, pretreatment with 2 mmol/L butyrate, 4 mmol/L propionate, and 8 mmol/L acetate significantly alleviated the ethanol-induced barrier dysfunction, TJ and F-actin disruption, and metabolic stress compared with ethanol-exposed monolayers (P < 0.0001). The promoting effects on barrier function were abolished by inhibiting AMPK using either compound C or siRNA. These observations indicate that SCFAs exhibit protective effects against ethanol-induced barrier disruption via AMPK activation, suggesting a potential for SCFAs as prophylactic and/or therapeutic factors against ethanol-induced gut leakiness.
Collapse
|
41
|
Slavin J. Fiber and prebiotics: mechanisms and health benefits. Nutrients 2013; 5:1417-35. [PMID: 23609775 PMCID: PMC3705355 DOI: 10.3390/nu5041417] [Citation(s) in RCA: 1201] [Impact Index Per Article: 100.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Revised: 03/29/2013] [Accepted: 04/01/2013] [Indexed: 12/11/2022] Open
Abstract
The health benefits of dietary fiber have long been appreciated. Higher intakes of dietary fiber are linked to less cardiovascular disease and fiber plays a role in gut health, with many effective laxatives actually isolated fiber sources. Higher intakes of fiber are linked to lower body weights. Only polysaccharides were included in dietary fiber originally, but more recent definitions have included oligosaccharides as dietary fiber, not based on their chemical measurement as dietary fiber by the accepted total dietary fiber (TDF) method, but on their physiological effects. Inulin, fructo-oligosaccharides, and other oligosaccharides are included as fiber in food labels in the US. Additionally, oligosaccharides are the best known "prebiotics", "a selectively fermented ingredient that allows specific changes, both in the composition and/or activity in the gastrointestinal microflora that confers benefits upon host well-bring and health." To date, all known and suspected prebiotics are carbohydrate compounds, primarily oligosaccharides, known to resist digestion in the human small intestine and reach the colon where they are fermented by the gut microflora. Studies have provided evidence that inulin and oligofructose (OF), lactulose, and resistant starch (RS) meet all aspects of the definition, including the stimulation of Bifidobacterium, a beneficial bacterial genus. Other isolated carbohydrates and carbohydrate-containing foods, including galactooligosaccharides (GOS), transgalactooligosaccharides (TOS), polydextrose, wheat dextrin, acacia gum, psyllium, banana, whole grain wheat, and whole grain corn also have prebiotic effects.
Collapse
Affiliation(s)
- Joanne Slavin
- Department of Food Science and Nutrition, University of Minnesota, 1334 Eckles Avenue, St. Paul, MN 55344, USA.
| |
Collapse
|
42
|
Steliou K, Boosalis MS, Perrine SP, Sangerman J, Faller DV. Butyrate histone deacetylase inhibitors. Biores Open Access 2013; 1:192-8. [PMID: 23514803 PMCID: PMC3559235 DOI: 10.1089/biores.2012.0223] [Citation(s) in RCA: 121] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
In addition to being a part of the metabolic fatty acid fuel cycle, butyrate is also capable of inducing growth arrest in a variety of normal cell types and senescence-like phenotypes in gynecological cancer cells, inhibiting DNA synthesis and cell growth in colonic tumor cell lines, suppressing hTERT mRNA expression and telomerase activity in human prostate cancer cells, and inducing stem cell differentiation and apoptosis by DNA fragmentation. It regulates gene expression by inhibiting histone deacetylases (HDACs), enhances memory recovery and formation in mice, stimulates neurogenesis in the ischemic brain, promotes osteoblast formation, selectively blocks cell replication in transformed cells (compared to healthy cells), and can prevent and treat diet-induced obesity and insulin resistance in mouse models of obesity, as well as stimulate fetal hemoglobin expression in individuals with hematologic diseases such as the thalassemias and sickle-cell disease, in addition to a multitude of other biochemical effects in vivo. However, efforts to exploit the potential of butyrate in the clinical treatment of cancer and other medical disorders are thwarted by its poor pharmacological properties (short half-life and first-pass hepatic clearance) and the multigram doses needed to achieve therapeutic concentrations in vivo. Herein, we review some of the methods used to overcome these difficulties with an emphasis on HDAC inhibition.
Collapse
Affiliation(s)
- Kosta Steliou
- PhenoMatriX, Inc. , Boston, Massachusetts. ; Cancer Research Center, Boston University School of Medicine , Boston, Massachusetts
| | | | | | | | | |
Collapse
|
43
|
Diet, microbiome, and the intestinal epithelium: an essential triumvirate? BIOMED RESEARCH INTERNATIONAL 2013; 2013:425146. [PMID: 23586037 PMCID: PMC3613061 DOI: 10.1155/2013/425146] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Accepted: 02/01/2013] [Indexed: 12/20/2022]
Abstract
The intestinal epithelium represents a critical barrier protecting the host against diverse luminal noxious agents, as well as preventing the uncontrolled uptake of bacteria that could activate an immune response in a susceptible host. The epithelial monolayer that constitutes this barrier is regulated by a meshwork of proteins that orchestrate complex biological function such as permeability, transepithelial electrical resistance, and movement of various macromolecules. Because of its key role in maintaining host homeostasis, factors regulating barrier function have attracted sustained attention from the research community. This paper will address the role of bacteria, bacterial-derived metabolism, and the interplay of dietary factors in controlling intestinal barrier function.
Collapse
|