1
|
Ahmadi Ghezeldasht S, Mosavat A, Rezaee SA. Novel insights into human T-lymphotropic virus type-1 (HTLV-1) pathogenesis-host interactions in the manifestation of HTLV-1-associated myelopathy/tropical spastic paraparesis. Rev Med Virol 2024; 34:e2567. [PMID: 38937135 DOI: 10.1002/rmv.2567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 04/16/2024] [Accepted: 06/19/2024] [Indexed: 06/29/2024]
Abstract
Human T-lymphotropic virus type-1 (HTLV-1) was the first discovered human oncogenic retrovirus, the etiological agent of two serious diseases have been identified as adult T-cell leukaemia/lymphoma malignancy and HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP), a debilitating chronic neuro-myelopathy. Despite more than 40 years of molecular, histopathological and immunological studies on HTLV-1-associated diseases, the virulence and pathogenicity of this virus are yet to be clarified. The reason why the majority of HTLV-1-infected individuals (∼95%) remain asymptomatic carriers is still unclear. The deterioration of the immune system towards oncogenicity and autoimmunity makes HTLV-1 a natural probe for the study of malignancy and neuro-inflammatory diseases. Additionally, its slow worldwide spreading has prompted public health authorities and researchers, as urged by the WHO, to focus on eradicating HTLV-1. In contrast, neither an effective therapy nor a protective vaccine has been introduced. This comprehensive review focused on the most relevant studies of the neuro-inflammatory propensity of HTLV-1-induced HAM/TSP. Such an emphasis on the virus-host interactions in the HAM/TSP pathogenesis will be critically discussed epigenetically. The findings may shed light on future research venues in designing and developing proper HTLV-1 therapeutics.
Collapse
Affiliation(s)
- Sanaz Ahmadi Ghezeldasht
- Blood Borne Infections Research Center, Academic Center for Education, Culture and Research (ACECR), Razavi Khorasan, Mashhad, Iran
| | - Arman Mosavat
- Blood Borne Infections Research Center, Academic Center for Education, Culture and Research (ACECR), Razavi Khorasan, Mashhad, Iran
| | - Seyed Abdolrahim Rezaee
- Inflammation and Inflammatory Diseases Division, Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
2
|
Ameya G, Birri DJ. The molecular mechanisms of virus-induced human cancers. Microb Pathog 2023; 183:106292. [PMID: 37557930 DOI: 10.1016/j.micpath.2023.106292] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 07/20/2023] [Accepted: 08/07/2023] [Indexed: 08/11/2023]
Abstract
Cancer is a serious public health problem globally. Many human cancers are induced by viruses. Understanding of the mechanisms by which oncogenic (tumorigenic) viruses induce cancer is essential in the prevention and control of cancer. This review covers comprehensive characteristics and molecular mechanisms of the main virus-attributed cancers caused by human papillomavirus, hepatitis B virus, hepatitis C virus, Epstein-Barr virus, human herpesvirus type 8, human T-cell lymphotropic virus, human polyomaviruses, Merkel cell polyomavirus, and HIV. Oncogenic viruses employ biological processes to replicate and avoid detection by host cell immune systems. Tumorigenic infectious agents activate oncogenes in a variety of ways, allowing the pathogen to block host tumour suppressor proteins, inhibit apoptosis, enhance cell proliferation, and promote invasion of host cells. Furthermore, this review assesses many pathways of viruses linked to cancer, including host cellular communication perturbation, DNA damage mechanisms, immunity, and microRNA targets that promote the beginning and progression of cancer. The current cancer prevention is primarily focused on non-communicable diseases, but infection-attributable cancer also needs attention to significantly reduce the rising cancer burden and related deaths.
Collapse
Affiliation(s)
- Gemechu Ameya
- Department of Medical Laboratory Sciences, College of Medicine and Health Sciences, Kotebe Metropolitan University, Addis Ababa, Ethiopia; Department of Microbial, Cellular and Molecular Biology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Dagim Jirata Birri
- Department of Microbial, Cellular and Molecular Biology, Addis Ababa University, Addis Ababa, Ethiopia.
| |
Collapse
|
3
|
Santana CS, Andrade FDO, da Silva GCS, Nascimento JODS, Campos RF, Giovanetti M, Santos LA, Gois LL, Alcantara LCJ, Barreto FK. Advances in preventive vaccine development against HTLV-1 infection: A systematic review of the last 35 years. Front Immunol 2023; 14:1073779. [PMID: 36860854 PMCID: PMC9968880 DOI: 10.3389/fimmu.2023.1073779] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 01/25/2023] [Indexed: 02/15/2023] Open
Abstract
Introduction The Human T-lymphotropic virus type 1 (HTLV-1) was the first described human retrovirus. It is currently estimated that around 5 to 10 million people worldwide are infected with this virus. Despite its high prevalence, there is still no preventive vaccine against the HTLV-1 infection. It is known that vaccine development and large-scale immunization play an important role in global public health. To understand the advances in this field we performed a systematic review regarding the current progress in the development of a preventive vaccine against the HTLV-1 infection. Methods This review followed the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA®) guidelines and was registered at the International Prospective Register of Systematic Reviews (PROSPERO). The search for articles was performed in PubMed, Lilacs, Embase and SciELO databases. From the 2,485 articles identified, 25 were selected according to the inclusion and exclusion criteria. Results The analysis of these articles indicated that potential vaccine designs in development are available, although there is still a paucity of studies in the human clinical trial phase. Discussion Although HTLV-1 was discovered almost 40 years ago, it remains a great challenge and a worldwide neglected threat. The scarcity of funding contributes decisively to the inconclusiveness of the vaccine development. The data summarized here intends to highlight the necessity to improve the current knowledge of this neglected retrovirus, encouraging for more studies on vaccine development aiming the to eliminate this human threat. Systematic review registration https://www.crd.york.ac.uk/prospero, identifier (CRD42021270412).
Collapse
Affiliation(s)
- Carolina Souza Santana
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista, Brazil
| | | | | | | | - Raissa Frazão Campos
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista, Brazil
| | - Marta Giovanetti
- Laboratório de Mosquitos Vetores: Endossimbiontes e Interação Patógeno-Vetor, Instituto René Rachou - Fiocruz, Belo Horizonte, Minas Gerais, Brazil.,Department of Science and Technology for Humans and the Environment, University of Campus Bio-Medico di Roma, Rome, Italy
| | - Luciane Amorim Santos
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil.,Escola Bahiana de Medicina e Saúde Pública, Salvador, Brazil
| | - Luana Leandro Gois
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil.,Departamento de Ciências da Biointeração, Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador, Brazil
| | - Luiz Carlos Júnior Alcantara
- Laboratório de Mosquitos Vetores: Endossimbiontes e Interação Patógeno-Vetor, Instituto René Rachou - Fiocruz, Belo Horizonte, Minas Gerais, Brazil
| | - Fernanda Khouri Barreto
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista, Brazil
| |
Collapse
|
4
|
Computed tomography with 6-year follow-up demonstrates the evolution of HTLV-1 related lung injuries: A cohort study. PLoS One 2021; 16:e0261864. [PMID: 34965281 PMCID: PMC8716036 DOI: 10.1371/journal.pone.0261864] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 12/12/2021] [Indexed: 11/19/2022] Open
Abstract
Previous observational studies have demonstrated the development of pulmonary impairments in human T-lymphotropic virus type 1 (HTLV-1) infected individuals. The main observed lesions due to chronic inflammation of viral infection in situ are bronchiectasis and lung-scarring injuries. This lung inflammation may be the causal agent of restrictive and obstructive lung diseases, primarily in tropical spastic paraparesis/HTLV-1-associated myelopathy (TSP-HAM) patients. We conducted a prospective cohort study to compare spirometry and high-resolution computed tomography (HRCT) findings among 28 HTLV-1-carrier patients over the course of 6 years (2014–2019) (male/female: 7/21; mean age: 54.7 ± 9.5, range: 41–68 years). Chest HRCT exams revealed the development and evolution of lung lesions related to TSP-HAM: including centrilobular nodules, parenchymal bands, lung cysts, bronchiectasis, ground-glass opacity, mosaic attenuation, and pleural thickening. Spirometry exams showed maintenance of respiratory function, with few alterations in parameters suggestive of obstructive and restrictive disorders primarily in individuals with lung lesions and TSP-HAM. The findings of the present study indicate that pulmonary disease related to HTLV-1 is a progressive disease, with development of new lung lesions, mainly in individuals with TSP-HAM. To improve clinical management of these individuals, we recommend that individuals diagnosed with PET-MAH undergo pulmonary evaluation.
Collapse
|
5
|
Sohraby F, Aryapour H. Reconstruction of the binding pathway of an anti-HIV drug, Indinavir, in complex with the HTLV-1 protease using unaggregated unbiased molecular dynamics simulation. Comput Biol Chem 2021; 96:107616. [PMID: 34883394 DOI: 10.1016/j.compbiolchem.2021.107616] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 11/16/2021] [Accepted: 12/02/2021] [Indexed: 12/13/2022]
Abstract
Retroviruses are a growing concern for the health of human beings, and one of the dangerous members of this family is the Human T-cell Leukemia Virus 1 (HTLV-1) virus. It has affected more than 20 million people so far, and since there are no registered treatments against it yet, urgent treatment solutions are needed. One of the most promising drug targets to fight this virus is the protease enzyme of the virus's protein machinery. In this study, by utilizing a computational method called Unaggregated Unbiased Molecular Dynamics (UUMD), we reconstructed the binding pathway of a HTLV-1 protease inhibitor, Indinavir, to find the details of the binding pathway, the influential residues, and also the stable states of the binding pathway. We achieved the native conformation of the inhibitor in 6 rounds, 360 replicas by performing over 4 micro-seconds of UMD simulations. We found 3 Intermediate states between the solvated state and the native conformation state in the binding pathway. We also discovered that aromatic residues such as Trp98 and Trp98', catalytic residues Asp32 and Asp32', and the flap region's residues have the most influential roles in the binding pathway and also have the most contribution to the total interaction energies. We believe that the details found in this study would be a great guide for developing new treatment solutions against the HTLV-1 virus by inhibiting the HTLV-1 protease.
Collapse
Affiliation(s)
- Farzin Sohraby
- Department of Biology, Faculty of Science, Golestan University, Gorgan, Iran
| | - Hassan Aryapour
- Department of Biology, Faculty of Science, Golestan University, Gorgan, Iran.
| |
Collapse
|
6
|
Sohraby F, Aryapour H. Comparative analysis of the unbinding pathways of antiviral drug Indinavir from HIV and HTLV1 proteases by supervised molecular dynamics simulation. PLoS One 2021; 16:e0257916. [PMID: 34570822 PMCID: PMC8476009 DOI: 10.1371/journal.pone.0257916] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 09/13/2021] [Indexed: 11/18/2022] Open
Abstract
Determining the unbinding pathways of potential small molecule compounds from their target proteins is of great significance for designing efficacious treatment solutions. One of these potential compounds is the approved HIV-1 protease inhibitor, Indinavir, which has a weak effect on the HTLV-1 protease. In this work, by employing the SuMD method, we reconstructed the unbinding pathways of Indinavir from HIV and HTLV-1 proteases to compare and understand the mechanism of the unbinding and to discover the reasons for the lack of inhibitory activity of Indinavir against the HTLV-1 protease. We achieved multiple unbinding events from both HIV and HTLV-1 proteases in which the RMSD values of Indinavir reached over 40 Å. Also, we found that the mobility and fluctuations of the flap region are higher in the HTLV-1 protease, making the drug less stable. We realized that critically positioned aromatic residues such as Trp98/Trp98' and Phe67/Phe67' in the HTLV-1 protease could make strong π-Stacking interactions with Indinavir in the unbinding pathway, which are unfavorable for the stability of Indinavir in the active site. The details found in this study can make a reasonable explanation for the lack of inhibitory activity of this drug against HTLV-1 protease. We believe the details discovered in this work can help design more effective and selective inhibitors for the HTLV-1 protease.
Collapse
Affiliation(s)
- Farzin Sohraby
- Faculty of Science, Department of Biology, Golestan University, Gorgan, Iran
| | - Hassan Aryapour
- Faculty of Science, Department of Biology, Golestan University, Gorgan, Iran
- * E-mail:
| |
Collapse
|
7
|
Impact of HIV co-infection on immunological biomarker profile of HTLV-1 infected patients. Immunol Lett 2021; 236:68-77. [PMID: 34087263 DOI: 10.1016/j.imlet.2021.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 08/11/2020] [Accepted: 05/28/2021] [Indexed: 11/23/2022]
Abstract
The impact of HIV co-infection on the plasma immunological biomarker profile of HTLV-1 infected patients was evaluated. The plasma levels of leukotrienes and chemokines/cytokines were quantified by ELISA and Cytometric Bead Array. A total of 138 volunteers were enrolled and divided into two subgroups ("HTLV-1(+)HIV(-)" and "HTLV-1(+)(HIV(+)"), which were categorized according to the HTLV-1-associated neurological disease (AS, pHAM and HAM). Reference controls were BD and HIV mono-infected patients. HAM(+) exhibited higher CD4+ T-cell counts as compared to HIV+ mono-infected patients and lower HTLV-1 proviral load as compared to mono-infected HAM(-) patients. AS(+) exhibited higher levels of CysLT, CXCL8/IL-8 and lower levels of CCL5/RANTES as compared to AS(-). Increased levels of IL-6 and TNF with reduced levels of CXCL10/IP10 and CCL5/RANTES were observed in co-infected pHAM(+) as compared to mono-infected pHAM(-). HAM(+) patients revealed an increase in CXCL8/IL-8, CCL2/MCP-1, CXCL-10/IP-10, TNF and a decrease in IL-2 as compared to HAM(-) subgroup.
Collapse
|
8
|
Gomes JAN, da Silva Dias GA, Fujihara S, Yoshikawa GT, Koyama RVL, Sousa RCM, Quaresma JAS, Fuzii HT. Decrease in naïve T cell production due to HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP) development. Immunobiology 2020; 226:152050. [PMID: 33338979 DOI: 10.1016/j.imbio.2020.152050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 10/25/2020] [Accepted: 11/29/2020] [Indexed: 10/22/2022]
Abstract
Human T-lymphocytic virus 1 (HTLV-1) is mainly associated with adult T-cell leukemia/lymphoma (ATLL) and HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). Patients with HAM/TSP exhibit significant changes in their immune response, and HTLV-1 infection can interfere in cytokine production and perhaps in T cell production. The aims of this study were to evaluate thymic function in HAM/TSP patients and HTLV-1 healthy carriers (HCs) and correlate it to age and interleukin 7 (IL-7) gene expression. Thymic function in 21 HAM/TSP patients and 12 HCs was evaluated by quantifying T cell receptor rearrangement excision circle (TREC) particles and IL-7 gene expression, both measured by quantitative polymerase chain reaction. HAM/TSP patients presented lower TREC particle counts (p = 0.0112) and lower IL-7 expression (p = 0.0102) than HCs. Both TREC particles and IL-7 gene expression were separately analyzed in two age groups: ≤ 59 years and ≥60 years, The ≤59-year-old HAM/TSP patients had a lower TREC count compared with the ≤59-year-old HCs (p = 0.0476). In conclusion, HAM/TSP development could interfere with thymic function because the results showed TREC particle reduction in HAM/TSP patients in relation to HCs, and it could be associated with a concomitant reduction in IL-7 expression.
Collapse
Affiliation(s)
| | | | - Satomi Fujihara
- Instituto de Ciências da Saúde, Universidade Federal do Pará, Belém-Pará, Brazil
| | | | | | | | | | - Hellen Thais Fuzii
- Núcleo de Medicina Tropical, Universidade Federal do Pará, Belém-Pará, Brazil
| |
Collapse
|
9
|
Vallinoto ACR, Cayres-Vallinoto I, Freitas Queiroz MA, Ishak MDOG, Ishak R. Influence of Immunogenetic Biomarkers in the Clinical Outcome of HTLV-1 Infected Persons. Viruses 2019; 11:v11110974. [PMID: 31652745 PMCID: PMC6893456 DOI: 10.3390/v11110974] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 09/20/2019] [Accepted: 09/23/2019] [Indexed: 12/11/2022] Open
Abstract
Human T-lymphotropic virus 1, a member of the Retroviridae family, causes a neglected, silent, persistent infection affecting circa 5 to 10 million people around the world, with biology, immune pathology, clinical diseases, epidemiology, and laboratory issues still unsolved. Most of the infected subjects are asymptomatic, but severe clinical disorders appear as a neurodegenerative disease (HTLV-1 associated myelopathy—HAM) or a lymphoprolipherative disorder (Adult T Leukemia/Lymphoma—ATLL) and in other target organs of the human body. HTLV-1 infections are frequently asymptomatic, but there is a large spectrum of diseases that have been described along the years. The mechanisms by which the virus interacts with the host, the different modes of response of the host to the infection, and the immunogenic characteristics of the host are some of the interesting and unanswered questions that may direct the outcome of the disease. The most relevant published results dealing with the genetic variations of the host, the immune response to HTLV-1 infection, and the outcome of the infection are presented herein, including Human Leucocyte Antigen (HLA), Killer Immunoglobulin-like Receptors (KIR), interleukin 6, 10, 28, Fas and Fas ligand, IFN-gamma, TNF-A, and Mannose-binding lectin. In summary, there are still several unmet research needs in the field of useful biomarkers on HTLV-1 pathogenesis.
Collapse
Affiliation(s)
| | - Izaura Cayres-Vallinoto
- Laboratório de Virologia, Instituto de Ciências Biológica, Universidade Federal do Pará, Belém 66.075-110, Brazil.
| | - Maria Alice Freitas Queiroz
- Laboratório de Virologia, Instituto de Ciências Biológica, Universidade Federal do Pará, Belém 66.075-110, Brazil.
| | | | - Ricardo Ishak
- Laboratório de Virologia, Instituto de Ciências Biológica, Universidade Federal do Pará, Belém 66.075-110, Brazil.
| |
Collapse
|
10
|
Hussein HM, Rahal EA. The role of viral infections in the development of autoimmune diseases. Crit Rev Microbiol 2019; 45:394-412. [PMID: 31145640 DOI: 10.1080/1040841x.2019.1614904] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The exact aetiology of most autoimmune diseases remains unknown, nonetheless, several factors contributing to the induction or exacerbation of autoimmune reactions have been suggested. These include the genetic profile and lifestyle of the affected individual in addition to environmental triggers such as bacterial, parasitic, fungal and viral infections. Infections caused by viruses usually trigger a potent immune response that is necessary for the containment of the infection; however, in some cases, a failure in the regulation of this immune response may lead to harmful immune reactions directed against the host's antigens. The autoimmune attack can be carried out by different arms and components of the immune system and through different possible mechanisms including molecular mimicry, bystander activation, and epitope spreading among others. In this review, we examine the data available for the involvement of viral infections in triggering or exacerbating autoimmune diseases in addition to discussing the mechanisms by which these viral infections and the immune pathways they trigger possibly contribute to the development of autoimmunity.
Collapse
Affiliation(s)
- Hadi M Hussein
- Department of Experimental Pathology, Immunology and Microbiology, Faculty of Medicine, American University of Beirut , Beirut , Lebanon.,Center for Infectious Diseases Research (CIDR), American University of Beirut , Beirut , Lebanon
| | - Elias A Rahal
- Department of Experimental Pathology, Immunology and Microbiology, Faculty of Medicine, American University of Beirut , Beirut , Lebanon.,Center for Infectious Diseases Research (CIDR), American University of Beirut , Beirut , Lebanon
| |
Collapse
|
11
|
Anderson MR, Pleet ML, Enose-Akahata Y, Erickson J, Monaco MC, Akpamagbo Y, Velluci A, Tanaka Y, Azodi S, Lepene B, Jones J, Kashanchi F, Jacobson S. Viral antigens detectable in CSF exosomes from patients with retrovirus associated neurologic disease: functional role of exosomes. Clin Transl Med 2018; 7:24. [PMID: 30146667 PMCID: PMC6110307 DOI: 10.1186/s40169-018-0204-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 07/06/2018] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND HTLV-1 infects over 20 million people worldwide and causes a progressive neuroinflammatory disorder in a subset of infected individuals called HTLV-1 associated myelopathy/tropical spastic paraparesis (HAM/TSP). The detection of HTLV-1 specific T cells in the cerebrospinal fluid (CSF) suggests this disease is immunopathologically mediated and that it may be driven by viral antigens. Exosomes are microvesicles originating from the endosomal compartment that are shed into the extracellular space by various cell types. It is now understood that several viruses take advantage of this mode of intercellular communication for packaging of viral components as well. We sought to understand if this is the case in HTLV-1 infection, and specifically if HTLV-1 proteins can be found in the CSF of HAM/TSP patients where we know free virus is absent, and furthermore, if exosomes containing HTLV-1 Tax have functional consequences. RESULTS Exosomes that were positive for HTLV-1 Tax by Western blot were isolated from HAM/TSP patient PBMCs (25/36) in ex vivo cultures by trapping exosomes from culture supernatants. HTLV-1 seronegative PBMCs did not have exosomes with Tax (0/12), (Fisher exact test, p = 0.0001). We were able to observe HAM/TSP patient CSF (12/20) containing Tax+ exosomes but not in HTLV-1 seronegative MS donors (0/5), despite the absence of viral detection in the CSF supernatant (Fisher exact test p = 0.0391). Furthermore, exosomes cultivated from HAM/TSP PBMCs were capable of sensitizing target cells for HTLV-1 specific CTL lysis. CONCLUSION Cumulatively, these results show that there are HTLV-1 proteins present in exosomes found in virus-free CSF. HAM/TSP PBMCs, particularly CD4+CD25+ T cells, can excrete these exosomes containing HTLV-1 Tax and may be a source of the exosomes found in patient CSF. Importantly, these exosomes are capable of sensitizing an HTLV-1 specific immune response, suggesting that they may play a role in the immunopathology observed in HAM/TSP. Given the infiltration of HTLV-1 Tax-specific CTLs into the CNS of HAM/TSP patients, it is likely that exosomes may also contribute to the continuous activation and inflammation observed in HAM/TSP, and may suggest future targeted therapies in this disorder.
Collapse
Affiliation(s)
- Monique R Anderson
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, VA, 22901, USA.,Viral Immunology Section, Neuroimmunology Branch, National Institute for Neurological Disease and Stroke, National Institutes of Health, 10 Center Drive Rm 5C103, Bethesda, MD, 20892, USA
| | - Michelle L Pleet
- Laboratory of Molecular Virology, George Mason University, Manassas, VA, 20110, USA
| | - Yoshimi Enose-Akahata
- Viral Immunology Section, Neuroimmunology Branch, National Institute for Neurological Disease and Stroke, National Institutes of Health, 10 Center Drive Rm 5C103, Bethesda, MD, 20892, USA
| | - James Erickson
- Laboratory of Molecular Virology, George Mason University, Manassas, VA, 20110, USA
| | - Maria Chiara Monaco
- Laboratory of Molecular Medicine and Neuroscience, National Institutes for Neurological Disease and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Yao Akpamagbo
- Laboratory of Molecular Virology, George Mason University, Manassas, VA, 20110, USA
| | - Ashley Velluci
- Viral Immunology Section, Neuroimmunology Branch, National Institute for Neurological Disease and Stroke, National Institutes of Health, 10 Center Drive Rm 5C103, Bethesda, MD, 20892, USA
| | - Yuetsu Tanaka
- Department of Immunology, University of the Ryukyus Graduate School of Medicine, Okinawa, 903-0125, Japan
| | - Shila Azodi
- Viral Immunology Section, Neuroimmunology Branch, National Institute for Neurological Disease and Stroke, National Institutes of Health, 10 Center Drive Rm 5C103, Bethesda, MD, 20892, USA
| | - Ben Lepene
- Ceres Nanosciences, Manassas, VA, 20109, USA
| | - Jennifer Jones
- Vaccine Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Fatah Kashanchi
- Laboratory of Molecular Virology, George Mason University, Manassas, VA, 20110, USA
| | - Steven Jacobson
- Viral Immunology Section, Neuroimmunology Branch, National Institute for Neurological Disease and Stroke, National Institutes of Health, 10 Center Drive Rm 5C103, Bethesda, MD, 20892, USA.
| |
Collapse
|
12
|
Verde RCL, Carneiro Neto JA, Santos SMB, Carvalho EM, Lessa MM. The relationship between atopy and neurological manifestations in HTLV-1 infection. Rev Soc Bras Med Trop 2018; 51:207-211. [PMID: 29768555 DOI: 10.1590/0037-8682-0162-2017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 11/17/2017] [Indexed: 11/21/2022] Open
Abstract
INTRODUCTION Human T-cell lymphotropic virus type 1 (HTLV-1)induces exaggerated Th1 responses, whereas atopy is associated with exacerbated Th2 responses. METHODS Here, a cross-sectional study compared the prevalence of atopy in HTLV-1 carriers and HAM/TSP patients. It also compared the spontaneous cytokine production in HTLV-1-infected individuals. A retrospective cohort study evaluated the development of neurological manifestations in atopic and non-atopic carriers. RESULTS Atopic HAM/TSP patients with high IFN-γ production exhibited higher IL-5 levels than non-atopic patients. Allergic rhinitis accelerated the development of Babinski signals and overactive bladders. CONCLUSIONS Abnormal Th1 and Th2 responses coexist in HTLV-1-infected individuals and allergic diseases may worsen the clinical course of HTLV-1 infections.
Collapse
Affiliation(s)
- Raquel Crisóstomo Lima Verde
- Departamento de Imunologia, Hospital Universitário Professor Edgard Santos, Universidade Federal da Bahia, Salvador, BA, Brasil.,Departamento de Otorrinolaringologia, Hospital Universitário Professor Edgard Santos, Universidade Federal da Bahia, Salvador, BA, Brasil
| | - José Abraão Carneiro Neto
- Departamento de Imunologia, Hospital Universitário Professor Edgard Santos, Universidade Federal da Bahia, Salvador, BA, Brasil
| | - Silvane Maria Braga Santos
- Departamento de Imunologia, Hospital Universitário Professor Edgard Santos, Universidade Federal da Bahia, Salvador, BA, Brasil.,Departamento de Ciências Biológicas, Universidade Estadual de Feira de Santana, Feira de Santana, BA, Brasil.,Instituto Nacional de Ciência e Tecnologia - Doenças Tropicais (INCT-DT), CNPq, Salvador, BA, Brasil
| | - Edgar Marcelino Carvalho
- Departamento de Imunologia, Hospital Universitário Professor Edgard Santos, Universidade Federal da Bahia, Salvador, BA, Brasil.,Instituto Nacional de Ciência e Tecnologia - Doenças Tropicais (INCT-DT), CNPq, Salvador, BA, Brasil
| | - Marcus Miranda Lessa
- Departamento de Imunologia, Hospital Universitário Professor Edgard Santos, Universidade Federal da Bahia, Salvador, BA, Brasil.,Departamento de Otorrinolaringologia, Hospital Universitário Professor Edgard Santos, Universidade Federal da Bahia, Salvador, BA, Brasil
| |
Collapse
|
13
|
Komohara Y, Ma C, Yano H, Pan C, Horlad H, Saito Y, Ohnishi K, Fujiwara Y, Okuno Y, Nosaka K, Shimosaki S, Morishita K, Matsuoka M, Wakayama T, Takeya M. Cell adhesion molecule-1 (CADM1) expressed on adult T-cell leukemia/lymphoma cells is not involved in the interaction with macrophages. J Clin Exp Hematop 2017; 57:15-20. [PMID: 28420814 DOI: 10.3960/jslrt.17003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Cell adhesion molecule 1 (CADM1) is a cell adhesion molecule that is expressed in brain, liver, lung, testis, and some kinds of cancer cells including adult T-cell leukemia/lymphoma (ATLL). Recent studies have indicated the involvement of CADM1 in cell-cell contact between cytotoxic T-lymphocytes and virus infected cells. We previously reported that cell-cell interaction between lymphoma cells and macrophages induces lymphoma cell proliferation. In the present study, we investigated whether CADM1 is associated with cell-cell interaction between several human lymphoma cell lines and macrophages.CADM1 expression was observed in the ATLL cell lines, ATN-1, ATL-T, and ATL-35T, and in the B cell lymphoma cell lines, TL-1, DAUDI, and SLVL, using western blotting. Significant cell-cell interaction between macrophages and ATN-1, ATL-T, ATL-35T and MT-2, DAUDI, and SLVL cells, as assessed by induction of cell proliferation, was observed. Immunohistochemical analysis of human biopsy samples indicated CADM1 expression in 10 of 14 ATLL cases; however, no case of follicular lymphoma or diffuse large B-cell lymphoma was positive for CADM1. Finally, the interaction of macrophages with cells of the CADM1-negative ED ATLL cell line and CADM1-transfected ED cells was tested. However, significant cell-cell interaction between macrophage and CADM1-transfected ED cells was not observed. We conclude that CADM1 was not associated with cell-cell interaction between lymphoma cells and macrophages, although CADM1 may be a useful marker of ATLL for diagnostic procedures.
Collapse
Affiliation(s)
- Yoshihiro Komohara
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University
| | - Chaoya Ma
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University
| | - Hiromu Yano
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University
| | - Cheng Pan
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University
| | - Hasita Horlad
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University
| | - Yoichi Saito
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University
| | - Koji Ohnishi
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University
| | - Yukio Fujiwara
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University
| | - Yutaka Okuno
- Department of Hematology, Graduate School of Medical Sciences, Kumamoto University
| | - Kisato Nosaka
- Department of Hematology, Graduate School of Medical Sciences, Kumamoto University
| | - Shunsuke Shimosaki
- Division of Tumor and Cellular Biochemistry, Department of Medical Sciences, University of Miyazaki
| | - Kazuhiro Morishita
- Division of Tumor and Cellular Biochemistry, Department of Medical Sciences, University of Miyazaki
| | - Masao Matsuoka
- Department of Hematology, Graduate School of Medical Sciences, Kumamoto University.,Laboratory of Virus Control, Institute for Virus Research, Kyoto University
| | - Tomohiko Wakayama
- Department of Histology, Graduate School of Medical Sciences, Kumamoto University
| | - Motohiro Takeya
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University
| |
Collapse
|
14
|
Rivera-Caldón CC, López-Valencia D, Zamora-Bastidas TO, Dueñas-Cuéllar RA, Mora-Obando DL. Infección por el virus linfotrópico humano de células T tipo 1 (HTLV-1) y paraparesia espástica. Avances y diagnóstico 35 años después de su descubrimiento. IATREIA 2017. [DOI: 10.17533/udea.iatreia.v30n2a04] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
15
|
Quaresma JAS, Yoshikawa GT, Koyama RVL, Dias GAS, Fujihara S, Fuzii HT. HTLV-1, Immune Response and Autoimmunity. Viruses 2015; 8:v8010005. [PMID: 26712781 PMCID: PMC4728565 DOI: 10.3390/v8010005] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2015] [Revised: 11/27/2015] [Accepted: 12/14/2015] [Indexed: 12/14/2022] Open
Abstract
Human T-lymphotropic virus type-1 (HTLV-1) infection is associated with adult T-cell leukemia/lymphoma (ATL). Tropical spastic paraparesis/HTLV-1-associated myelopathy (PET/HAM) is involved in the development of autoimmune diseases including Rheumatoid Arthritis (RA), Systemic Lupus Erythematosus (SLE), and Sjögren's Syndrome (SS). The development of HTLV-1-driven autoimmunity is hypothesized to rely on molecular mimicry, because virus-like particles can trigger an inflammatory response. However, HTLV-1 modifies the behavior of CD4⁺ T cells on infection and alters their cytokine production. A previous study showed that in patients infected with HTLV-1, the activity of regulatory CD4⁺ T cells and their consequent expression of inflammatory and anti-inflammatory cytokines are altered. In this review, we discuss the mechanisms underlying changes in cytokine release leading to the loss of tolerance and development of autoimmunity.
Collapse
Affiliation(s)
- Juarez A S Quaresma
- Science Center of Health and Biology. Pará State University, Rua Perebebuí, 2623, Belém, Pará 66087-670, Brazil.
| | - Gilberto T Yoshikawa
- Science Health Institute, Federal University of Pará, Praça Camilo Salgado, 1, Belém, Pará 66055-240, Brazil.
| | - Roberta V L Koyama
- Science Center of Health and Biology. Pará State University, Rua Perebebuí, 2623, Belém, Pará 66087-670, Brazil.
| | - George A S Dias
- Science Center of Health and Biology. Pará State University, Rua Perebebuí, 2623, Belém, Pará 66087-670, Brazil.
| | - Satomi Fujihara
- Tropical Medicine Center, Federal University of Pará, Av. Generalíssimo Deodoro, 92, Belém, Pará 66055-240, Brazil.
| | - Hellen T Fuzii
- Tropical Medicine Center, Federal University of Pará, Av. Generalíssimo Deodoro, 92, Belém, Pará 66055-240, Brazil.
| |
Collapse
|
16
|
Correlation between clinical symptoms and peripheral immune response in HAM/TSP. Microb Pathog 2015; 92:72-75. [PMID: 26626960 DOI: 10.1016/j.micpath.2015.11.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 11/17/2015] [Accepted: 11/19/2015] [Indexed: 12/14/2022]
Abstract
HTLV-1 infects principally CD4+ T cells that are the main reservoirs of the virus in vivo, which play an important role in the immunological response. Most of the infected patients are asymptomatic. However, 2-3% of patients will develop HAM/TSP or Adult T lymphoma. HAM/TSP is a chronic inflammatory disease of the central nervous system, which is characterized by unremitting myelopathic symptoms. Studies have shown that cytokines levels alterations (IFN-γ and TNF-α) were associated with tissue injury in HAM/TSP. The aims of this study were to compare the gene expression of IFN-γ, IL-4 and IL-10 of asymptomatic and HAM/TSP HTLV-1 infected patients, and to correlate the gene expression with those of clinical symptoms. 28 subjects were included, 20 asymptomatic HTLV-1 and 8 with HAM/TSP. Spasticity was evaluated using the Modified Ashworth Scale and the degree of walking aid was classified on a progressive scale. The relative gene expression of IFN-γ, IL-4, and IL-10 was measured by Real-Time PCR. Results showed high gene expression of IFN-γ for all patients, but it was higher among HAM/TSP. A significant correlation was observed between IFN-γ gene expression and the degree of walking aid, and IFN-γ gene expression was higher among wheelchair users compared to non-wheelchair users. No association was found with IL-4 and IL-10. These findings indicate that HAM/TSP patients express higher amounts of IFN-γ than asymptomatic patients, and more importantly, the expression of this cytokine was strongly correlated with the need of walking aid.
Collapse
|
17
|
Bai XT, Nicot C. miR-28-3p is a cellular restriction factor that inhibits human T cell leukemia virus, type 1 (HTLV-1) replication and virus infection. J Biol Chem 2015; 290:5381-90. [PMID: 25568327 DOI: 10.1074/jbc.m114.626325] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Human T cell leukemia virus, type 1 (HTLV-1) replication and spread are controlled by different viral and cellular factors. Although several anti-HIV cellular microRNAs have been described, such a regulation for HTLV-1 has not been reported. In this study, we found that miR-28-3p inhibits HTLV-1 virus expression and its replication by targeting a specific site within the genomic gag/pol viral mRNA. Because miR-28-3p is highly expressed in resting T cells, which are resistant to HTLV-1 infection, we investigated a potential protective role of miR-28-3p against de novo HTLV-1 infection. To this end, we developed a new sensitive and quantitative assay on the basis of the detection of products of reverse transcription. We demonstrate that miR-28-3p does not prevent virus receptor interaction or virus entry but, instead, induces a post-entry block at the reverse transcription level. In addition, we found that HTLV-1, subtype 1A isolates corresponding to the Japanese strain ATK-1 present a natural, single-nucleotide polymorphism within the miR-28-3p target site. As a result of this polymorphism, the ATK-1 virus sequence was not inhibited by miR-28. Interestingly, genetic studies on the transmission of the virus has shown that the ATK-1 strain, which carries a Thr-to-Cys transition mutation, is transmitted efficiently between spouses, suggesting that miR-28 may play an important role in HTLV-1 transmission.
Collapse
Affiliation(s)
- Xue Tao Bai
- From the University of Kansas Medical Center, Department of Pathology and Laboratory Medicine and Center for Viral Oncology, Kansas City, Kansas 66160
| | - Christophe Nicot
- From the University of Kansas Medical Center, Department of Pathology and Laboratory Medicine and Center for Viral Oncology, Kansas City, Kansas 66160
| |
Collapse
|
18
|
Pise-Masison CA, de Castro-Amarante MF, Enose-Akahata Y, Buchmann RC, Fenizia C, Washington Parks R, Edwards D, Fiocchi M, Alcantara LC, Bialuk I, Graham J, Walser JC, McKinnon K, Galvão-Castro B, Gessain A, Venzon D, Jacobson S, Franchini G. Co-dependence of HTLV-1 p12 and p8 functions in virus persistence. PLoS Pathog 2014; 10:e1004454. [PMID: 25375128 PMCID: PMC4223054 DOI: 10.1371/journal.ppat.1004454] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 09/08/2014] [Indexed: 11/19/2022] Open
Abstract
HTLV-1 orf-I is linked to immune evasion, viral replication and persistence. Examining the orf-I sequence of 160 HTLV-1-infected individuals; we found polymorphism of orf-I that alters the relative amounts of p12 and its cleavage product p8. Three groups were identified on the basis of p12 and p8 expression: predominantly p12, predominantly p8 and balanced expression of p12 and p8. We found a significant association between balanced expression of p12 and p8 with high viral DNA loads, a correlate of disease development. To determine the individual roles of p12 and p8 in viral persistence, we constructed infectious molecular clones expressing p12 and p8 (D26), predominantly p12 (G29S) or predominantly p8 (N26). As we previously showed, cells expressing N26 had a higher level of virus transmission in vitro. However, when inoculated into Rhesus macaques, cells producing N26 virus caused only a partial seroconversion in 3 of 4 animals and only 1 of those animals was HTLV-1 DNA positive by PCR. None of the animals exposed to G29S virus seroconverted or had detectable viral DNA. In contrast, 3 of 4 animals exposed to D26 virus seroconverted and were HTLV-1 positive by PCR. In vitro studies in THP-1 cells suggested that expression of p8 was sufficient for productive infection of monocytes. Since orf-I plays a role in T-cell activation and recognition; we compared the CTL response elicited by CD4+ T-cells infected with the different HTLV-1 clones. Although supernatant p19 levels and viral DNA loads for all four infected lines were similar, a significant difference in Tax-specific HLA.A2-restricted killing was observed. Cells infected with Orf-I-knockout virus (12KO), G29S or N26 were killed by CTLs, whereas cells infected with D26 virus were resistant to CTL killing. These results indicate that efficient viral persistence and spread require the combined functions of p12 and p8.
Collapse
Affiliation(s)
- Cynthia A. Pise-Masison
- Animal Models and Retroviral Vaccines Section, National Cancer Institute, Bethesda, Maryland, United States of America
| | | | - Yoshimi Enose-Akahata
- Viral Immunology Section, Neuroimmunology Branch, National Institute of Neurological Disorders and Stroke, Bethesda, Maryland, United States of America
| | - R. Cody Buchmann
- Animal Models and Retroviral Vaccines Section, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Claudio Fenizia
- Animal Models and Retroviral Vaccines Section, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Robyn Washington Parks
- Animal Models and Retroviral Vaccines Section, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Dustin Edwards
- Animal Models and Retroviral Vaccines Section, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Martina Fiocchi
- Animal Models and Retroviral Vaccines Section, National Cancer Institute, Bethesda, Maryland, United States of America
| | | | - Izabela Bialuk
- Department of General and Experimental Pathology, Medical University in Białystok, Białystok, Poland
| | - Jhanelle Graham
- Viral Immunology Section, Neuroimmunology Branch, National Institute of Neurological Disorders and Stroke, Bethesda, Maryland, United States of America
| | - Jean-Claude Walser
- Evolutionary Biology, Genetic Diversity Centre, University of Basel, Basel, Switzerland
| | - Katherine McKinnon
- Vaccine Branch Flow Cytometry Core Laboratory, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | | | - Antoine Gessain
- Unité d'Epidémiologie et Physiopathologie des Virus Oncogènes, Département de Virologie, Batiment Lwoff, Institut Pasteur, Paris, France
| | - David Venzon
- Biostatistics and Data Management Section, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Steven Jacobson
- Viral Immunology Section, Neuroimmunology Branch, National Institute of Neurological Disorders and Stroke, Bethesda, Maryland, United States of America
| | - Genoveffa Franchini
- Animal Models and Retroviral Vaccines Section, National Cancer Institute, Bethesda, Maryland, United States of America
| |
Collapse
|
19
|
Libbey JE, Fujinami RS. Adaptive immune response to viral infections in the central nervous system. HANDBOOK OF CLINICAL NEUROLOGY 2014. [PMID: 25015488 DOI: 10.1016/b978-0-444-0.00010-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Jane E Libbey
- Department of Pathology, University of Utah, Salt Lake City, UT, USA
| | - Robert S Fujinami
- Department of Pathology, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
20
|
Libbey JE, Fujinami RS. Adaptive immune response to viral infections in the central nervous system. HANDBOOK OF CLINICAL NEUROLOGY 2014; 123:225-47. [PMID: 25015488 DOI: 10.1016/b978-0-444-53488-0.00010-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jane E Libbey
- Department of Pathology, University of Utah, Salt Lake City, UT, USA
| | - Robert S Fujinami
- Department of Pathology, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
21
|
Selvaraj C, Omer A, Singh P, Singh SK. Molecular insights of protein contour recognition with ligand pharmacophoric sites through combinatorial library design and MD simulation in validating HTLV-1 PR inhibitors. MOLECULAR BIOSYSTEMS 2014; 11:178-89. [PMID: 25335799 DOI: 10.1039/c4mb00486h] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Retroviruses HIV-1 and HTLV-1 are chiefly considered to be the most dangerous pathogens in Homo sapiens. These two viruses have structurally unique protease (PR) enzymes, which are having common function of its replication mechanism. Though HIV PR drugs failed to inhibit HTLV-1 infections, they emphatically emphasise the need for designing new lead compounds against HTLV-1 PR. Therefore, we tried to understand the binding level interactions through the charge environment present in both ligand and protein active sites. The domino effect illustrates that libraries of purvalanol-A are attuned to fill allosteric binding site of HTLV-1 PR through molecular recognition and shows proper binding of ligand pharmacophoric features in receptor contours. Our screening evaluates seven compounds from purvalanol-A libraries, and these compounds' pharmacophore searches for an appropriate place in the binding site and it places well according to respective receptor contour surfaces. Thus our result provides a platform for the progress of more effective compounds, which are better in free energy calculation, molecular docking, ADME and molecular dynamics studies. Finally, this research provided novel chemical scaffolds for HTLV-1 drug discovery.
Collapse
Affiliation(s)
- Chandrabose Selvaraj
- Computer Aided Drug Design and Molecular Modeling Lab, Department of Bioinformatics, Science Block, Alagappa University, Karaikudi-630004, Tamilnadu, India.
| | | | | | | |
Collapse
|
22
|
Tsukasaki K, Tobinai K. Human T-cell Lymphotropic Virus Type I–Associated Adult T-cell Leukemia–Lymphoma: New Directions in Clinical Research. Clin Cancer Res 2014; 20:5217-25. [DOI: 10.1158/1078-0432.ccr-14-0572] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
23
|
Fuzii HT, da Silva Dias GA, de Barros RJS, Falcão LFM, Quaresma JAS. Immunopathogenesis of HTLV-1-assoaciated myelopathy/tropical spastic paraparesis (HAM/TSP). Life Sci 2014; 104:9-14. [DOI: 10.1016/j.lfs.2014.03.025] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2013] [Revised: 03/10/2014] [Accepted: 03/25/2014] [Indexed: 10/25/2022]
|
24
|
Saito Y, Komohara Y, Niino D, Horlad H, Ohnishi K, Takeya H, Kawaguchi H, Shimizu H, Ohshima K, Takeya M. Role of CD204-Positive Tumor-Associated Macrophages in Adult T-Cell Leukemia/Lymphoma. J Clin Exp Hematop 2014; 54:59-65. [DOI: 10.3960/jslrt.54.59] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
25
|
Mota-Miranda ACA, Barreto FK, Baptista E, Farre-Vale L, Monteiro-Cunha JP, Galvão-Castro B, Alcantara LCJ. Molecular study of HBZ and gp21 human T cell leukemia virus type 1 proteins isolated from different clinical profile infected individuals. AIDS Res Hum Retroviruses 2013; 29:1370-2. [PMID: 23800288 DOI: 10.1089/aid.2013.0015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Human T cell leukemia virus type 1 (HTLV-1) is associated with a neurological syndrome named tropical spastic paraparesis/HTLV-associated myelopathy (TSP/HAM) and the disease progression involves viral factors. The gp21 glycoprotein is involved in envelope trafficking and membrane targeting while the bZIP protein is indispensable for cell growth and proliferation. This study aimed to assess the molecular diversity of gp21 and HBZ proteins in TSP/HAM and healthy carriers. DNA samples from HTLV-1-infected individuals were submitted to PCR and sequencing, and the molecular analyses were performed using bioinformatics tools. From eight gp21-analyzed sequences one amino acid change (Y477H) was associated with the switch of a helix to coil structure at secondary structure prediction. From 10 HBZ analyzed sequences, two amino acid changes were identified (S9P and T95I) at the activation domain. One mutation (R112C) located at the nuclear localization signal was present in 66.7% and 25% of healthy carriers (HC) and TSP/HAM groups, respectively. This is the first report of mutations in the HBZ region. These polymorphisms might be important for viral fitness.
Collapse
Affiliation(s)
- Aline Cristina A. Mota-Miranda
- Centro de Pesquisa Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Bahia, Brazil
- Escola Bahiana de Medicina e Saúde Pública, Salvador, Bahia, Brazil
- Universidade Federal da Bahia, Instituto de Ciências da Saúde, Salvador, Bahia, Brazil
| | - Fernanda K. Barreto
- Centro de Pesquisa Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Bahia, Brazil
| | - Everton Baptista
- Centro de Pesquisa Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Bahia, Brazil
| | - Lourdes Farre-Vale
- Centro de Pesquisa Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Bahia, Brazil
| | - Joana P. Monteiro-Cunha
- Centro de Pesquisa Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Bahia, Brazil
- Escola Bahiana de Medicina e Saúde Pública, Salvador, Bahia, Brazil
- Universidade Federal da Bahia, Instituto de Ciências da Saúde, Salvador, Bahia, Brazil
| | - Bernardo Galvão-Castro
- Centro de Pesquisa Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Bahia, Brazil
- Escola Bahiana de Medicina e Saúde Pública, Salvador, Bahia, Brazil
| | | |
Collapse
|
26
|
Lairmore MD, Haines R, Anupam R. Mechanisms of human T-lymphotropic virus type 1 transmission and disease. Curr Opin Virol 2012; 2:474-81. [PMID: 22819021 DOI: 10.1016/j.coviro.2012.06.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Revised: 06/26/2012] [Accepted: 06/26/2012] [Indexed: 10/28/2022]
Abstract
Human T-lymphotrophic virus type-1 (HTLV-1) infects approximately 15-20 million people worldwide, with endemic areas in Japan, the Caribbean, and Africa. The virus is spread through contact with bodily fluids containing infected cells most often from mother to child through breast milk or via blood transfusion. After prolonged latency periods, approximately 3-5% of HTLV-1 infected individuals will develop either adult T-cell leukemia/lymphoma, or other lymphocyte-mediated disorders such as HTLV-1-associated myelopathy/tropical spastic paraparesis. The genome of this complex retrovirus contains typical gag, pol, and env genes, but also unique nonstructural proteins encoded from the pX region. These nonstructural genes encode the Tax and Rex regulatory proteins, as well as novel proteins essential for viral spread in vivo such as p30, p12, p13 and the antisense-encoded HTLV-1 basic leucine zipper factor (HBZ). While progress has been made in knowledge of viral determinants of cell transformation and host immune responses, host and viral determinants of HTLV-1 transmission and spread during the early phases of infection are unclear. Improvements in the molecular tools to test these viral determinants in cellular and animal models have provided new insights into the early events of HTLV-1 infection. This review will focus on studies that test HTLV-1 determinants in context to full-length infectious clones of the virus providing insights into the mechanisms of transmission and spread of HTLV-1.
Collapse
Affiliation(s)
- Michael D Lairmore
- University of California-Davis, School of Veterinary Medicine, Davis, CA 95616, United States.
| | | | | |
Collapse
|
27
|
Lairmore MD, Anupam R, Bowden N, Haines R, Haynes RAH, Ratner L, Green PL. Molecular determinants of human T-lymphotropic virus type 1 transmission and spread. Viruses 2011; 3:1131-65. [PMID: 21994774 PMCID: PMC3185783 DOI: 10.3390/v3071131] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Revised: 07/01/2011] [Accepted: 07/02/2011] [Indexed: 01/23/2023] Open
Abstract
Human T-lymphotrophic virus type-1 (HTLV-1) infects approximately 15 to 20 million people worldwide, with endemic areas in Japan, the Caribbean, and Africa. The virus is spread through contact with bodily fluids containing infected cells, most often from mother to child through breast milk or via blood transfusion. After prolonged latency periods, approximately 3 to 5% of HTLV-1 infected individuals will develop either adult T-cell leukemia/lymphoma (ATL), or other lymphocyte-mediated disorders such as HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). The genome of this complex retrovirus contains typical gag, pol, and env genes, but also unique nonstructural proteins encoded from the pX region. These nonstructural genes encode the Tax and Rex regulatory proteins, as well as novel proteins essential for viral spread in vivo such as, p30, p12, p13 and the antisense encoded HBZ. While progress has been made in the understanding of viral determinants of cell transformation and host immune responses, host and viral determinants of HTLV-1 transmission and spread during the early phases of infection are unclear. Improvements in the molecular tools to test these viral determinants in cellular and animal models have provided new insights into the early events of HTLV-1 infection. This review will focus on studies that test HTLV-1 determinants in context to full length infectious clones of the virus providing insights into the mechanisms of transmission and spread of HTLV-1.
Collapse
Affiliation(s)
- Michael D. Lairmore
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA; E-Mails: (R.A.); (N.B.); (R.H.); (R.A.H.H.); (P.L.G.)
- Comprehensive Cancer Center, The Arthur G. James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, OH 43210, USA
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-614-292-9203; Fax: +1-614-292-6473
| | - Rajaneesh Anupam
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA; E-Mails: (R.A.); (N.B.); (R.H.); (R.A.H.H.); (P.L.G.)
| | - Nadine Bowden
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA; E-Mails: (R.A.); (N.B.); (R.H.); (R.A.H.H.); (P.L.G.)
| | - Robyn Haines
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA; E-Mails: (R.A.); (N.B.); (R.H.); (R.A.H.H.); (P.L.G.)
| | - Rashade A. H. Haynes
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA; E-Mails: (R.A.); (N.B.); (R.H.); (R.A.H.H.); (P.L.G.)
| | - Lee Ratner
- Department of Medicine, Pathology, and Molecular Microbiology, Division of Biology and Biological Sciences, Washington University School of Medicine, Campus Box 8069, 660 S. Euclid Ave., St. Louis, MO 63110, USA; E-Mail: (L.R.)
| | - Patrick L. Green
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA; E-Mails: (R.A.); (N.B.); (R.H.); (R.A.H.H.); (P.L.G.)
- Comprehensive Cancer Center, The Arthur G. James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
28
|
Kozako T, Hirata S, Shimizu Y, Satoh Y, Yoshimitsu M, White Y, Lemonnier F, Shimeno H, Soeda S, Arima N. Oligomannose-coated liposomes efficiently induce human T-cell leukemia virus-1-specific cytotoxic T lymphocytes without adjuvant. FEBS J 2011; 278:1358-66. [PMID: 21332943 DOI: 10.1111/j.1742-4658.2011.08055.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Human T-cell leukemia virus-1 (HTLV-1) causes adult T-cell leukemia/lymphoma, which is an aggressive peripheral T-cell neoplasm. Insufficient T-cell response to HTLV-1 is a potential risk factor in adult T-cell leukemia/lymphoma. Efficient induction of antigen-specific cytotoxic T lymphocytes is important for immunological suppression of virus-infected cell proliferation and oncogenesis, but efficient induction of antigen-specific cytotoxic T lymphocytes has evaded strategies utilizing poorly immunogenic free synthetic peptides. Here, we examined the efficient induction of an HTLV-1-specific CD8+ T-cell response by oligomannose-coated liposomes (OMLs) encapsulating the human leukocyte antigen (HLA)-A*0201-restricted HTLV-1 Tax-epitope (OML/Tax). Immunization of HLA-A*0201 transgenic mice with OML/Tax induced an HTLV-1-specific gamma-interferon reaction, whereas immunization with epitope peptide alone induced no reaction. Upon exposure of dendritic cells to OML/Tax, the levels of CD86, major histocompatibility complex class I, HLA-A02 and major histocompatibility complex class II expression were increased. In addition, our results showed that HTLV-1-specific CD8+ T cells can be efficiently induced by OML/Tax from HTLV-1 carriers compared with epitope peptide alone, and these HTLV-1-specific CD8+ T cells were able to lyse cells presenting the peptide. These results suggest that OML/Tax is capable of inducing antigen-specific cellular immune responses without adjuvants and may be useful as an effective vaccine carrier for prophylaxis in tumors and infectious diseases by substituting the epitope peptide.
Collapse
Affiliation(s)
- Tomohiro Kozako
- Division of Hematology and Immunology, Center for Chronic Viral Diseases, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Anupam R, Datta A, Kesic M, Green-Church K, Shkriabai N, Kvaratskhelia M, Lairmore MD. Human T-lymphotropic virus type 1 p30 interacts with REGgamma and modulates ATM (ataxia telangiectasia mutated) to promote cell survival. J Biol Chem 2011; 286:7661-8. [PMID: 21216954 DOI: 10.1074/jbc.m110.176354] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Human T-lymphotropic virus type 1 (HTLV-1) is a causative agent of adult T cell leukemia/lymphoma and a variety of inflammatory disorders. HTLV-1 encodes a nuclear localizing protein, p30, that selectively alters viral and cellular gene expression, activates G(2)-M cell cycle checkpoints, and is essential for viral spread. Here, we used immunoprecipitation and affinity pulldown of ectopically expressed p30 coupled with mass spectrometry to identify cellular binding partners of p30. Our data indicate that p30 specifically binds to cellular ATM (ataxia telangiectasia mutated) and REGγ (a nuclear 20 S proteasome activator). Under conditions of genotoxic stress, p30 expression was associated with reduced levels of ATM and increased cell survival. Knockdown or overexpression of REGγ paralleled p30 expression, suggesting an unexpected enhancement of p30 expression in the presence of REGγ. Finally, size exclusion chromatography revealed the presence of p30 in a high molecular mass complex along with ATM and REGγ. On the basis of our findings, we propose that HTLV-1 p30 interacts with ATM and REGγ to increase viral spread by facilitating cell survival.
Collapse
Affiliation(s)
- Rajaneesh Anupam
- Center for Retrovirus Research, Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | | | | | | | |
Collapse
|