1
|
Koleini M, Mosadegh A, Madadizadeh F, Heidari H. Assessment of Factors Contributing to Infection Severity and High Levels of Drug Resistance in Clinical Enterococcus Isolates. J Clin Lab Anal 2025:e70063. [PMID: 40432202 DOI: 10.1002/jcla.70063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 03/31/2025] [Accepted: 05/18/2025] [Indexed: 05/29/2025] Open
Abstract
BACKGROUND Various factors, including virulence determinants, biofilm formation, and antimicrobial resistance, contribute to the severity of infections caused by Enterococcus spp. METHODS Enterococcus isolates were obtained from hospitalized patients in Yazd, Iran, and identified using microbiological and molecular tests. High-level resistance, biofilm formation, and the genes encoding virulence factors and resistance were investigated following standard methods. RESULTS Enterococcus faecalis was the most prevalent species (60.7%), followed by Enterococcus faecium (30.4%). Linezolid was highly effective, with 94.6% of isolates being susceptible. However, more than 76% of isolates exhibited resistance to rifampin, erythromycin, tetracycline, and ciprofloxacin, and 94.6% were multidrug-resistant (MDR). Additionally, 39.3% of the isolates were vancomycin-resistant enterococci (VRE) with a MIC > 32 μg/mL, and the vanA gene was detected in 35.7% of the isolates. High-level resistance to gentamicin and streptomycin was seen in 60.7% and 50% of the isolates, respectively. The most prevalent aminoglycoside resistance gene was aph(3')-IIIa (62.5%) followed by ant(6')-Ia (58.9%), and aac(6')-Ie-aph(2″)-Ia (50%). The ant(3″)-Ia was found in only one isolate. Most of the isolates (87.5%) were biofilm producers, and the distribution of virulence-encoding genes was as follows: gelE (66.1%), efaA (57.1%), asa1 (51.8%), esp (25%), cylA (19.6%), and hyl (8.9%). Furthermore, the ace gene was present in 79.4% of E. faecalis isolates, while the fnm and acm genes were found in 76.5% and 23.5% of E. faecium isolates, respectively. CONCLUSION The study highlights the significant role of notable drug resistance and the widespread presence of virulence traits in the development of enterococcal infections.
Collapse
Affiliation(s)
- Maryam Koleini
- Department of Microbiology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Ahmad Mosadegh
- Department of Microbiology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Farzan Madadizadeh
- Center for Healthcare Data Modeling, Department of Biostatistics and Epidemiology, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Hamid Heidari
- Department of Microbiology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
2
|
Touati A, Mairi A, Ibrahim NA, Idres T. Essential Oils for Biofilm Control: Mechanisms, Synergies, and Translational Challenges in the Era of Antimicrobial Resistance. Antibiotics (Basel) 2025; 14:503. [PMID: 40426569 PMCID: PMC12108346 DOI: 10.3390/antibiotics14050503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2025] [Revised: 04/28/2025] [Accepted: 05/09/2025] [Indexed: 05/29/2025] Open
Abstract
Biofilms, structured microbial consortia embedded in self-produced extracellular matrices, pose significant challenges across the medical, industrial, and environmental sectors due to their resistance to antimicrobial therapies and ability to evade the immune system. Their resilience is driven by multifaceted mechanisms, including matrix-mediated drug sequestration, metabolic dormancy, and quorum sensing (QS)-regulated virulence, which collectively sustain persistent infections and contribute to the amplification of antimicrobial resistance (AMR). This review critically examines the potential of plant-derived essential oils (EOs) as innovative agents for biofilm control. EOs exhibit broad-spectrum antibiofilm activity through multi-target mechanisms, including disrupting initial microbial adhesion, degrading extracellular polymeric substances (EPSs), suppressing QS pathways, and compromising membrane integrity. Their ability to act synergistically with conventional antimicrobials at sub-inhibitory concentrations enhances therapeutic efficacy while reducing the selection pressure for resistance. Despite their potential, EO applications face technical challenges, such as compositional variability due to botanical sources, formulation stability issues, and difficulties in standardization for large-scale production. Clinical translation is further complicated by biofilm stage- and strain-dependent efficacy, insufficient in vivo validation of therapeutic outcomes, and potential cytotoxicity at higher doses. These limitations underscore the need for optimized delivery systems, such as nanoencapsulation, to enhance bioavailability and mitigate adverse effects. Future strategies should include combinatorial approaches with antibiotics or EPS-degrading enzymes, advanced formulation technologies, and standardized protocols to bridge laboratory findings to clinical practice. By addressing these challenges, EOs hold transformative potential to mitigate biofilm-associated AMR, offering sustainable, multi-target alternatives for infection management and biofilm prevention in diverse contexts.
Collapse
Affiliation(s)
- Abdelaziz Touati
- Laboratoire d’Ecologie Microbienne, Université de Bejaia, FSNV, Bejaia 06000, Algeria; (A.T.); (A.M.)
| | - Assia Mairi
- Laboratoire d’Ecologie Microbienne, Université de Bejaia, FSNV, Bejaia 06000, Algeria; (A.T.); (A.M.)
| | - Nasir Adam Ibrahim
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 13318, Saudi Arabia
| | - Takfarinas Idres
- Laboratory for Livestock Animal Production and Health Research, Rabie Bouchama National Veterinary School of Algiers, Issad ABBAS Street, BP 161 Oued Smar, Algiers 16059, Algeria;
| |
Collapse
|
3
|
Uskudar-Guclu A, Yalcin S. A novel Enterococcus faecalis bacteriophage Ef212: biological and genomic features. Int Microbiol 2025; 28:365-375. [PMID: 38935199 DOI: 10.1007/s10123-024-00547-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/30/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024]
Abstract
This study aimed to isolate and characterize biological and genomic features of a phage infecting Enterococcus faecalis. The phage was isolated from environmental water and temperature and pH stability, one-step growth curve, and multiplicity of infection (MOI) were determined. Whole genome sequencing (WGS) and structural and functional annotations were performed. Its antibiofilm activity was also evaluated. The optimal MOI was 0.01, the latency period was 5 min, and the burst size was 202 plaque forming unit (PFU). High phage survival rates were observed at between pH 4-10 and temperatures between 4-50 °C. WGS and Transmission electron microscopy (TEM) showed that it was an Efquatrovirus representing siphovirus morphotype respectively. It was named as Enterococcus phage Ef212 and has a linear 40,690 bp double-stranded DNA with 45.3% G + C content (GenBank accession number: OR052631). BACPHLIP tool demonstrated that Enterococcus phage Ef212 is a lytic phage (88%). A total of 80 open reading frames (ORFs) were found and there were no antibiotic resistance genes, pathogenicity, virulence genes, or tRNAs in the phage genome. It was diverged from the most similar phages (identity, 88.35%; coverage, 89%) by phylogenetic analysis. Phage Ef212 shared a large part of its genome (60/80) with several other phages, yet some unique parts were found in their genomes. Host range analysis showed that phage Ef212 showed lytic activity against vancomycin-resistant and vancomycin-susceptible E. faecalis clinical isolates. This novel phage Ef212 showed the ability to inhibit and reduce the biofilm formation by around 42% and 38%, respectively. The biological and genomic features indicate that having an effective antibacterial activity, phage Ef212 seemed a promising therapeutic and biocontrol agent.
Collapse
Affiliation(s)
- Aylin Uskudar-Guclu
- Faculty of Medicine, Department of Medical Microbiology, Baskent University, Ankara, Türkiye.
| | - Suleyman Yalcin
- Microbiology References Laboratory, Ministry of Health General Directorate of Public Health, Ankara, Türkiye
| |
Collapse
|
4
|
Kumar D, Mehrishi P, Faujdar SS, Chaudhary BL, Panwar S. Status of Biofilm Production and Vancomycin Resistance in Enterococcus in the Rural Population of Mathura, India. Cureus 2023; 15:e43351. [PMID: 37701006 PMCID: PMC10493460 DOI: 10.7759/cureus.43351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/11/2023] [Indexed: 09/14/2023] Open
Abstract
Introduction Hospital-acquired or nosocomial infections caused by the rapidly emerging bacteria vancomycin-resistant enterococci can be dangerous and even fatal. Therefore, this study aimed to investigate the presence of enterococci in various clinical specimens along with their vancomycin resistance status and biofilm-producing capabilities. Methods A total of 164 Enterococcus species were isolated and further included in this study. Isolation and identification were done by the standard bacteriological procedure, antibiotic susceptibility testingwas done by clinical laboratory standard guidelines, and biofilm production test was done by microtiter plate methods. Results Among the total of 164 isolates, Enterococcus faecalis constituted 60.97% and Enterococcus faecium constituted 39.02%. Maximum isolates were from urine samples. The prevalence of vancomycin-resistant Enterococcus was 6.70%, and 18.29% of Enterococcus isolates were biofilm producers. The sensitivity among the biofilm producers was maximum for linezolid (87.33%), followed by teicoplanin (86.43%) and vancomycin (79.64%). Conclusion High prevalence of enterococci was found in urine samples and biofilm producers Enterococcus isolates were more antibiotic-resistant than non-biofilm producers.
Collapse
Affiliation(s)
- Dinesh Kumar
- Microbiology, Krishna Mohan Medical College & Hospital, Mathura, IND
| | - Priya Mehrishi
- Microbiology, Maharishi Markandeshwar Medical College and Hospital, Solan, IND
| | | | | | - Sonu Panwar
- Microbiology, Krishna Mohan Medical College & Hospital, Mathura, IND
| |
Collapse
|
5
|
Gajewska J, Chajęcka-Wierzchowska W, Byczkowska-Rostkowska Z, Saki M. Biofilm Formation Capacity and Presence of Virulence Determinants among Enterococcus Species from Milk and Raw Milk Cheeses. Life (Basel) 2023; 13:life13020495. [PMID: 36836852 PMCID: PMC9962698 DOI: 10.3390/life13020495] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/03/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023] Open
Abstract
Bacterial biofilm is one of the major hazards facing the food industry. Biofilm-forming ability is one of the most important virulence properties of enterococci. The genus Enterococcus includes pathogenic, spoilage, and pro-technological bacteria. The presence of enterococci in milk and dairy products is usually associated with inadequate hygiene practices. The study examined the isolates' capacity for biofilm formation and identification of the genetic determinants of its formation among 85 Enterococcus strains isolated from raw milk (n = 49) and soft-ripened cheeses made from unpasteurized milk (n = 36). E. faecalis and E. faecium were the dominant species. The obtained results showed that 41.4% isolates from milk and 50.0% isolates from cheeses were able to form biofilm. All of the isolates analyzed had at least one of the studied genes. As regards the isolates from raw milk, the most prevalent gene was the gelE (85.6%), followed by the asa1 (66.7%). None of the isolates from cheeses showed the presence of cylA and sprE. The most prevalent gene among the strains from this source was the epbC (94.4%), followed by the gelE (88.9%). In isolates from both sources, the presence of proteins from the Fsr group was noted the least frequently. Nevertheless, results showed that were no significant differences between the biofilm-producing Enterococcus spp. and non-biofilm-producing isolates in term of occurrences of tested virulence genes. The ability to produce a biofilm by enterococci isolated from raw milk or ready-to-eat products emphasizes the need for continuous monitoring of the mechanisms of microbial adhesion.
Collapse
Affiliation(s)
- Joanna Gajewska
- Department of Industrial and Food Microbiology, Faculty of Food Science, University of Warmia and Mazury in Olsztyn, Plac Cieszyński 1, 10-726 Olsztyn, Poland
- Correspondence:
| | - Wioleta Chajęcka-Wierzchowska
- Department of Industrial and Food Microbiology, Faculty of Food Science, University of Warmia and Mazury in Olsztyn, Plac Cieszyński 1, 10-726 Olsztyn, Poland
| | - Zuzanna Byczkowska-Rostkowska
- Department of Industrial and Food Microbiology, Faculty of Food Science, University of Warmia and Mazury in Olsztyn, Plac Cieszyński 1, 10-726 Olsztyn, Poland
| | - Morteza Saki
- Department of Microbiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
6
|
Liu X, Wang Y, Zaleta-Pinet DA, Borris RP, Clark BR. Antibacterial and Anti-Biofilm Activity of Pyrones from a Pseudomonas mosselii Strain. Antibiotics (Basel) 2022; 11:1655. [PMID: 36421300 PMCID: PMC9686599 DOI: 10.3390/antibiotics11111655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/09/2022] [Accepted: 11/16/2022] [Indexed: 08/27/2023] Open
Abstract
The emergence of drug resistant microbes over recent decades represents one of the greatest threats to human health; the resilience of many of these organisms can be attributed to their ability to produce biofilms. Natural products have played a crucial role in drug discovery, with microbial natural products in particular proving a rich and diverse source of antimicrobial agents. During antimicrobial activity screening, the strain Pseudomonas mosselii P33 was found to inhibit the growth of multiple pathogens. Following chemical investigation of this strain, pseudopyronines A-C were isolated as the main active principles, with all three pseudopyronines showing outstanding activity against Staphylococcus aureus. The analogue pseudopyronine C, which has not been well-characterized previously, displayed sub-micromolar activity against S. aureus, Staphylococcus epidermidis and Pseudomonas aeruginosa. Moreover, the inhibitory abilities of the pseudopyronines against the biofilms of S. aureus were further studied. The results indicated all three pseudopyronines could directly reduce the growth of biofilm in both adhesion stage and maturation stage, displaying significant activity at micromolar concentrations.
Collapse
Affiliation(s)
- Xueling Liu
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou 450008, China
- School of Pharmaceutical Science and Technology, Health Sciences Platform, Tianjin University, Tianjin 300072, China
| | - Yali Wang
- College of Pharmacy, North China University of Science and Technology, Tangshan 063000, China
| | - Diana A. Zaleta-Pinet
- School of Pharmaceutical Science and Technology, Health Sciences Platform, Tianjin University, Tianjin 300072, China
| | - Robert P. Borris
- School of Pharmaceutical Science and Technology, Health Sciences Platform, Tianjin University, Tianjin 300072, China
| | - Benjamin R. Clark
- School of Pharmaceutical Science and Technology, Health Sciences Platform, Tianjin University, Tianjin 300072, China
| |
Collapse
|
7
|
Oberbach A, Schlichting N, Hagl C, Lehmann S, Kullnick Y, Friedrich M, Köhl U, Horn F, Kumbhari V, Löffler B, Schmidt F, Joskowiak D, Born F, Saha S, Bagaev E. Four decades of experience of prosthetic valve endocarditis reflect a high variety of diverse pathogens. Cardiovasc Res 2022; 119:410-428. [PMID: 35420122 DOI: 10.1093/cvr/cvac055] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 03/04/2022] [Accepted: 03/23/2022] [Indexed: 01/18/2023] Open
Abstract
Prosthetic valve endocarditis (PVE) remains a serious condition with a high mortality rate. Precise identification of the PVE-associated pathogen/s and their virulence is essential for successful therapy, and patient survival. The commonly described PVE-associated pathogens are staphylococci, streptococci and enterococci, with Staphylococcus aureus being the most frequently diagnosed species. Furthermore, multi-drug resistance pathogens are increasing in prevalence, and continue to pose new challenges mandating a personalized approach. Blood cultures in combination with echocardiography are the most common methods to diagnose PVE, often being the only indication, it exists. In many cases, the diagnostic strategy recommended in the clinical guidelines does not identify the precise microbial agent and to frequently, false negative blood cultures are reported. Despite the fact that blood culture findings are not always a good indicator of the actual PVE agent in the valve tissue, only a minority of re-operated prostheses are subjected to microbiological diagnostic evaluation. In this review, we focus on the diversity and the complete spectrum of PVE-associated bacterial, fungal and viral pathogens in blood, and prosthetic heart valve, their possible virulence potential, and their challenges in making a microbial diagnosis. We are curious to understand if the unacceptable high mortality of PVE is associated with the high number of negative microbial findings in connection with a possible PVE. Herein, we discuss the possibilities and limits of the diagnostic methods conventionally used and make recommendations for enhanced pathogen identification. We also show possible virulence factors of the most common PVE-associated pathogens and their clinical effects. Based on blood culture, molecular biological diagnostics, and specific valve examination, better derivations for the antibiotic therapy as well as possible preventive intervention can be established in the future.
Collapse
Affiliation(s)
- Andreas Oberbach
- Department of Cardiac Surgery, Ludwig Maximilian University, Munich, Germany.,Fraunhofer Institute for Cell Therapy and Immunology, Department of Diagnostics, Leipzig, Germany
| | - Nadine Schlichting
- Fraunhofer Institute for Cell Therapy and Immunology, Department of Diagnostics, Leipzig, Germany.,Institute of Clinical Immunology, University of Leipzig, Leipzig, Germany
| | - Christian Hagl
- Department of Cardiac Surgery, Ludwig Maximilian University, Munich, Germany.,Munich Heart Alliance, Partner Site German Centre for Cardiovascular Disease (DZHK), Munich, Germany
| | - Stefanie Lehmann
- Fraunhofer Institute for Cell Therapy and Immunology, Department of Diagnostics, Leipzig, Germany.,Institute of Clinical Immunology, University of Leipzig, Leipzig, Germany
| | - Yvonne Kullnick
- Fraunhofer Institute for Cell Therapy and Immunology, Department of Diagnostics, Leipzig, Germany.,Institute of Clinical Immunology, University of Leipzig, Leipzig, Germany
| | - Maik Friedrich
- Fraunhofer Institute for Cell Therapy and Immunology, Department of Diagnostics, Leipzig, Germany.,Institute of Clinical Immunology, University of Leipzig, Leipzig, Germany
| | - Ulrike Köhl
- Fraunhofer Institute for Cell Therapy and Immunology, Department of Diagnostics, Leipzig, Germany.,Institute of Clinical Immunology, University of Leipzig, Leipzig, Germany
| | - Friedemann Horn
- Fraunhofer Institute for Cell Therapy and Immunology, Department of Diagnostics, Leipzig, Germany.,Institute of Clinical Immunology, University of Leipzig, Leipzig, Germany
| | - Vivek Kumbhari
- Department of Medicine, Division of Gastroenterology and Hepatology, Mayo Clinic, Florida, USA
| | - Bettina Löffler
- Institute of Medical Microbiology, Jena University Hospital, Jena, Germany
| | - Frank Schmidt
- Proteomics Core, Weill Cornell Medical Centre Qatar, Doha, Qatar
| | - Dominik Joskowiak
- Department of Cardiac Surgery, Ludwig Maximilian University, Munich, Germany
| | - Frank Born
- Department of Cardiac Surgery, Ludwig Maximilian University, Munich, Germany
| | - Shekhar Saha
- Department of Cardiac Surgery, Ludwig Maximilian University, Munich, Germany
| | - Erik Bagaev
- Department of Cardiac Surgery, Ludwig Maximilian University, Munich, Germany
| |
Collapse
|
8
|
Lee D, Im J, Park DH, Jeong S, Park M, Yoon S, Park J, Han SH. Lactobacillus plantarum Lipoteichoic Acids Possess Strain-Specific Regulatory Effects on the Biofilm Formation of Dental Pathogenic Bacteria. Front Microbiol 2021; 12:758161. [PMID: 34867884 PMCID: PMC8636137 DOI: 10.3389/fmicb.2021.758161] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 10/15/2021] [Indexed: 11/13/2022] Open
Abstract
Bacterial biofilm residing in the oral cavity is closely related to the initiation and persistence of various dental diseases. Previously, we reported the anti-biofilm activity of Lactobacillus plantarum lipoteichoic acid (Lp.LTA) on a representative dental cariogenic pathogen, Streptococcus mutans. Since LTA structure varies in a bacterial strain-specific manner, LTAs from various L. plantarum strains may have differential anti-biofilm activity due to their distinct molecular structures. In the present study, we isolated Lp.LTAs from four different strains of L. plantarum (LRCC 5193, 5194, 5195, and 5310) and compared their anti-biofilm effects on the dental pathogens, including S. mutans, Enterococcus faecalis, and Streptococcus gordonii. All Lp.LTAs similarly inhibited E. faecalis biofilm formation in a dose-dependent manner. However, their effects on S. gordonii and S. mutans biofilm formation were different: LRCC 5310 Lp.LTA most effectively suppressed the biofilm formation of all strains of dental pathogens, while Lp.LTAs from LRCC 5193 and 5194 hardly inhibited or even enhanced the biofilm formation. Furthermore, LRCC 5310 Lp.LTA dramatically reduced the biofilm formation of the dental pathogens on the human dentin slice infection model. Collectively, these results suggest that Lp.LTAs have strain-specific regulatory effects on biofilm formation of dental pathogens and LRCC 5310 Lp.LTA can be used as an effective anti-biofilm agent for the prevention of dental infectious diseases.
Collapse
Affiliation(s)
- Dongwook Lee
- Department of Oral Microbiology and Immunology, and DRI, School of Dentistry, Seoul National University, Seoul, South Korea
| | - Jintaek Im
- Department of Oral Microbiology and Immunology, and DRI, School of Dentistry, Seoul National University, Seoul, South Korea
| | - Dong Hyun Park
- Department of Oral Microbiology and Immunology, and DRI, School of Dentistry, Seoul National University, Seoul, South Korea
| | - Sungho Jeong
- Department of Oral Microbiology and Immunology, and DRI, School of Dentistry, Seoul National University, Seoul, South Korea
| | - Miri Park
- Bio Research Team, Lotte R&D Center, Seoul, South Korea
| | - Seokmin Yoon
- Bio Research Team, Lotte R&D Center, Seoul, South Korea
| | - Jaewoong Park
- Bio Research Team, Lotte R&D Center, Seoul, South Korea
| | - Seung Hyun Han
- Department of Oral Microbiology and Immunology, and DRI, School of Dentistry, Seoul National University, Seoul, South Korea
| |
Collapse
|
9
|
Lawpidet P, Tengjaroenkul B, Saksangawong C, Sukon P. Global Prevalence of Vancomycin-Resistant Enterococci in Food of Animal Origin: A Meta-Analysis. Foodborne Pathog Dis 2021; 18:405-412. [PMID: 33684315 DOI: 10.1089/fpd.2020.2892] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Vancomycin-resistant enterococci (VRE) are a leading cause of nosocomial infections in patients worldwide. VRE contamination in food of animal origin may create a risk for human health. This study was conducted to estimate the pooled prevalence of VRE in food of animal origin worldwide, to assess the result heterogeneity, and to determine cumulative evidence and the trend of the prevalence over time. Relevant studies were retrieved from PubMed, Scopus, and Web of Science. A random-effects model was used to calculate the pooled prevalence of VRE in food of animal origin. Subgroup meta-analysis was used to assess the heterogeneity of the results. A cumulative meta-analysis and meta-regression were conducted to determine cumulative evidence and the trend of the prevalence of VRE in food of animal origin over time, respectively. Of the 1352 retrieved studies, 50 articles were included. The pooled prevalence of VRE in food of animal origin was 11.7% (95% confidence interval [95% CI] = 8.4 to 16.0). Subgroup meta-analyses showed a significant difference in the prevalence of VRE for two characteristics. First, for the source of food, the prevalence of VRE was highest in aquatic food (43.4% [95% CI = 28.4 to 59.7]) and lowest in dairy food (4.1% [95% CI = 1.7 to 9.8]). Second, for continents, the prevalence of VRE was highest in Africa (18.5% [95% CI = 12.8 to 26.1]) and lowest in North America (0.3% [95% CI = 0.1 to 1.1]). Cumulative evidence showed two distinct features in two different periods. The pooled prevalence of VRE rapidly decreased from 79.3% in 1998 to 13.1% in 2003; it has slightly fluctuated between 10.5% and 20.5% since 2004. The results of the meta-regression indicated that the prevalence gradually decreased over time. In conclusion, the estimate of overall VRE prevalence worldwide in food of animal origin was ∼12%, indicating the burden of VRE contamination in food of animal origin.
Collapse
Affiliation(s)
| | - Bundit Tengjaroenkul
- Faculty of Veterinary Medicine, Khon Kaen University, Khon Kaen, Thailand.,Research and Development on Toxic Substances, Microorganisms and Feed Additives in Livestock and Aquatic Animals for Food Safety, Khon Kaen University, Khon Kaen, Thailand
| | | | - Peerapol Sukon
- Faculty of Veterinary Medicine, Khon Kaen University, Khon Kaen, Thailand.,Research and Development on Toxic Substances, Microorganisms and Feed Additives in Livestock and Aquatic Animals for Food Safety, Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|
10
|
Das AK, Dudeja M, Kohli S, Ray P, Singh M, Kaur PS. Biofilm synthesis and other virulence factors in multidrug-resistant uropathogenic enterococci isolated in Northern India. Indian J Med Microbiol 2020; 38:200-209. [PMID: 32883934 DOI: 10.4103/ijmm.ijmm_19_355] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Purpose Enterococci express high degree of resistance towards wide range of antibiotics. Production of biofilm and many virulence factors along with drug resistance makes it difficult to eradicate the infection from urinary tract. The present study detected the expression of such factors including biofilm production by multidrug-resistant (MDR) enterococci. Materials and Methods Drug susceptibility of 103 uropathogenic enterococci was performed followed by estimation of minimum inhibitory concentration of high-level gentamicin and vancomycin by microbroth dilution method. Vancomycin-resistant genes were detected by multiplex polymerase chain reaction. Production of virulence factors such as haemagglutination, caseinase, lipase, gelatinase, haemolysin and β-lactamase was detected by phenotypic methods in MDR strains. Biofilm production was detected by calcofluor-white fluorescence staining and semi-quantitative adherence assay. Results 45% and 18.4% of the isolates were high-level gentamicin-resistant and vancomycin-resistant enterococci (VRE), respectively. vanA gene was detected in 14 and vanB gene in 5 strains. Biofilm, caseinase and gelatinase were the most expressed virulence factor. Expression of caseinase, gelatinase and lipase was significantly higher in Enterococcus faecalis (P < 0.05). Expression of haemagglutination, gelatinase and haemolysin among the vancomycin-resistant isolates was significantly higher (P < 0.05). Conclusion VanA and vanB are the prevalent genotypes responsible for vancomycin resistance. The high prevalence of MDR enterococcal strains producing biofilm and virulence determinants raises concern. asa1, hyl, esp, gelE, cyl and other genes are known to express these factors and contribute to biofilm formation. Most uropathogenic enterococci expressed biofilm at moderate level and can be detected effectively by calcofluor-white staining. No correlation was noted between vancomycin resistance and biofilm production.
Collapse
Affiliation(s)
- Ayan Kumar Das
- Department of Microbiology, Hamdard Institute of Medical Sciences and Research, Jamia Hamdard, New Delhi, India
| | - Mridu Dudeja
- Department of Microbiology, Hamdard Institute of Medical Sciences and Research, Jamia Hamdard, New Delhi, India
| | - Sunil Kohli
- Department of Medicine, Hamdard Institute of Medical Sciences and Research, Jamia Hamdard, New Delhi, India
| | - Pratima Ray
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| | - Manvi Singh
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Preet Simran Kaur
- Department of Microbiology, Hamdard Institute of Medical Sciences and Research, Jamia Hamdard, New Delhi, India
| |
Collapse
|
11
|
Memariani H, Memariani M, Ghasemian A. An overview on anti-biofilm properties of quercetin against bacterial pathogens. World J Microbiol Biotechnol 2019; 35:143. [PMID: 31493142 DOI: 10.1007/s11274-019-2719-5] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 08/24/2019] [Indexed: 01/22/2023]
Abstract
Bacterial biofilms are multicellular aggregates enclosed in a self-created biopolymer matrix. Biofilm-producing bacteria have become a great public health problem worldwide because biofilms enable these microorganisms to evade several clearance mechanisms produced by host and synthetic sources. Over the past years, different flavonoids including quercetin have engrossed considerable interest among researchers owing to their potential anti-biofilm properties. To our knowledge, there is no review regarding effects of quercetin towards bacterial biofilms, prompting us to summarize experimental evidence on its anti-biofilm properties. Quercetin inhibits biofilm development by a diverse array of bacterial pathogens such as Enterococcus faecalis, Staphylococcus aureus, Streptococcus mutans, Escherichia coli, and Pseudomonas aeruginosa. Prevention of bacterial adhesion, suppression of quorum-sensing pathways, disruption or alteration of plasma membrane, inhibition of efflux pumps, and blocking nucleic acid synthesis have been documented as major anti-biofilm mechanisms of quercetin. Overall, anti-biofilm activity of quercetin can open up new horizons in a wide range of biomedical areas, from food industry to medicine.
Collapse
Affiliation(s)
- Hamed Memariani
- Skin Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mojtaba Memariani
- Skin Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | | |
Collapse
|
12
|
Poultry as a vector for emerging multidrug resistant Enterococcus spp.: First report of vancomycin (van) and the chloramphenicol–florfenicol (cat-fex-cfr) resistance genes from pigeon and duck faeces. Microb Pathog 2019; 128:195-205. [DOI: 10.1016/j.micpath.2019.01.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 01/02/2019] [Accepted: 01/04/2019] [Indexed: 12/20/2022]
|
13
|
Yan Q, Karau MJ, Patel R. In vitro activity of oritavancin against planktonic and biofilm states of vancomycin-susceptible and vancomycin-resistant enterococci. Diagn Microbiol Infect Dis 2018; 91:348-350. [PMID: 29678300 DOI: 10.1016/j.diagmicrobio.2018.03.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 03/08/2018] [Accepted: 03/11/2018] [Indexed: 11/20/2022]
Abstract
We tested the in vitro activity of oritavancin against 60 vancomycin-susceptible enterococci (VSE) and 27 vancomycin-resistant enterococci (VRE). The oritavancin MIC ranged from ≤0.002 to 0.5μg/mL; the minimum biofilm bactericidal concentration ranged from ≤0.002 to 2μg/mL. Oritavancin has promising in vitro activity against VSE and VRE in both planktonic and biofilm states.
Collapse
Affiliation(s)
- Qun Yan
- Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN; Department of Clinical Laboratory, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Melissa J Karau
- Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| | - Robin Patel
- Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN; Division of Infectious Diseases, Department of Medicine, Mayo Clinic, Rochester, MN.
| |
Collapse
|