1
|
Rong J, Li YY, Wang X, Wang JN, Song M. Non-coding RNAs in adipose-derived stem cell exosomes: Mechanisms, therapeutic potential, and challenges in wound healing. World J Stem Cells 2025; 17:102917. [DOI: 10.4252/wjsc.v17.i4.102917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/23/2024] [Accepted: 03/21/2025] [Indexed: 04/23/2025] Open
Abstract
The treatment of complex wounds presents a significant clinical challenge due to the limited availability of standardized therapeutic options. Adipose-derived stem cell exosomes (ADSC-Exos) are promising for their capabilities to enhance angiogenesis, mitigate oxidative stress, modulate inflammatory pathways, support skin cell regeneration, and promote epithelialization. These exosomes deliver non-coding RNAs, including microRNAs, long non-coding RNAs, and circular RNAs, which facilitate collagen remodeling, reduce scar formation, and expedite wound healing. This study reviews the mechanisms, therapeutic roles, and challenges of non-coding RNA-loaded ADSC-Exos in wound healing and identifies critical directions for future research. It aims to provide insights for researchers into the potential mechanisms and clinical applications of ADSC-Exos non-coding RNAs in wound healing.
Collapse
Affiliation(s)
- Jian Rong
- Department of Burns and Plastic Surgery, The 940th Hospital of Joint Logistics Support Force of Chinese People’s Liberation Army, Lanzhou 730050, Gansu Province, China
- Department of Plateau Medicine, The 940th Hospital of Joint Logistics Support Force of Chinese People’s Liberation Army, Lanzhou 730050, Gansu Province, China
| | - Yao-Yao Li
- Department of Burns and Plastic Surgery, The 940th Hospital of Joint Logistics Support Force of Chinese People’s Liberation Army, Lanzhou 730050, Gansu Province, China
- Department of Plateau Medicine, The 940th Hospital of Joint Logistics Support Force of Chinese People’s Liberation Army, Lanzhou 730050, Gansu Province, China
| | - Xin Wang
- Department of Burns and Plastic Surgery, The 940th Hospital of Joint Logistics Support Force of Chinese People’s Liberation Army, Lanzhou 730050, Gansu Province, China
- Department of Plateau Medicine, The 940th Hospital of Joint Logistics Support Force of Chinese People’s Liberation Army, Lanzhou 730050, Gansu Province, China
| | - Jia-Ning Wang
- Department of Burns and Plastic Surgery, The 940th Hospital of Joint Logistics Support Force of Chinese People’s Liberation Army, Lanzhou 730050, Gansu Province, China
- Department of Plateau Medicine, The 940th Hospital of Joint Logistics Support Force of Chinese People’s Liberation Army, Lanzhou 730050, Gansu Province, China
| | - Mei Song
- Department of Burns and Plastic Surgery, The 940th Hospital of Joint Logistics Support Force of Chinese People’s Liberation Army, Lanzhou 730050, Gansu Province, China
- Department of Plateau Medicine, The 940th Hospital of Joint Logistics Support Force of Chinese People’s Liberation Army, Lanzhou 730050, Gansu Province, China
| |
Collapse
|
2
|
Česnik AB, Švajger U. The issue of heterogeneity of MSC-based advanced therapy medicinal products-a review. Front Cell Dev Biol 2024; 12:1400347. [PMID: 39129786 PMCID: PMC11310176 DOI: 10.3389/fcell.2024.1400347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 07/15/2024] [Indexed: 08/13/2024] Open
Abstract
Mesenchymal stromal stem cells (MSCs) possess a remarkable potential for numerous clinical applications due to their unique properties including self-renewal, immunomodulation, paracrine actions and multilineage differentiation. However, the translation of MSC-based Advanced Therapy Medicinal Products (ATMPs) into the clinic has frequently met with inconsistent outcomes. One of the suspected reasons for this issue is the inherent and extensive variability that exists among such ATMPs, which makes the interpretation of their clinical efficacy difficult to assess, as well as to compare the results of various studies. This variability stems from numerous reasons including differences in tissue sources, donor attributes, variances in manufacturing protocols, as well as modes of administration. MSCs can be isolated from various tissues including bone marrow, umbilical cord, adipose tissue and others, each with its unique phenotypic and functional characteristics. While MSCs from different sources do share common features, they also exhibit distinct gene expression profiles and functional properites. Donor-specific factors such as age, sex, body mass index, and underlying health conditions can influence MSC phenotype, morphology, differentiation potential and function. Moreover, variations in preparation of MSC products introduces additional heterogeneity as a result of cell culture media composition, presence or absence of added growth factors, use of different serum supplements and culturing techniques. Once MSC products are formulated, storage protocols play a pivotal role in its efficacy. Factors that affect cell viability include cell concentration, delivery solution and importantly, post-thawing protocols where applicable. Ensuing, differences in administration protocols can critically affect the distribution and functionallity of administered cells. As MSC-based therapies continue to advance through numerous clinical trials, implication of strategies to reduce product heterogeneity is imperative. Central to addressing these challenges is the need for precise prediction of clinical responses, which require well-defined MSC populations and harmonized assessment of their specific functions. By addressing these issues by meaningful approaches, such as, e.g., MSC pooling, the field can overcome barriers to advance towards more consistent and effective MSC-based therapies.
Collapse
Affiliation(s)
- Ana Bajc Česnik
- Slovenian Institute for Transfusion Medicine, Department for Therapeutic Services, Ljubljana, Slovenia
| | - Urban Švajger
- Slovenian Institute for Transfusion Medicine, Department for Therapeutic Services, Ljubljana, Slovenia
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
3
|
Rasaei N, Gholami F, Samadi M, Shiraseb F, Khadem A, Yekaninejad MS, Emamgholipour S, Mirzaei K. The interaction between MALAT1 and TUG1 with dietary fatty acid quality indices on visceral adiposity index and body adiposity index. Sci Rep 2024; 14:12. [PMID: 38167433 PMCID: PMC10762150 DOI: 10.1038/s41598-023-50162-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 12/15/2023] [Indexed: 01/05/2024] Open
Abstract
We aimed to investigate the interaction between the transcript levels of taurine-upregulated gene 1 (TUG1) and metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) and the Cholesterol-Saturated Fat Index (CSI) in relation to the visceral adiposity index (VAI) and body adiposity index (BAI). This cross-sectional study involved 346 women classified as obese and overweight, aged between 18 and 48 years. Dietary intake and the quality of dietary fat were assessed using a validated and reliable 147-item semi-quantitative food frequency questionnaire, with the Cholesterol-Saturated Fat Index (CSI) used as an indicator. Transcription levels of MALAT1 and TUG1 were evaluated through real-time polymerase chain reaction following the criteria outlined in the Minimum Information for Publication of Quantitative standards. Serum profiles were measured using standard protocols. We observed a positive association between transcription level of MALAT1 and VAI in both crude (β = 3.646, 95% CI 1.950-5.341, p < 0.001) and adjusted (β = 8.338, 95% CI 6.110-10.566, p < 0.001) models. Furthermore, after adjusting for confounders, a significant positive interaction was noted between MALAT1 expression and CSI on BAI (β: 0.130, 95% CI 0.019, 0.240, p = 0.022), with a marginal positive interaction observed on VAI (β: 0.718, 95% CI - 0.028, 1.463, p = 0.059). It seems that there may be a positive interaction between MALAT1 transcription level and CSI on VAI and BAI among overweight and obese women. However, no associations were seen between TUG1 mRNA level and the above-mentioned outcomes. Further functional studies are still required to elucidate this concept.
Collapse
Affiliation(s)
- Niloufar Rasaei
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), P.O. Box 14155-6117, Tehran, Iran
- Network of Interdisciplinarity in Neonates and Infants (NINI), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Fatemeh Gholami
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), P.O. Box 14155-6117, Tehran, Iran
| | - Mahsa Samadi
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), P.O. Box 14155-6117, Tehran, Iran
| | - Farideh Shiraseb
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), P.O. Box 14155-6117, Tehran, Iran
| | - Alireza Khadem
- Department of Nutrition, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mir Saeed Yekaninejad
- Department of Epidemiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Solaleh Emamgholipour
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
- Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Khadijeh Mirzaei
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), P.O. Box 14155-6117, Tehran, Iran.
| |
Collapse
|
4
|
Kesharwani D, Brown AC. Navigating the Adipocyte Precursor Niche: Cell-Cell Interactions, Regulatory Mechanisms and Implications for Adipose Tissue Homeostasis. JOURNAL OF CELLULAR SIGNALING 2024; 5:65-86. [PMID: 38826152 PMCID: PMC11141760 DOI: 10.33696/signaling.5.114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Support for stem cell self-renewal and differentiation hinges upon the intricate microenvironment termed the stem cell 'niche'. Within the adipose tissue stem cell niche, diverse cell types, such as endothelial cells, immune cells, mural cells, and adipocytes, intricately regulate the function of adipocyte precursors. These interactions, whether direct or indirect, play a pivotal role in governing the balance between self-renewal and differentiation of adipocyte precursors into adipocytes. The mechanisms orchestrating the maintenance and coordination of this niche are still in the early stages of comprehension, despite their crucial role in regulating adipose tissue homeostasis. The complexity of understanding adipocyte precursor renewal and differentiation is amplified due to the challenges posed by the absence of suitable surface receptors for identification, limitations in creating optimal ex vivo culture conditions for expansion and constraints in conducting in vivo studies. This review delves into the current landscape of knowledge surrounding adipocyte precursors within the adipose stem cell niche. We will review the identification of adipocyte precursors, the cell-cell interactions they engage in, the factors influencing their renewal and commitment toward adipocytes and the transformations they undergo during instances of obesity.
Collapse
Affiliation(s)
- Devesh Kesharwani
- Center for Molecular Medicine, MaineHealth Institute for Research, 81 Research Drive, Scarborough, ME 04074, USA
| | - Aaron C. Brown
- Center for Molecular Medicine, MaineHealth Institute for Research, 81 Research Drive, Scarborough, ME 04074, USA
- School of Biomedical Sciences and Engineering, The University of Maine, Orono, Maine 04469, USA
- Tufts University School of Medicine, 145 Harrison Ave, Boston, MA 02111, USA
| |
Collapse
|
5
|
Kong X, Patel NA, Chalfant CE, Cooper DR. Ceramide synthesis regulates biogenesis and packaging of exosomal MALAT1 from adipose derived stem cells, increases dermal fibroblast migration and mitochondrial function. Cell Commun Signal 2023; 21:221. [PMID: 37620957 PMCID: PMC10463839 DOI: 10.1186/s12964-022-00900-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 05/17/2022] [Indexed: 08/26/2023] Open
Abstract
BACKGROUND The function of exosomes, small extracellular vesicles (sEV) secreted from human adipose-derived stem cells (ADSC), is becoming increasingly recognized as a means of transferring the regenerative power of stem cells to injured cells in wound healing. Exosomes are rich in ceramides and long noncoding RNA (lncRNA) like metastasis-associated lung adenocarcinoma transcript 1 (MALAT1). We identified putative ceramide responsive cis-elements (CRCE) in MALAT1. We hypothesized that CRCE respond to cellular ceramide levels to regulate sEV MALAT1 packaging. MALAT1 levels by many cells exceed those of protein coding genes and it's expression is equally high in exosomes. Ceramide also regulates exosome synthesis, however, the contents of exosome cargo via sphingomyelinase and ceramide synthase pathways has not been demonstrated. METHODS ADSC were treated with an inhibitor of sphingomyelinase, GW4869, and stimulators of ceramide synthesis, C2- and C6-short chain ceramides, prior to collection of conditioned media (CM). sEV were isolated from CM, and then used to treat human dermal fibroblast (HDF) cultures in cell migration scratch assays, and mitochondrial stress tests to evaluate oxygen consumption rates (OCR). RESULTS Inhibition of sphingomyelinase by treatment of ADSC with GW4869 lowered levels of MALAT1 in small EVs. Stimulation of ceramide synthesis using C2- and C6- ceramides increased cellular, EVs levels of MALAT1. The functional role of sEV MALAT1 was evaluated in HDF by applying EVs to HDF. Control sEV increased migration of HDF, and significantly increased ATP production, basal and maximal respiration OCR. sEV from GW4869-treated ADSC inhibited cell migration and maximal respiration. However, sEV from C2- and C6-treated cells, respectively, increased both functions but not significantly above control EV except for maximal respiration. sEV were exosomes except when ADSC were treated with GW4869 and C6-ceramide, then they were larger and considered microvesicles. CONCLUSIONS Ceramide synthesis regulates MALAT1 EV content. Sphingomyelinase inhibition blocked MALAT1 from being secreted from ADSC EVs. Our report is consistent with those of MALAT1 increasing cell migration and mitochondrial MALAT1 altering maximal respiration in cells. Since MALAT1 is important for exosome function, it stands that increased exosomal MALAT1 should be beneficial for wound healing as shown with these assays. Video Abstract.
Collapse
Affiliation(s)
- Xaioyuan Kong
- Department of Veterans Affairs, J.A. Haley Veterans Hospital, Research Service 151, Tampa, Fl 33711 USA
| | - Niketa A. Patel
- Department of Veterans Affairs, J.A. Haley Veterans Hospital, Research Service 151, Tampa, Fl 33711 USA
- Department of Molecular Medicine, Morsani College of Medicine, Tampa, USA
| | - Charles E. Chalfant
- Department of Veterans Affairs, J.A. Haley Veterans Hospital, Research Service 151, Tampa, Fl 33711 USA
- Department of Cellular Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL 33612 USA
| | - Denise R. Cooper
- Department of Veterans Affairs, J.A. Haley Veterans Hospital, Research Service 151, Tampa, Fl 33711 USA
- Department of Molecular Medicine, Morsani College of Medicine, Tampa, USA
| |
Collapse
|
6
|
Patel RS, Lui A, Hudson C, Moss L, Sparks RP, Hill SE, Shi Y, Cai J, Blair LJ, Bickford PC, Patel NA. Small molecule targeting long noncoding RNA GAS5 administered intranasally improves neuronal insulin signaling and decreases neuroinflammation in an aged mouse model. Sci Rep 2023; 13:317. [PMID: 36609440 PMCID: PMC9822944 DOI: 10.1038/s41598-022-27126-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 12/26/2022] [Indexed: 01/09/2023] Open
Abstract
Shifts in normal aging set stage for neurodegeneration and dementia affecting 1 in 10 adults. The study demonstrates that lncRNA GAS5 is decreased in aged and Alzheimer's disease brain. The role and targets of lncRNA GAS5 in the aging brain were elucidated using a GAS5-targeting small molecule NPC86, a frontier in lncRNA-targeting therapeutic. Robust techniques such as molecular dynamics simulation of NPC86 binding to GAS5, in vitro functional assays demonstrating that GAS5 regulates insulin signaling, neuronal survival, phosphorylation of tau, and neuroinflammation via toll-like receptors support the role of GAS5 in maintaining healthy neurons. The study demonstrates the safety and efficacy of intranasal NPC86 treatment in aged mice to improve cellular functions with transcriptomic analysis in response to NPC86. In summary, the study demonstrates that GAS5 contributes to pathways associated with neurodegeneration and NPC86 has tremendous therapeutic potential to prevent the advent of neurodegenerative diseases and dementias.
Collapse
Affiliation(s)
- Rekha S. Patel
- grid.281075.90000 0001 0624 9286James A. Haley Veterans Hospital, Research Service, 13000 Bruce B. Downs Blvd., Tampa, FL 33612 USA
| | - Ashley Lui
- grid.170693.a0000 0001 2353 285XDepartment of Molecular Medicine, University of South Florida, Tampa, FL 33612 USA
| | - Charles Hudson
- grid.281075.90000 0001 0624 9286James A. Haley Veterans Hospital, Research Service, 13000 Bruce B. Downs Blvd., Tampa, FL 33612 USA
| | - Lauren Moss
- grid.170693.a0000 0001 2353 285XDepartment of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL 33612 USA
| | - Robert P. Sparks
- Present Address: UMass Chan Medical School, Worcester, MA 01655 USA
| | - Shannon E. Hill
- grid.170693.a0000 0001 2353 285XDepartment of Molecular Medicine, University of South Florida, Tampa, FL 33612 USA ,grid.170693.a0000 0001 2353 285XUSF Health Byrd Institute, University of South Florida, Tampa, FL 33612 USA
| | - Yan Shi
- grid.170693.a0000 0001 2353 285XDepartment of Chemistry, University of South Florida, Tampa, FL 33612 USA
| | - Jianfeng Cai
- grid.170693.a0000 0001 2353 285XDepartment of Chemistry, University of South Florida, Tampa, FL 33612 USA
| | - Laura J. Blair
- grid.281075.90000 0001 0624 9286James A. Haley Veterans Hospital, Research Service, 13000 Bruce B. Downs Blvd., Tampa, FL 33612 USA ,grid.170693.a0000 0001 2353 285XDepartment of Molecular Medicine, University of South Florida, Tampa, FL 33612 USA ,grid.170693.a0000 0001 2353 285XUSF Health Byrd Institute, University of South Florida, Tampa, FL 33612 USA
| | - Paula C. Bickford
- grid.281075.90000 0001 0624 9286James A. Haley Veterans Hospital, Research Service, 13000 Bruce B. Downs Blvd., Tampa, FL 33612 USA ,grid.170693.a0000 0001 2353 285XDepartment of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL 33612 USA
| | - Niketa A. Patel
- grid.281075.90000 0001 0624 9286James A. Haley Veterans Hospital, Research Service, 13000 Bruce B. Downs Blvd., Tampa, FL 33612 USA ,grid.170693.a0000 0001 2353 285XDepartment of Molecular Medicine, University of South Florida, Tampa, FL 33612 USA
| |
Collapse
|
7
|
Zou J, Mao J, Shi X. Influencing factors of pulp-dentin complex regeneration and related biological strategies. Zhejiang Da Xue Xue Bao Yi Xue Ban 2022; 51:350-361. [PMID: 36207838 PMCID: PMC9511472 DOI: 10.3724/zdxbyxb-2022-0046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 04/12/2022] [Indexed: 06/16/2023]
Abstract
Regenerative endodontic therapy (RET) utilizing tissue engineering approach can promote the regeneration of pulp-dentin complex to restore pulp vascularization, neuralization, immune function and tubular dentin, therefore the regenerated pulp-dentin complex will have normal function. Multiple factors may significantly affect the efficacy of RET, including stem cells, biosignaling molecules and biomaterial scaffolds. Stem cells derived from dental tissues (such as dental pulp stem cells) exhibit certain advantages in RET. Combined application of multiple signaling molecules and activation of signal transduction pathways such as Wnt/β-catenin and BMP/Smad play pivotal roles in enhancing the potential of stem cell migration, proliferation, odontoblastic differentiation, and nerve and blood vessel regeneration. Biomaterials suitable for RET include naturally-derived materials and artificially synthetic materials. Artificially synthetic materials should imitate natural tissues for biomimetic modification in order to realize the temporal and spatial regulation of pulp-dentin complex regeneration. The realization of pulp-dentin complex regeneration depends on two strategies: stem cell transplantation and stem cell homing. Stem cell homing strategy does not require the isolation and culture of stem cells in vitro, so is better for clinical application. However, in order to achieve the true regeneration of pulp-dentin complex, problems related to improving the success rate of stem cell homing and promoting their proliferation and differentiation need to be solved. This article reviews the influencing factors of pulp-dentin complex regeneration and related biological strategies, and discusses the future research direction of RET, to provide reference for clinical translation and application of RET.
Collapse
Affiliation(s)
- Jielin Zou
- 1. Center of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- 2. School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- 3. Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Jing Mao
- 1. Center of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- 2. School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- 3. Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Xin Shi
- 1. Center of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- 2. School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- 3. Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| |
Collapse
|
8
|
Chen J, Liu R, Huang T, Sun H, Jiang H. Adipose stem cells-released extracellular vesicles as a next-generation cargo delivery vehicles: a survey of minimal information implementation, mass production and functional modification. Stem Cell Res Ther 2022; 13:182. [PMID: 35505389 PMCID: PMC9062865 DOI: 10.1186/s13287-022-02849-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 04/12/2022] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVES To investigate current situation of minimal information implementation highlighted by minimal information for studies of extracellular vesicles 2018 (MISEV2018) guidelines, and explore technological advances towards mass production and functional modification in aesthetic, plastic and reconstructive surgery. METHODS Original articles on extracellular vesicles (EVs) of adipose stem cells (ASCs) were identified. Statistics upon minimal information for EVs research, such as species, cell types, culture conditions, conditioned media harvesting parameters, EVs isolation/storage/identification/quantification, functional uptake and working concentration, were analyzed. RESULTS The items of cell culture conditions such as passage number, seeding density, conditioned media harvesting time, functional uptake and working concentration were poorly documented, with a reporting percentage of 47.13%, 54.02%, 29.89%, 62.07% and 36.21%, respectively. However, there were some studies not reporting information of ASCs origin, culture medium, serum, EVs isolation methods, quantification and identification of EVs, accounting for 3.45%, 10.34%, 6.90%, 3.45%, 18.39% and 4.02%, respectively. Serum deprivation and trophic factors stimuli were attempted for EVs mass production. Several technological advances towards functional modification included hypoxia pre-condition, engineering EVs and controlled release. Presently, ASCs EVs have been applied in multiple fields, including diabetic/non-diabetic wound healing, angiogenesis, inflammation modulation, fat grafting, hair regeneration, antiaging, and healing and regeneration of cartilage/bone/peripheral nerve/tendon. CONCLUSION Our results highlight normative reporting of ASCs EVs in functional studies to increase reliability and reproducibility of scientific publications. The advances towards mass production and functional modification of ASCs EVs are also recommended to enhance therapeutic effects.
Collapse
Affiliation(s)
- Jianguo Chen
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 33 Badachu Road, Shijingshan District, Beijing, 100144, People's Republic of China
| | - Ruiquan Liu
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 33 Badachu Road, Shijingshan District, Beijing, 100144, People's Republic of China
| | - Tianyu Huang
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 33 Badachu Road, Shijingshan District, Beijing, 100144, People's Republic of China
| | - Hengyun Sun
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 33 Badachu Road, Shijingshan District, Beijing, 100144, People's Republic of China
| | - Haiyue Jiang
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 33 Badachu Road, Shijingshan District, Beijing, 100144, People's Republic of China.
| |
Collapse
|
9
|
Mei R, Qin W, Zheng Y, Wan Z, Liu L. Role of Adipose Tissue Derived Exosomes in Metabolic Disease. Front Endocrinol (Lausanne) 2022; 13:873865. [PMID: 35600580 PMCID: PMC9114355 DOI: 10.3389/fendo.2022.873865] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 03/30/2022] [Indexed: 12/12/2022] Open
Abstract
Adipose tissues perform physiological functions such as energy storage and endocrine, whose dysfunction will lead to severe metabolic disorders. Accumulating evidences show that exosomes can meditate communications between different tissues by transporting nucleic acids, proteins and other biological factors. More importantly, exosomes secreted by adipose tissue function as critical contributing factors that elucidate specific mechanisms in metabolic disturbance such as obesity, adipose inflammation and diabetes etc. Adipose tissue is the major source of circulating exosomal miRNAs. miRNA secreted from adipose tissues not only altered in patients with metabolic disease, but also result in an increase in metabolic organ talk. Here we have reviewed the latest progress on the role of adipose tissue derived exosomes roles in metabolic disorders. Moreover, the current obstacles hindering exosome-based therapeutic strategies have also been discussed.
Collapse
Affiliation(s)
| | | | | | - Zhuo Wan
- *Correspondence: Zhuo Wan, ; Li Liu,
| | - Li Liu
- *Correspondence: Zhuo Wan, ; Li Liu,
| |
Collapse
|
10
|
Abstract
Exosomes are nano-sized extracellular vesicles (30–160 nm diameter) with lipid bilayer membrane secrete by various cells that mediate the communication between cells and tissue, which contain a variety of non-coding RNAs, mRNAs, proteins, lipids and other functional substances. Adipose tissue is important energy storage and endocrine organ in the organism. Recent studies have revealed that adipose tissue-derived exosomes (AT-Exosomes) play a critical role in many physiologically and pathologically functions. Physiologically, AT-Exosomes could regulate the metabolic homoeostasis of various organs or cells including liver and skeletal muscle. Pathologically, they could be used in the treatment of disease and or that they may be involved in the progression of the disease. In this review, we describe the basic principles and methods of exosomes isolation and identification, as well as further summary the specific methods. Moreover, we categorize the relevant studies of AT-Exosomes and summarize the different components and biological functions of mammalian exosomes. Most importantly, we elaborate AT-Exosomes crosstalk within adipose tissue and their functions on other tissues or organs from the physiological and pathological perspective. Based on the above analysis, we discuss what remains to be discovered problems in AT-Exosomes studies and prospect their directions needed to be further explored in the future.
Collapse
Affiliation(s)
- Rui Zhao
- Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&f University, Yangling, China
| | - Tiantian Zhao
- Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&f University, Yangling, China
| | - Zhaozhao He
- Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&f University, Yangling, China
| | - Rui Cai
- Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&f University, Yangling, China
| | - Weijun Pang
- Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&f University, Yangling, China
| |
Collapse
|
11
|
Moss LD, Sode D, Patel R, Lui A, Hudson C, Patel NA, Bickford PC. Intranasal delivery of exosomes from human adipose derived stem cells at forty-eight hours post injury reduces motor and cognitive impairments following traumatic brain injury. Neurochem Int 2021; 150:105173. [PMID: 34453976 PMCID: PMC8511339 DOI: 10.1016/j.neuint.2021.105173] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 08/18/2021] [Accepted: 08/24/2021] [Indexed: 12/14/2022]
Abstract
The neuroprotective role of human adipose-derived stems cells (hASCs) has raised great interest in regenerative medicine due to their ability to modulate their surrounding environment. Our group has demonstrated that exosomes derived from hASC (hASCexo) are a cell-free regenerative approach to long term recovery following traumatic brain injury (TBI). Previously, we demonstrated the efficacy of exosome treatment with intravenous delivery at 3 h post TBI in rats. Here, we show efficacy of exosomes through intranasal delivery at 48 h post TBI in mice lengthening the therapeutic window of treatment and therefore increasing possible translation to clinical studies. Our findings demonstrate significant recovery of motor impairment assessed by an elevated body swing test in mice treated with exosomes containing MALAT1 compared to both TBI mice without exosomes and exosomes depleted of MALAT1. Significant cognitive improvement was seen in the reversal trial of 8 arm radial arm water maze in mice treated with exosomes containing MALAT1. Furthermore, cortical damage was significantly reduced in mice treated with exosomes containing MALAT1 as well as decreased MHCII+ staining of microglial cells. Mice without exosomes or treated with exosomes depleted of MALAT1 did not show similar recovery. Results demonstrate both inflammation related genes and NRTK3 (TrkC) are target genes modulated by hASC exosomes and further that MALAT1 in hASC exosomes regulates expression of full length TrkC thereby activating the MAPK pathway and promoting recovery. Exosomes are a promising therapeutic approach following TBI with a therapeutic window of at least 48 h and contain long noncoding RNA's, specifically MALAT1 that play a vital role in the mechanism of action.
Collapse
Affiliation(s)
- Lauren D Moss
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Derek Sode
- Department of Molecular Medicine, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Rekha Patel
- James A. Haley Veterans Hospital, Research Service, Tampa, FL, USA
| | - Ashley Lui
- Department of Molecular Medicine, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Charles Hudson
- James A. Haley Veterans Hospital, Research Service, Tampa, FL, USA
| | - Niketa A Patel
- James A. Haley Veterans Hospital, Research Service, Tampa, FL, USA; Department of Molecular Medicine, University of South Florida Morsani College of Medicine, Tampa, FL, USA.
| | - Paula C Bickford
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA; James A. Haley Veterans Hospital, Research Service, Tampa, FL, USA.
| |
Collapse
|
12
|
Ong WK, Chakraborty S, Sugii S. Adipose Tissue: Understanding the Heterogeneity of Stem Cells for Regenerative Medicine. Biomolecules 2021; 11:biom11070918. [PMID: 34206204 PMCID: PMC8301750 DOI: 10.3390/biom11070918] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 06/17/2021] [Accepted: 06/17/2021] [Indexed: 12/13/2022] Open
Abstract
Adipose-derived stem cells (ASCs) have been increasingly used as a versatile source of mesenchymal stem cells (MSCs) for diverse clinical investigations. However, their applications often become complicated due to heterogeneity arising from various factors. Cellular heterogeneity can occur due to: (i) nomenclature and criteria for definition; (ii) adipose tissue depots (e.g., subcutaneous fat, visceral fat) from which ASCs are isolated; (iii) donor and inter-subject variation (age, body mass index, gender, and disease state); (iv) species difference; and (v) study design (in vivo versus in vitro) and tools used (e.g., antibody isolation and culture conditions). There are also actual differences in resident cell types that exhibit ASC/MSC characteristics. Multilineage-differentiating stress-enduring (Muse) cells and dedifferentiated fat (DFAT) cells have been reported as an alternative or derivative source of ASCs for application in regenerative medicine. In this review, we discuss these factors that contribute to the heterogeneity of human ASCs in detail, and what should be taken into consideration for overcoming challenges associated with such heterogeneity in the clinical use of ASCs. Attempts to understand, define, and standardize cellular heterogeneity are important in supporting therapeutic strategies and regulatory considerations for the use of ASCs.
Collapse
Affiliation(s)
- Wee Kiat Ong
- School of Pharmacy, Monash University Malaysia, Subang Jaya 47500, Selangor, Malaysia
- Correspondence: (W.K.O.); (S.S.)
| | - Smarajit Chakraborty
- Institute of Bioengineering and Bioimaging (IBB), A*STAR, 31 Biopolis Way, Singapore 138669, Singapore;
| | - Shigeki Sugii
- Institute of Bioengineering and Bioimaging (IBB), A*STAR, 31 Biopolis Way, Singapore 138669, Singapore;
- Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
- Correspondence: (W.K.O.); (S.S.)
| |
Collapse
|
13
|
Adipose-Derived Stem Cells Secretome and Its Potential Application in "Stem Cell-Free Therapy". Biomolecules 2021; 11:biom11060878. [PMID: 34199330 PMCID: PMC8231996 DOI: 10.3390/biom11060878] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/09/2021] [Accepted: 06/11/2021] [Indexed: 12/11/2022] Open
Abstract
Adipose-derived stem cells (ASCs) secrete many cytokines, proteins, growth factors, and extracellular vesicles with beneficial outcomes that can be used in regenerative medicine. It has great potential, and the development of new treatment strategies using the ASCs secretome is of global interest. Besides cytokines, proteins, and growth factors, the therapeutic effect of secretome is hidden in non-coding RNAs such as miR-21, miR-24, and miR-26 carried via exosomes secreted by adequate cells. The whole secretome, including ASC-derived exosomes (ASC-exos) has been proven in many studies to have immunomodulatory, proangiogenic, neurotrophic, and epithelization activity and can potentially be used for neurodegenerative, cardiovascular, respiratory, inflammatory, and autoimmune diseases as well as wound healing treatment. Due to limitations in the use of stem cells in cell-based therapy, its secretome with emphasis on exosomes seems to be a reasonable and safer alternative with increased effectiveness and fewer side effects. Moreover, the great advantage of cell-free therapy is the possibility of biobanking the ASCs secretome. In this review, we focus on the current state of knowledge on the use of the ASCs secretome in stem cell-free therapy.
Collapse
|
14
|
Lindsay SL, Barnett SC. Therapeutic Potential of Niche-Specific Mesenchymal Stromal Cells for Spinal Cord Injury Repair. Cells 2021; 10:cells10040901. [PMID: 33919910 PMCID: PMC8070966 DOI: 10.3390/cells10040901] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/07/2021] [Accepted: 04/12/2021] [Indexed: 12/17/2022] Open
Abstract
The use of mesenchymal stem/stromal cells (MSCs) for transplant-mediated repair represents an important and promising therapeutic strategy after spinal cord injury (SCI). The appeal of MSCs has been fuelled by their ease of isolation, immunosuppressive properties, and low immunogenicity, alongside the large variety of available tissue sources. However, despite reported similarities in vitro, MSCs sourced from distinct tissues may not have comparable biological properties in vivo. There is accumulating evidence that stemness, plasticity, immunogenicity, and adaptability of stem cells is largely controlled by tissue niche. The extrinsic impact of cellular niche for MSC repair potential is therefore important, not least because of its impact on ex vivo expansion for therapeutic purposes. It is likely certain niche-targeted MSCs are more suited for SCI transplant-mediated repair due to their intrinsic capabilities, such as inherent neurogenic properties. In addition, the various MSC anatomical locations means that differences in harvest and culture procedures can make cross-comparison of pre-clinical data difficult. Since a clinical grade MSC product is inextricably linked with its manufacture, it is imperative that cells can be made relatively easily using appropriate materials. We discuss these issues and highlight the importance of identifying the appropriate niche-specific MSC type for SCI repair.
Collapse
|
15
|
Yang CY, Chang PY, Chen JY, Wu BS, Yang AH, Lee OKS. Adipose-derived mesenchymal stem cells attenuate dialysis-induced peritoneal fibrosis by modulating macrophage polarization via interleukin-6. Stem Cell Res Ther 2021; 12:193. [PMID: 33741073 PMCID: PMC7977319 DOI: 10.1186/s13287-021-02270-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 03/05/2021] [Indexed: 12/15/2022] Open
Abstract
Background Life-long peritoneal dialysis (PD) as a renal replacement therapy is limited by peritoneal fibrosis. Previous studies showed immunomodulatory and antifibrotic effects of adipose-derived mesenchymal stem cells (ADSCs) on peritoneal fibrosis. However, the role of the peritoneal macrophage in this process remains uninvestigated. Methods We examined the therapeutic effects of ADSC and bone marrow-derived mesenchymal stem cells (BM-MSC) in the rat model of dialysis-induced peritoneal fibrosis using methylglyoxal. In addition, treatment of macrophages with the conditioned medium of ADSC and BM-MSC was performed individually to identify the beneficial component of the stem cell secretome. Results In the in vivo experiments, we found dialysis-induced rat peritoneal fibrosis was attenuated by both ADSC and BM-MSC. Interestingly, ADSC possessed a more prominent therapeutic effect than BM-MSC in ameliorating peritoneal membrane thickening while also upregulating epithelial cell markers in rat peritoneal tissues. The therapeutic effects of ADSC were positively associated with M2 macrophage polarization. In the in vitro experiments, we confirmed that interleukin-6 (IL-6) secreted by MSCs upon transforming growth factor-β1 stimulation promotes M2 macrophage polarization. Conclusions In dialysis-induced peritoneal fibrosis, MSCs are situated in an inflammatory environment of TGF-β1 and secrete IL-6 to polarize macrophages into the M2 phenotype. Our findings reveal a previously unidentified role of tissue macrophage in this antifibrotic process. ADSC has the advantage of abundance and accessibility, making the application values extremely promising. Graphical abstract In dialysis-induced peritoneal fibrosis, peritoneal mesothelial cells secrete transforming growth factor-β1 (TGF-β1) when exposed to methylglyoxal (MGO)-containing peritoneal dialysate. When situated in TGF-β1, the inflammatory environment induces mesenchymal stem cells to secrete interleukin-6 (IL-6), IL-6 polarizes macrophages into the M2 phenotype. The dominant peritoneal tissue M2 macrophages, marked by upregulated Arg-1 expression, account for the attenuation of MGO-induced dedifferentiation of peritoneal mesothelial cells to maintain epithelial integrity.
![]() Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02270-4.
Collapse
Affiliation(s)
- Chih-Yu Yang
- Institute of Clinical Medicine, School of Medicine, National Yang Ming Chiao Tung University, 2F, Shou-Ren Bldg., No.155, Sec.2, Li-Nong St., Beitou Dist, Taipei, 11221, Taiwan. .,Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan. .,Division of Nephrology, Department of Medicine, Taipei Veterans General Hospital, Taipei, 11217, Taiwan. .,Stem Cell Research Center, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan. .,Center for Intelligent Drug Systems and Smart Bio-devices (IDS2B), Hsinchu, 30010, Taiwan.
| | - Pu-Yuan Chang
- Institute of Clinical Medicine, School of Medicine, National Yang Ming Chiao Tung University, 2F, Shou-Ren Bldg., No.155, Sec.2, Li-Nong St., Beitou Dist, Taipei, 11221, Taiwan
| | - Jun-Yi Chen
- Institute of Clinical Medicine, School of Medicine, National Yang Ming Chiao Tung University, 2F, Shou-Ren Bldg., No.155, Sec.2, Li-Nong St., Beitou Dist, Taipei, 11221, Taiwan
| | - Bo-Sheng Wu
- Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan
| | - An-Hang Yang
- Institute of Clinical Medicine, School of Medicine, National Yang Ming Chiao Tung University, 2F, Shou-Ren Bldg., No.155, Sec.2, Li-Nong St., Beitou Dist, Taipei, 11221, Taiwan.,Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan.,Department of Pathology, Taipei Veterans General Hospital, Taipei, 11217, Taiwan
| | - Oscar Kuang-Sheng Lee
- Institute of Clinical Medicine, School of Medicine, National Yang Ming Chiao Tung University, 2F, Shou-Ren Bldg., No.155, Sec.2, Li-Nong St., Beitou Dist, Taipei, 11221, Taiwan.,Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan.,Stem Cell Research Center, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan.,Department of Orthopedics, China Medical University Hospital, Taichung, 40447, Taiwan
| |
Collapse
|
16
|
The Potential Role of Exosomes in Child and Adolescent Obesity. CHILDREN-BASEL 2021; 8:children8030196. [PMID: 33800718 PMCID: PMC7999028 DOI: 10.3390/children8030196] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/17/2021] [Accepted: 03/02/2021] [Indexed: 02/07/2023]
Abstract
Child and adolescent obesity constitute one of the greatest contemporary public health menaces. The enduring disproportion between calorie intake and energy consumption, determined by a complex interaction of genetic, epigenetic, and environmental factors, finally leads to the development of overweight and obesity. Child and adolescent overweight/obesity promotes smoldering systemic inflammation (“para-inflammation”) and increases the likelihood of later metabolic and cardiovascular complications, including metabolic syndrome and its components, which progressively deteriorate during adulthood. Exosomes are endosome-derived extracellular vesicles that are secreted by a variety of cells, are naturally taken-up by target cells, and may be involved in many physiological and pathological processes. Over the last decade, intensive research has been conducted regarding the special role of exosomes and the non-coding (nc) RNAs they contain (primarily micro (mi) RNAs, long (l) non-coding RNAs, messenger (m) RNAs and other molecules) in inter-cellular communications. Through their action as communication mediators, exosomes may contribute to the pathogenesis of obesity and associated disorders. There is increasing evidence that exosomal miRNAs and lncRNAs are involved in pivotal processes of adipocyte biology and that, possibly, play important roles in gene regulation linked to human obesity. This review aims to improve our understanding of the roles of exosomes and their cargo in the development of obesity and related metabolic and inflammatory disorders. We examined their potential roles in adipose tissue physiology and reviewed the scarce data regarding the altered patterns of circulating miRNAs and lncRNAs observed in obese children and adolescents, compared them to the equivalent, more abundant existing findings of adult studies, and speculated on their proposed mechanisms of action. Exosomal miRNAs and lncRNAs could be applied as cardiometabolic risk biomarkers, useful in the early diagnosis and prevention of obesity. Furthermore, the targeting of crucial circulating exosomal cargo to tissues involved in the pathogenesis and maintenance of obesity could provide a novel therapeutic approach to this devastating and management-resistant pandemic.
Collapse
|
17
|
Adipose-Derived Stem Cells from Obese Donors Polarize Macrophages and Microglia toward a Pro-Inflammatory Phenotype. Cells 2020; 10:cells10010026. [PMID: 33375695 PMCID: PMC7823699 DOI: 10.3390/cells10010026] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/20/2020] [Accepted: 12/22/2020] [Indexed: 12/13/2022] Open
Abstract
Macrophages and microglia represent the primary phagocytes and first line of defense in the peripheral and central immune systems. They activate and polarize into a spectrum of pro- and anti-inflammatory phenotypes in response to various stimuli. This activation is tightly regulated to balance the appropriate immune response with tissue repair and homeostasis. Disruption of this balance results in inflammatory disease states and tissue damage. Adipose stem cells (ASCs) have great therapeutic potential because of the potent immunomodulatory capabilities which induce the polarization of microglia and macrophages to the anti-inflammatory, M2, phenotype. In this study, we examined the effects of donor heterogeneity on ASC function. Specifically, we investigated the impact of donor obesity on ASC stemness and immunomodulatory abilities. Our findings revealed that ASCs from obese donors (ObASCs) exhibited reduced stem cell characteristics when compared to ASCs from lean donors (LnASCs). We also found that ObASCs promote a pro-inflammatory phenotype in murine macrophage and microglial cells, as indicated by the upregulated expression of pro-inflammatory genes, increased nitric oxide pathway activity, and impaired phagocytosis and migration. These findings highlight the importance of considering individual donor characteristics such as obesity when selecting donors and cells for use in ASC therapeutic applications and regenerative medicine.
Collapse
|
18
|
Extracellular Vesicles from Adipose Tissue Stem Cells in Diabetes and Associated Cardiovascular Disease; Pathobiological Impact and Therapeutic Potential. Int J Mol Sci 2020; 21:ijms21249598. [PMID: 33339409 PMCID: PMC7766415 DOI: 10.3390/ijms21249598] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/11/2020] [Accepted: 12/14/2020] [Indexed: 02/07/2023] Open
Abstract
Adipose tissue-derived stem cells (ADSCs) are pluripotent mesenchymal stem cells found in relatively high percentages in the adipose tissue and able to self-renew and differentiate into many different types of cells. “Extracellular vesicles (EVs), small membrane vesicular structures released during cell activation, senescence, or apoptosis, act as mediators for long distance communication between cells, transferring their specific bioactive molecules into host target cells”. There is a general consensus on how to define and isolate ADSCs, however, multiple separation and characterization protocols are being used in the present which complicate the results’ integration in a single theory on ADSCs’ and their derived factors’ way of action. Metabolic syndrome and type 2 diabetes mellitus (T2DM) are mainly caused by abnormal adipose tissue size, distribution and metabolism and so ADSCs and their secretory factors such as EVs are currently investigated as therapeutics in these diseases. Moreover, due to their relatively easy isolation and propagation in culture and their differentiation ability, ADSCs are being employed in preclinical studies of implantable devices or prosthetics. This review aims to provide a comprehensive summary of the current knowledge on EVs secreted from ADSCs both as diagnostic biomarkers and therapeutics in diabetes and associated cardiovascular disease, the molecular mechanisms involved, as well as on the use of ADSC differentiation potential in cardiovascular tissue repair and prostheses.
Collapse
|
19
|
Mesenchymal Stem/Progenitor Cells: The Prospect of Human Clinical Translation. Stem Cells Int 2020; 2020:8837654. [PMID: 33953753 PMCID: PMC8063852 DOI: 10.1155/2020/8837654] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/19/2020] [Accepted: 07/20/2020] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stem/progenitor cells (MSCs) are key players in regenerative medicine, relying principally on their differentiation/regeneration potential, immunomodulatory properties, paracrine effects, and potent homing ability with minimal if any ethical concerns. Even though multiple preclinical and clinical studies have demonstrated remarkable properties for MSCs, the clinical applicability of MSC-based therapies is still questionable. Several challenges exist that critically hinder a successful clinical translation of MSC-based therapies, including but not limited to heterogeneity of their populations, variability in their quality and quantity, donor-related factors, discrepancies in protocols for isolation, in vitro expansion and premodification, and variability in methods of cell delivery, dosing, and cell homing. Alterations of MSC viability, proliferation, properties, and/or function are also affected by various drugs and chemicals. Moreover, significant safety concerns exist due to possible teratogenic/neoplastic potential and transmission of infectious diseases. Through the current review, we aim to highlight the major challenges facing MSCs' human clinical translation and shed light on the undergoing strategies to overcome them.
Collapse
|
20
|
Bonsack B, Heyck M, Kingsbury C, Cozene B, Sadanandan N, Lee JY, Borlongan CV. Fast-tracking regenerative medicine for traumatic brain injury. Neural Regen Res 2020; 15:1179-1190. [PMID: 31960797 PMCID: PMC7047809 DOI: 10.4103/1673-5374.270294] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 08/22/2019] [Accepted: 09/26/2019] [Indexed: 12/15/2022] Open
Abstract
Traumatic brain injury remains a global health crisis that spans all demographics, yet there exist limited treatment options that may effectively curtail its lingering symptoms. Traumatic brain injury pathology entails a progression from primary injury to inflammation-mediated secondary cell death. Sequestering this inflammation as a means of ameliorating the greater symptomology of traumatic brain injury has emerged as an attractive treatment prospect. In this review, we recapitulate and evaluate the important developments relating to regulating traumatic brain injury-induced neuroinflammation, edema, and blood-brain barrier disintegration through pharmacotherapy and stem cell transplants. Although these studies of stand-alone treatments have yielded some positive results, more therapeutic outcomes have been documented from the promising area of combined drug and stem cell therapy. Harnessing the facilitatory properties of certain pharmaceuticals with the anti-inflammatory and regenerative effects of stem cell transplants creates a synergistic effect greater than the sum of its parts. The burgeoning evidence in favor of combined drug and stem cell therapies warrants more elaborate preclinical studies on this topic in order to pave the way for later clinical trials.
Collapse
Affiliation(s)
- Brooke Bonsack
- Center of Excellence for Aging and Brain Repair, University of South Florida College of Medicine, Tampa, FL, USA
| | - Matt Heyck
- Center of Excellence for Aging and Brain Repair, University of South Florida College of Medicine, Tampa, FL, USA
| | - Chase Kingsbury
- Center of Excellence for Aging and Brain Repair, University of South Florida College of Medicine, Tampa, FL, USA
| | - Blaise Cozene
- Center of Excellence for Aging and Brain Repair, University of South Florida College of Medicine, Tampa, FL, USA
| | - Nadia Sadanandan
- Center of Excellence for Aging and Brain Repair, University of South Florida College of Medicine, Tampa, FL, USA
| | - Jea-Young Lee
- Center of Excellence for Aging and Brain Repair, University of South Florida College of Medicine, Tampa, FL, USA
| | - Cesar V. Borlongan
- Center of Excellence for Aging and Brain Repair, University of South Florida College of Medicine, Tampa, FL, USA
| |
Collapse
|
21
|
Peng Q, Alipour H, Porsborg S, Fink T, Zachar V. Evolution of ASC Immunophenotypical Subsets During Expansion In Vitro. Int J Mol Sci 2020; 21:E1408. [PMID: 32093036 PMCID: PMC7073142 DOI: 10.3390/ijms21041408] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 02/16/2020] [Accepted: 02/17/2020] [Indexed: 12/18/2022] Open
Abstract
Adipose-derived stromal/stem cells (ASCs) are currently being considered for clinical use for a number of indications. In order to develop standardized clinical protocols, it is paramount to have a full characterization of the stem cell preparations. The surface marker expression of ASCs has previously been characterized in multiple studies. However, most of these studies have provided a cross-sectional description of ASCs in either earlier or later passages. In this study, we evaluate the dynamic changes of 15 different surface molecules during culture. Using multichromatic flow cytometry, ASCs from three different donors each in passages 1, 2, 4, 6, and 8 were analyzed for their co-expression of markers associated with mesenchymal stem cells, wound healing, immune regulation, ASC markers, and differentiation capacity, respectively. We confirmed that at an early stage, ASC displayed a high heterogeneity with a plethora of subpopulations, which by culturing became more homogeneous. After a few passages, virtually all ASCs expressed CD29, CD166 and CD201, in addition to canonical markers CD73, CD90, and CD105. However, even at passage 8, there were several predominant lineages that differed with respect to the expression of CD34, CD200 and CD271. Although the significance of remaining subpopulations still needs to be elucidated, our results underscore the necessity to fully characterize ASCs prior to clinical use.
Collapse
Affiliation(s)
| | | | | | | | - Vladimir Zachar
- Department of Health Science and Technology, Regenerative Medicine Group, Aalborg University, Fredrik Bajers Vej 3B, 9220 Aalborg, Denmark; (Q.P.); (H.A.); (S.P.); (T.F.)
| |
Collapse
|
22
|
Ebrahimi R, Toolabi K, Jannat Ali Pour N, Mohassel Azadi S, Bahiraee A, Zamani-Garmsiri F, Emamgholipour S. Adipose tissue gene expression of long non-coding RNAs; MALAT1, TUG1 in obesity: is it associated with metabolic profile and lipid homeostasis-related genes expression? Diabetol Metab Syndr 2020; 12:36. [PMID: 32368256 PMCID: PMC7191796 DOI: 10.1186/s13098-020-00544-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 04/22/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Recent studies point toward the possible regulatory roles of two lncRNAs; metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) and taurine upregulated gene 1 (TUG1) in the pathogenesis of obesity-related disorders and regulation of lipogenesis and adipogenesis. In an attempt to understand the molecules involved in human obesity pathogenesis, we aimed to evaluate the expression of MALAT1 and TUG1 in visceral adipose tissues (VAT) and subcutaneous adipose tissues (SAT) of obese women, as compared to normal-weight women. The mRNA expression of possible target genes including peroxisome proliferator-activated receptor gamma (PPARγ), PPARγ coactivator-1 alpha (PGC1α), sterol regulatory element-binding protein-1c (SREBP-1c), fatty acid synthase (FAS), and acetyl-CoA carboxylase (ACC) which are involved in adipogenesis and lipogenesis were also examined. METHODS This study was conducted on 20 obese [body mass index (BMI) ≥ 30 kg/m 2] female participants and 19 normal-weight (BMI < 25 kg/m 2) female participants. Real-time PCR was performed to investigate the mRNA expression of the above-mentioned genes in VAT and SAT from all participants. RESULTS The results showed lower mRNA levels of TUG1 in both the VAT and SAT of obese women, compared to normal-weight women. Furthermore, TUG1 expression in SAT positively correlated with BMI, waist circumference (WC), hip circumference, HOMA-IR, and insulin levels, eGFR value, creatinine levels, and hs-CRP in all participants independent of age and HOMA-IR. However, VAT mRNA expression of TUG1 had a positive correlation with obesity indices and HOMA-IR and insulin levels in the whole population. Moreover, SAT mRNA level of TUG1 was positively correlated with SAT gene expression of PGC1α, SREBP-1c, FAS, and ACC independent of age and HOMA-IR. Although mRNA expression of MALAT1 did not differ between two groups for any tissue, it was positively correlated with SAT mRNA levels of SREBP-1c, PPARγ, and their targets; FAS and ACC, as well as with VAT mRNA levels of PGC1α. CONCLUSIONS It seems likely that TUG1 with distinct expression pattern in VAT and SAT are involved in the regulation of lipogenic and adipogenic genes and obesity-related parameters. However, more studies are necessary to establish this concept.
Collapse
Affiliation(s)
- Reyhane Ebrahimi
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Students’ Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Karamollah Toolabi
- Department of Surgery, Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Naghmeh Jannat Ali Pour
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Samaneh Mohassel Azadi
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Bahiraee
- Students’ Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Fahimeh Zamani-Garmsiri
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Solaleh Emamgholipour
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
23
|
Overexpression of MALAT1 Relates to Lung Injury through Sponging miR-425 and Promoting Cell Apoptosis during ARDS. Can Respir J 2019; 2019:1871394. [PMID: 31871512 PMCID: PMC6913333 DOI: 10.1155/2019/1871394] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 08/21/2019] [Accepted: 09/19/2019] [Indexed: 12/14/2022] Open
Abstract
Background Acute respiratory distress syndrome (ARDS) is a severe form of acute lung injury during which severe inflammatory responses induce cell apoptosis, necrosis, and fibrosis. Metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) is a multiple function long noncoding RNA that was found overexpressed during acute lung injury. However, the roles of MALAT1 in ARDS patients are still unknown. Methods Total RNA was extracted from the plasma, plasma exosome, and peripheral blood mononuclear cells (PBMCs) from 65 ARDS patients and 36 healthy controls. The MALAT1 and six candidate miRNAs levels were detected by qRT-PCR. The interaction between MALAT1 and miR-425 was predicted using a bioinformatics tool and verified by dual luciferase assay. Exosomes from ARDS patients were cultured with A549 and HFL-1 cells to confirm the delivery of miR-425 by exosomes. Cell apoptosis and viability were determined by flow cytometry and MTT assay. Results We found MALAT1 was significantly increased in the ARDS patients' plasma and PBMCs. The MALAT1 level in PBMCs was negatively correlated with exosomal miR-425 level. MALAT1 interacted with miR-425 and protected phosphatase and tensin homolog (PTEN) expression in A549 and HFL-1 cells. Exosomes from ARDS patients delivered less miR-425 into A549 and HFL-1 cells and induced cell apoptosis via upregulating PTEN. Conclusion This study identified increased MALAT1 and decreased miR-425 in ARDS patients and unveiled their roles during the pathogenesis of ARDS.
Collapse
|
24
|
Cho DS, Lee B, Doles JD. Refining the adipose progenitor cell landscape in healthy and obese visceral adipose tissue using single-cell gene expression profiling. Life Sci Alliance 2019; 2:2/6/e201900561. [PMID: 31767614 PMCID: PMC6878222 DOI: 10.26508/lsa.201900561] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 11/13/2019] [Accepted: 11/14/2019] [Indexed: 12/17/2022] Open
Abstract
This work dissects adipose progenitor cell (APC) heterogeneity in normal and obese adipose tissue using single-cell expression profiling. Novel APC subpopulations are identified and characterized. Obesity is a serious health concern and is associated with a reduced quality of life and a number of chronic diseases, including diabetes, heart disease, stroke, and cancer. With obesity rates on the rise worldwide, adipose tissue biology has become a top biomedical research priority. Despite steady growth in obesity-related research, more investigation into the basic biology of adipose tissue is needed to drive innovative solutions aiming to curtail the obesity epidemic. Adipose progenitor cells (APCs) play a central role in adipose tissue homeostasis and coordinate adipose tissue expansion and remodeling. Although APCs are well studied, defining and characterizing APC subsets remains ambiguous because of ill-defined cellular heterogeneity within this cellular compartment. In this study, we used single-cell RNA sequencing to create a cellular atlas of APC heterogeneity in mouse visceral adipose tissue. Our analysis identified two distinct populations of adipose tissue–derived stem cells (ASCs) and three distinct populations of preadipocytes (PAs). We identified novel cell surface markers that, when used in combination with traditional ASC and preadipocyte markers, could discriminate between these APC subpopulations by flow cytometry. Prospective isolation and molecular characterization of these APC subpopulations confirmed single-cell RNA sequencing gene expression signatures, and ex vivo culture revealed differential expansion/differentiation capabilities. Obese visceral adipose tissue featured relative expansion of less mature ASC and PA subpopulations, and expression analyses revealed major obesity-associated signaling alterations within each APC subpopulation. Taken together, our study highlights cellular and transcriptional heterogeneity within the APC pool, provides new tools to prospectively isolate and study these novel subpopulations, and underscores the importance of considering APC diversity when studying the etiology of obesity.
Collapse
Affiliation(s)
- Dong Seong Cho
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Bolim Lee
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Jason D Doles
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
25
|
Sparks R, Lui A, Bader D, Patel R, Murr M, Guida W, Fratti R, Patel NA. A specific small-molecule inhibitor of protein kinase CδI activity improves metabolic dysfunction in human adipocytes from obese individuals. J Biol Chem 2019; 294:14896-14910. [PMID: 31413114 DOI: 10.1074/jbc.ra119.008777] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 07/11/2019] [Indexed: 12/17/2022] Open
Abstract
The metabolic consequences and sequelae of obesity promote life-threatening morbidities. PKCδI is an important elicitor of inflammation and apoptosis in adipocytes. Here we report increased PKCδI activation via release of its catalytic domain concurrent with increased expression of proinflammatory cytokines in adipocytes from obese individuals. Using a screening strategy of dual recognition of PKCδI isozymes and a caspase-3 binding site on the PKCδI hinge domain with Schrödinger software and molecular dynamics simulations, we identified NP627, an organic small-molecule inhibitor of PKCδI. Characterization of NP627 by surface plasmon resonance (SPR) revealed that PKCδI and NP627 interact with each other with high affinity and specificity, SPR kinetics revealed that NP627 disrupts caspase-3 binding to PKCδI, and in vitro kinase assays demonstrated that NP627 specifically inhibits PKCδI activity. The SPR results also indicated that NP627 affects macromolecular interactions between protein surfaces. Of note, release of the PKCδI catalytic fragment was sufficient to induce apoptosis and inflammation in adipocytes. NP627 treatment of adipocytes from obese individuals significantly inhibited PKCδI catalytic fragment release, decreased inflammation and apoptosis, and significantly improved mitochondrial metabolism. These results indicate that PKCδI is a robust candidate for targeted interventions to manage obesity-associated chronic inflammatory diseases. We propose that NP627 may also be used in other biological systems to better understand the impact of caspase-3-mediated activation of kinase activity.
Collapse
Affiliation(s)
- Robert Sparks
- Department of Biochemistry, University of Illinois, Urbana-Champaign, Illinois 61801
| | - Ashley Lui
- Department of Molecular Medicine, University of South Florida, Tampa, Florida 33612
| | - Deena Bader
- James A. Haley Veterans Hospital, Tampa, Florida 33612
| | - Rekha Patel
- Department of Chemistry, University of South Florida, Tampa, Florida 33612
| | - Michel Murr
- Surgery Department, University of Central Florida, Orlando, Florida 32816.,Bariatric and Metabolic Institute, AdventHealth, Tampa, Florida 33612
| | - Wayne Guida
- Department of Chemistry, University of South Florida, Tampa, Florida 33612
| | - Rutilio Fratti
- Department of Biochemistry, University of Illinois, Urbana-Champaign, Illinois 61801
| | - Niketa A Patel
- Department of Molecular Medicine, University of South Florida, Tampa, Florida 33612 .,James A. Haley Veterans Hospital, Tampa, Florida 33612
| |
Collapse
|
26
|
Phelps J, Sanati-Nezhad A, Ungrin M, Duncan NA, Sen A. Bioprocessing of Mesenchymal Stem Cells and Their Derivatives: Toward Cell-Free Therapeutics. Stem Cells Int 2018; 2018:9415367. [PMID: 30275839 PMCID: PMC6157150 DOI: 10.1155/2018/9415367] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 04/30/2018] [Indexed: 02/08/2023] Open
Abstract
Mesenchymal stem cells (MSCs) have attracted tremendous research interest due to their ability to repair tissues and reduce inflammation when implanted into a damaged or diseased site. These therapeutic effects have been largely attributed to the collection of biomolecules they secrete (i.e., their secretome). Recent studies have provided evidence that similar effects may be produced by utilizing only the secretome fraction containing extracellular vesicles (EVs). EVs are cell-derived, membrane-bound vesicles that contain various biomolecules. Due to their small size and relative mobility, they provide a stable mechanism to deliver biomolecules (i.e., biological signals) throughout an organism. The use of the MSC secretome, or its components, has advantages over the implantation of the MSCs themselves: (i) signals can be bioengineered and scaled to specific dosages, and (ii) the nonliving nature of the secretome enables it to be efficiently stored and transported. However, since the composition and therapeutic benefit of the secretome can be influenced by cell source, culture conditions, isolation methods, and storage conditions, there is a need for standardization of bioprocessing parameters. This review focuses on key parameters within the MSC culture environment that affect the nature and functionality of the secretome. This information is pertinent to the development of bioprocesses aimed at scaling up the production of secretome-derived products for their use as therapeutics.
Collapse
Affiliation(s)
- Jolene Phelps
- Pharmaceutical Production Research Facility, Department of Chemical and Petroleum Engineering, Schulich School of Engineering, University of Calgary, 2500 University Drive N.W., Calgary, AB, Canada T2N 1N4
- Biomedical Engineering Graduate Program, University of Calgary, 2500 University Drive N.W., Calgary, AB, Canada T2N 1N4
| | - Amir Sanati-Nezhad
- Biomedical Engineering Graduate Program, University of Calgary, 2500 University Drive N.W., Calgary, AB, Canada T2N 1N4
- BioMEMS and Bioinspired Microfluidic Laboratory, Department of Mechanical and Manufacturing Engineering, Schulich School of Engineering, University of Calgary, 2500 University Drive N.W., Calgary, AB, Canada T2N 1N4
- Center for Bioengineering Research and Education, Schulich School of Engineering, University of Calgary, 2500 University Drive N.W., Calgary, AB, Canada T2N 1N4
| | - Mark Ungrin
- Biomedical Engineering Graduate Program, University of Calgary, 2500 University Drive N.W., Calgary, AB, Canada T2N 1N4
- Center for Bioengineering Research and Education, Schulich School of Engineering, University of Calgary, 2500 University Drive N.W., Calgary, AB, Canada T2N 1N4
- Faculty of Veterinary Medicine, Heritage Medical Research Building, University of Calgary, 3330 Hospital Drive N.W., Calgary, AB, Canada T2N 4N1
| | - Neil A. Duncan
- Biomedical Engineering Graduate Program, University of Calgary, 2500 University Drive N.W., Calgary, AB, Canada T2N 1N4
- Center for Bioengineering Research and Education, Schulich School of Engineering, University of Calgary, 2500 University Drive N.W., Calgary, AB, Canada T2N 1N4
- Musculoskeletal Mechanobiology and Multiscale Mechanics Bioengineering Lab, Department of Civil Engineering, Schulich School of Engineering, University of Calgary, 2500 University Drive N.W., Calgary, AB, Canada T2N 1N4
| | - Arindom Sen
- Pharmaceutical Production Research Facility, Department of Chemical and Petroleum Engineering, Schulich School of Engineering, University of Calgary, 2500 University Drive N.W., Calgary, AB, Canada T2N 1N4
- Biomedical Engineering Graduate Program, University of Calgary, 2500 University Drive N.W., Calgary, AB, Canada T2N 1N4
- Center for Bioengineering Research and Education, Schulich School of Engineering, University of Calgary, 2500 University Drive N.W., Calgary, AB, Canada T2N 1N4
| |
Collapse
|
27
|
Cooper DR, Wang C, Patel R, Trujillo A, Patel NA, Prather J, Gould LJ, Wu MH. Human Adipose-Derived Stem Cell Conditioned Media and Exosomes Containing MALAT1 Promote Human Dermal Fibroblast Migration and Ischemic Wound Healing. Adv Wound Care (New Rochelle) 2018; 7:299-308. [PMID: 30263873 PMCID: PMC6158770 DOI: 10.1089/wound.2017.0775] [Citation(s) in RCA: 121] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 03/08/2018] [Indexed: 12/15/2022] Open
Abstract
Objective: Chronically ill patients heal recalcitrant ulcerative wounds more slowly. Human adipose-derived stem cells (hADSCs) play an important role in tissue regeneration and exosomes secreted by hADSC contribute to their paracrine signaling. In addition to cytokines, lipids and growth factors, hADSC secrete mRNA, miRNA, and long noncoding (lnc) RNA into exosomes. In this study we examined the role of lncRNA MALAT1 (metastasis-associated lung adenocarcinoma transcript 1), an abundant lncRNA in exosomes from conditioned media (CM), on cell migration and ischemic wound healing. Approach: CM and isolated exosomes from hADSC were applied to human dermal fibroblast (HDF) in scratch assays and electric cell-substrate impedance sensing (ECIS) assays. CM was also applied to a rat model of ischemic wound healing and wound closure was followed. Results: CM stimulated cell migration of HDFs in vitro by 48%. CM stimulated the closure of ischemic wounds in a rat model 50% faster than unconditioned media. The depletion of MALAT1 in adipose-derived stem cell (ADSC) CM significantly reduced cell migration. Since MALAT1 is secreted into exosomes, a purified population of exosomes was applied to HDF where they enhanced cell migration in a similar manner to FGF-2 or basic fibroblast growth factor (bFGF) in ECIS wound healing assays. The uptake of exosomes by HDF was shown using dynasore, an inhibitor that blocks clathrin- and caveolin-dependent endocytosis. Depletion of MALAT1 in hADSC with antisense oligonucleotides resulted in exosomes without MALAT1. These exosomes had an effect similar to the unconditioned, control media in ECIS assays. Innovation: Exosomes contain lncRNA MALAT1 and other factors that have the potential to stimulate HDF cell migration and angiogenesis involved in wound healing without applying stem cells to wounds. Conclusion: Our results show the potential of using topically applied ADSC-derived exosomes containing MALAT1 for treating ischemic wounds. This allows for harnessing the power of stem cell paracrine signaling capabilities without applying the cells.
Collapse
Affiliation(s)
- Denise R. Cooper
- Research Service, James A. Haley Veterans Hospital, Tampa, Florida
- Department of Molecular Medicine, University of South Florida Morsani College of Medicine, Tampa, Florida
| | - Chunyan Wang
- Department of Physiology and Pharmacology, University of South Florida Morsani College of Medicine, Tampa, Florida
| | - Rehka Patel
- Department of Molecular Medicine, University of South Florida Morsani College of Medicine, Tampa, Florida
| | - Andrea Trujillo
- Department of Physiology and Pharmacology, University of South Florida Morsani College of Medicine, Tampa, Florida
| | - Niketa A. Patel
- Research Service, James A. Haley Veterans Hospital, Tampa, Florida
- Department of Molecular Medicine, University of South Florida Morsani College of Medicine, Tampa, Florida
| | - Jamie Prather
- Surgery, University of South Florida Morsani College of Medicine, Tampa, Florida
| | - Lisa J. Gould
- Research Service, James A. Haley Veterans Hospital, Tampa, Florida
- Department of Physiology and Pharmacology, University of South Florida Morsani College of Medicine, Tampa, Florida
- Surgery, University of South Florida Morsani College of Medicine, Tampa, Florida
| | - Mack H. Wu
- Research Service, James A. Haley Veterans Hospital, Tampa, Florida
- Department of Molecular Medicine, University of South Florida Morsani College of Medicine, Tampa, Florida
- Surgery, University of South Florida Morsani College of Medicine, Tampa, Florida
| |
Collapse
|
28
|
Jin Y, Wang J, Li H, Gao S, Shi R, Yang D, Wang X, Wang X, Zhu L, Wang X, Chen C, Ning K, Gao Z, Xu J, Fu Q. Extracellular Vesicles Secreted by Human Adipose-derived Stem Cells (hASCs) Improve Survival Rate of Rats with Acute Liver Failure by Releasing lncRNA H19. EBioMedicine 2018; 34:231-242. [PMID: 30077720 PMCID: PMC6116414 DOI: 10.1016/j.ebiom.2018.07.015] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 07/08/2018] [Accepted: 07/12/2018] [Indexed: 02/07/2023] Open
Abstract
It has previously been reported that human adipose-derived stem cells (hASCs) can promote the regeneration of damaged tissues in rats with liver failure through a ‘paracrine effect’. Here we demonstrate a therapeutic effect of hASCs derived Extracellular Vesicles (EVs) on rat models with acute liver failure, as shown by the improvement of the survival rate by >70% compared to controls. Gene sequencing of rat liver revealed an increase in human long-chain non-coding RNA (lncRNA) H19 after hASC-derived EVs transplantation. When the H19 coding sequence was silenced in hASCs and EVs were then collected for treatment of rats with liver failure, we saw a decrease in the survival rate to 40%, compared to treatment with EVs generated from non-silenced hASCs. These data indicate that lncRNA H19 may be a potential therapeutic target for the treatment of liver failure.
Collapse
Affiliation(s)
- Yinpeng Jin
- Shanghai Public Health Clinical Center, Fudan University, Jinshan, Shanghai 201508, PR China.
| | - Junyi Wang
- Shanghai Liver Diseases Research Center, The 85th Hospital of PLA, Shanghai 200235, PR China
| | - Hongchao Li
- Shanghai Liver Diseases Research Center, The 85th Hospital of PLA, Shanghai 200235, PR China
| | - Shane Gao
- East Hospital, Tongji University School of Medicine, Shanghai 200120, PR China
| | - Rongfeng Shi
- Department of Interventional & Vascular Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, PR China
| | - Danjing Yang
- East Hospital, Tongji University School of Medicine, Shanghai 200120, PR China
| | - Xianli Wang
- Institute of Neuroscience and State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, PR China
| | - Xi Wang
- Shanghai Public Health Clinical Center, Fudan University, Jinshan, Shanghai 201508, PR China
| | - Liang Zhu
- East Hospital, Tongji University School of Medicine, Shanghai 200120, PR China
| | - Xiaojin Wang
- Shanghai Liver Diseases Research Center, The 85th Hospital of PLA, Shanghai 200235, PR China
| | - Chengwei Chen
- Shanghai Liver Diseases Research Center, The 85th Hospital of PLA, Shanghai 200235, PR China
| | - Ke Ning
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - Zhengliang Gao
- East Hospital, Tongji University School of Medicine, Shanghai 200120, PR China.
| | - Jun Xu
- East Hospital, Tongji University School of Medicine, Shanghai 200120, PR China.
| | - Qingchun Fu
- Shanghai Public Health Clinical Center, Fudan University, Jinshan, Shanghai 201508, PR China.
| |
Collapse
|
29
|
Patel NA, Moss LD, Lee JY, Tajiri N, Acosta S, Hudson C, Parag S, Cooper DR, Borlongan CV, Bickford PC. Long noncoding RNA MALAT1 in exosomes drives regenerative function and modulates inflammation-linked networks following traumatic brain injury. J Neuroinflammation 2018; 15:204. [PMID: 30001722 PMCID: PMC6044101 DOI: 10.1186/s12974-018-1240-3] [Citation(s) in RCA: 143] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 06/26/2018] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Neuroinflammation is a common therapeutic target for traumatic brain injury (TBI) due to its contribution to delayed secondary cell death and has the potential to occur for years after the initial insult. Exosomes from adipose-derived stem cells (hASCs) containing the long noncoding RNA MALAT1 are a novel, cell-free regenerative approach to long-term recovery after traumatic brain injury (TBI) that have the potential to modulate inflammation at the genomic level. The long noncoding RNA MALAT1 has been shown to be an important component of the secretome of hASCs. METHODS We isolated exosomes from hASC containing or depleted of MALAT1. The hASC-derived exosomes were then administered intravenously to rats following a mild controlled cortical impact (CCI). We followed the rats with behavior, in vivo imaging, histology, and RNA sequencing (RNA Seq). RESULTS Using in vivo imaging, we show that exosomes migrate into the spleen within 1 h following administration and enter the brain several hours later following TBI. Significant recovery of function on motor behavior as well as a reduction in cortical brain injury was observed after TBI in rats treated with exosomes. Treatment with either exosomes depleted of MALAT1 or conditioned media depleted of exosomes showed limited regenerative effects, demonstrating the importance of MALAT1 in exosome-mediated recovery. Analysis of the brain and spleen transcriptome using RNA Seq showed MALAT1-dependent modulation of inflammation-related pathways, cell cycle, cell death, and regenerative molecular pathways. Importantly, our data demonstrates that MALAT1 regulates expression of other noncoding RNAs including snoRNAs. CONCLUSION We demonstrate that MALAT1 in hASC-derived exosomes modulates multiple therapeutic targets, including inflammation, and has tremendous therapeutic potential for treatment of TBI.
Collapse
Affiliation(s)
- Niketa A. Patel
- 0000 0001 0624 9286grid.281075.9James A Haley Veterans Hospital, Research Service, Tampa, FL USA ,0000 0001 2353 285Xgrid.170693.aDepartment of Molecular Medicine, University of South Florida Morsani College of Medicine, 12901 Bruce B Downs Blvd, Tampa, FL 33612 USA
| | - Lauren Daly Moss
- 0000 0001 2353 285Xgrid.170693.aDepartment of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL USA
| | - Jea-Young Lee
- 0000 0001 2353 285Xgrid.170693.aDepartment of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL USA
| | - Naoki Tajiri
- 0000 0001 2353 285Xgrid.170693.aDepartment of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL USA ,0000 0001 0728 1069grid.260433.0Present address: Department of Neurophysiology & Brain Science, Graduate School of Medical Sciences & Medical School, Nagoya City University, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Aichi 467-8601 Japan
| | - Sandra Acosta
- 0000 0001 2353 285Xgrid.170693.aDepartment of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL USA
| | - Charles Hudson
- 0000 0001 0624 9286grid.281075.9James A Haley Veterans Hospital, Research Service, Tampa, FL USA
| | - Sajan Parag
- 0000 0001 2353 285Xgrid.170693.aDepartment of Molecular Medicine, University of South Florida Morsani College of Medicine, 12901 Bruce B Downs Blvd, Tampa, FL 33612 USA
| | - Denise R. Cooper
- 0000 0001 0624 9286grid.281075.9James A Haley Veterans Hospital, Research Service, Tampa, FL USA ,0000 0001 2353 285Xgrid.170693.aDepartment of Molecular Medicine, University of South Florida Morsani College of Medicine, 12901 Bruce B Downs Blvd, Tampa, FL 33612 USA
| | - Cesario V. Borlongan
- 0000 0001 2353 285Xgrid.170693.aDepartment of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL USA ,0000 0001 2353 285Xgrid.170693.aUSF Health Center of Excellence for Aging and Brain Repair MDC-78, 12901 Bruce B Downs, Blvd, Tampa, FL 33612 USA
| | - Paula C. Bickford
- 0000 0001 0624 9286grid.281075.9James A Haley Veterans Hospital, Research Service, Tampa, FL USA ,0000 0001 2353 285Xgrid.170693.aDepartment of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL USA ,0000 0001 2353 285Xgrid.170693.aUSF Health Center of Excellence for Aging and Brain Repair MDC-78, 12901 Bruce B Downs, Blvd, Tampa, FL 33612 USA
| |
Collapse
|
30
|
Methods of Isolation, Characterization and Expansion of Human Adipose-Derived Stem Cells (ASCs): An Overview. Int J Mol Sci 2018; 19:ijms19071897. [PMID: 29958391 PMCID: PMC6073397 DOI: 10.3390/ijms19071897] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 06/25/2018] [Accepted: 06/26/2018] [Indexed: 12/17/2022] Open
Abstract
Considering the increasing interest in adipose-derived stem cells (ASCs) in regenerative medicine, optimization of methods aimed at isolation, characterization, expansion and evaluation of differentiation potential is critical to ensure (a) the quality of stem cells also in terms of genetic stability; (b) the reproducibility of beneficial effects; and (c) the safety of their use. Numerous studies have been conducted to understand the mechanisms that regulate ASC proliferation, growth and differentiation, however standard protocols about harvesting and processing techniques are not yet defined. It is also important to note that some steps in the procedures of harvesting and/or processing have been reported to affect recovery and/or the physiology of ASCs. Even considering the great opportunity that the ASCs provide for the identification of novel molecular targets for new or old drugs, the definition of homogeneous preparation methods that ensure adequate quality assurance and control, in accordance with current GMPs (good manufacturing practices), is required. Here, we summarize the literature reports to provide a detailed overview of the methodological issues underlying human ASCs isolation, processing, characterization, expansion, differentiation techniques, recalling at the same time their basilar principles, advantages and limits, in particular focusing on how these procedures could affect the ASC quality, functionality and plasticity.
Collapse
|
31
|
Ding X, Zhong T, Jiang L, Huang J, Xia Y, Hu R. miR-25 enhances cell migration and invasion in non-small-cell lung cancer cells via ERK signaling pathway by inhibiting KLF4. Mol Med Rep 2018; 17:7005-7016. [PMID: 29568911 PMCID: PMC5928655 DOI: 10.3892/mmr.2018.8772] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 12/08/2017] [Indexed: 01/10/2023] Open
Abstract
In recent years, microRNAs (miRNAs/miRs) have gained increasing interest in cancer research. Increasing evidences demonstrated that miRNAs are important for tumor early detection and prognosis. The present study aimed to explore the function of miR-25 in non-small-cell lung cancer (NSCLC) and its underlying mechanisms. The expression levels of miR-25 and Krüppel-like factor 4 (KLF4) were assessed in 31 pairs of tissue from patients with NSCLC. In addition, the biological roles of miR-25 in NSCLC were analyzed via a cell wound healing assay, Transwell invasion and migration assays. Target genes of miR-25 were predicted using TargetScan and verified via a dual luciferase activity assay, western blotting and reverse transcription-quantitative polymerase chain reaction. The downstream signaling pathway was confirmed by western blot analysis. In the present study, miR-25 was overexpressed in 31 NSCLC samples compared with in corresponding normal tissues. Overexpression of miR-25 using miR-25 mimics markedly promoted NSCLC cell migration and invasion, while inhibition of miR-25 exerted the opposite effect. KLF4 was suggested to be a novel target gene of miR-25 in NSCLC cells. Knockdown of KLF4 promoted the migration and invasion of NSCLC cells, whereas rescue of KLF4 expression reduced cell motion ability in miR-25-overexpressing NSCLC cells. Furthermore, it was demonstrated that miR-25 activated the extracellular signal-regulated kinase (ERK) signaling pathway, which eventually led to increased vimentin, matrix metalloproteinase 11 and N-cadherin levels, and the downregulation of E-cadherin expression by inhibiting the expression of KLF4. In conclusion, miR-25 was demonstrated to activate the ERK signaling pathway by directly targeting KLF4, promoting cell migration and invasion. The findings of the present study indicated that miR-25 or KLF4 may serve as a therapeutic target for the treatment of NSCLC.
Collapse
Affiliation(s)
- Xiaoli Ding
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China
| | - Tianyu Zhong
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China
| | - Lixia Jiang
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China
| | - Junyun Huang
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China
| | - Yu Xia
- Graduate Student Major of Laboratory Medicine of Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China
| | - Rong Hu
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China
| |
Collapse
|
32
|
Nawaz M, Fatima F. Extracellular Vesicles, Tunneling Nanotubes, and Cellular Interplay: Synergies and Missing Links. Front Mol Biosci 2017; 4:50. [PMID: 28770210 PMCID: PMC5513920 DOI: 10.3389/fmolb.2017.00050] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 07/03/2017] [Indexed: 12/15/2022] Open
Abstract
The process of intercellular communication seems to have been a highly conserved evolutionary process. Higher eukaryotes use several means of intercellular communication to address both the changing physiological demands of the body and to fight against diseases. In recent years, there has been an increasing interest in understanding how cell-derived nanovesicles, known as extracellular vesicles (EVs), can function as normal paracrine mediators of intercellular communication, but can also elicit disease progression and may be used for innovative therapies. Over the last decade, a large body of evidence has accumulated to show that cells use cytoplasmic extensions comprising open-ended channels called tunneling nanotubes (TNTs) to connect cells at a long distance and facilitate the exchange of cytoplasmic material. TNTs are a different means of communication to classical gap junctions or cell fusions; since they are characterized by long distance bridging that transfers cytoplasmic organelles and intracellular vesicles between cells and represent the process of heteroplasmy. The role of EVs in cell communication is relatively well-understood, but how TNTs fit into this process is just emerging. The aim of this review is to describe the relationship between TNTs and EVs, and to discuss the synergies between these two crucial processes in the context of normal cellular cross-talk, physiological roles, modulation of immune responses, development of diseases, and their combinatory effects in tissue repair. At the present time this review appears to be the first summary of the implications of the overlapping roles of TNTs and EVs. We believe that a better appreciation of these parallel processes will improve our understanding on how these nanoscale conduits can be utilized as novel tools for targeted therapies.
Collapse
Affiliation(s)
- Muhammad Nawaz
- Department of Pathology and Forensic Medicine, Ribeirao Preto Medical School, University of São PauloSão Paulo, Brazil.,Department of Rheumatology and Inflammation Research, Sahlgrenska Academy, University of GothenburgGothenburg, Sweden
| | - Farah Fatima
- Department of Pathology and Forensic Medicine, Ribeirao Preto Medical School, University of São PauloSão Paulo, Brazil
| |
Collapse
|
33
|
A Comparative Study of Serum Exosome Isolation Using Differential Ultracentrifugation and Three Commercial Reagents. PLoS One 2017; 12:e0170628. [PMID: 28114422 PMCID: PMC5256994 DOI: 10.1371/journal.pone.0170628] [Citation(s) in RCA: 464] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 01/06/2017] [Indexed: 12/21/2022] Open
Abstract
Exosomes play a role in cell-to-cell signaling and serve as possible biomarkers. Isolating exosomes with reliable quality and substantial concentration is a major challenge. Our purpose is to compare the exosomes extracted by three different exosome isolation kits (miRCURY, ExoQuick, and Invitrogen Total Exosome Isolation Reagent) and differential ultracentrifugation (UC) using six different volumes of a non-cancerous human serum (5 ml, 1 ml, 500 μl, 250 μl, 100 μl, and 50 μl) and three different volumes (1 ml, 500 μl and 100 μl) of six individual commercial serum samples collected from human donors. The smaller starting volumes (100 μl and 50 μl) are used to mimic conditions of limited availability of heterogeneous biological samples. The isolated exosomes were characterized based upon size, quantity, zeta potential, CD63 and CD9 protein expression, and exosomal RNA (exRNA) quality and quantity using several complementary methods: nanoparticle tracking analysis (NTA) with ZetaView, western blot, transmission electron microscopy (TEM), the Agilent Bioanalyzer system, and droplet digital PCR (ddPCR). Our NTA results showed that all isolation techniques produced exosomes within the expected size range (40–150 nm). The three kits, though, produced a significantly higher yield (80–300 fold) of exosomes as compared to UC for all serum volumes, except 5 mL. We also found that exosomes isolated by the different techniques and serum volumes had similar zeta potentials to previous studies. Western blot analysis and TEM immunogold labelling confirmed the expression of two common exosomal protein markers, CD63 and CD9, in samples isolated by all techniques. All exosome isolations yielded high quality exRNA, containing mostly small RNA with a peak between 25 and 200 nucleotides in size. ddPCR results indicated that exosomes isolated from similar serum volumes but different isolation techniques rendered similar concentrations of two selected exRNA: hsa-miR-16 and hsa-miR-451. In summary, the three commercial exosome isolation kits are viable alternatives to UC, even when limited amounts of biological samples are available.
Collapse
|
34
|
Jayabalan N, Nair S, Nuzhat Z, Rice GE, Zuñiga FA, Sobrevia L, Leiva A, Sanhueza C, Gutiérrez JA, Lappas M, Freeman DJ, Salomon C. Cross Talk between Adipose Tissue and Placenta in Obese and Gestational Diabetes Mellitus Pregnancies via Exosomes. Front Endocrinol (Lausanne) 2017; 8:239. [PMID: 29021781 PMCID: PMC5623931 DOI: 10.3389/fendo.2017.00239] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 08/30/2017] [Indexed: 12/16/2022] Open
Abstract
Obesity is an important public health issue worldwide, where it is commonly associated with the development of metabolic disorders, especially insulin resistance (IR). Maternal obesity is associated with an increased risk of pregnancy complications, especially gestational diabetes mellitus (GDM). Metabolism is a vital process for energy production and the maintenance of essential cellular functions. Excess energy storage is predominantly regulated by the adipose tissue. Primarily made up of adipocytes, adipose tissue acts as the body's major energy reservoir. The role of adipose tissue, however, is not restricted to a "bag of fat." The adipose tissue is an endocrine organ, secreting various adipokines, enzymes, growth factors, and hormones that take part in glucose and lipid metabolism. In obesity, the greater portion of the adipose tissue comprises fat, and there is increased pro-inflammatory cytokine secretion, macrophage infiltration, and reduced insulin sensitivity. Obesity contributes to systemic IR and its associated metabolic complications. Similar to adipose tissue, the placenta is also an endocrine organ. During pregnancy, the placenta secretes various molecules to maintain pregnancy physiology. In addition, the placenta plays an important role in metabolism and exchange of nutrients between mother and fetus. Inflammation at the placenta may contribute to the severity of maternal IR and her likelihood of developing GDM and may also mediate the adverse consequences of obesity and GDM on the fetus. Interestingly, studies on maternal insulin sensitivity and secretion of placental hormones have not shown a positive correlation between these phenomena. Recently, a great interest in the field of extracellular vesicles (EVs) has been observed in the literature. EVs are produced by a wide range of cells and are present in all biological fluids. EVs are involved in cell-to-cell communication. Recent evidence points to an association between adipose tissue-derived EVs and metabolic syndrome in obesity. In this review, we will discuss the changes in human placenta and adipose tissue in GDM and obesity and summarize the findings regarding the role of adipose tissue and placenta-derived EVs, with an emphasis on exosomes in obesity, and the contribution of obesity to the development of GDM.
Collapse
Affiliation(s)
- Nanthini Jayabalan
- Exosome Biology Laboratory, Centre for Clinical Diagnostics, University of Queensland Centre for Clinical Research, Royal Brisbane and Women’s Hospital, The University of Queensland, Brisbane, QLD, Australia
| | - Soumyalekshmi Nair
- Exosome Biology Laboratory, Centre for Clinical Diagnostics, University of Queensland Centre for Clinical Research, Royal Brisbane and Women’s Hospital, The University of Queensland, Brisbane, QLD, Australia
| | - Zarin Nuzhat
- Exosome Biology Laboratory, Centre for Clinical Diagnostics, University of Queensland Centre for Clinical Research, Royal Brisbane and Women’s Hospital, The University of Queensland, Brisbane, QLD, Australia
| | - Gregory E. Rice
- Exosome Biology Laboratory, Centre for Clinical Diagnostics, University of Queensland Centre for Clinical Research, Royal Brisbane and Women’s Hospital, The University of Queensland, Brisbane, QLD, Australia
- Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Ochsner Clinic Foundation, New Orleans, LA, United States
| | - Felipe A. Zuñiga
- Faculty of Pharmacy, Department of Clinical Biochemistry and Immunology, University of Concepción, Concepción, Chile
| | - Luis Sobrevia
- Cellular and Molecular Physiology Laboratory (CMPL), Division of Obstetrics and Gynaecology, Faculty of Medicine, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- University of Queensland Centre for Clinical Research, Royal Brisbane and Women’s Hospital, The University of Queensland, Brisbane, QLD, Australia
- Faculty of Pharmacy, Department of Physiology, Universidad de Sevilla, Seville, Spain
| | - Andrea Leiva
- Cellular and Molecular Physiology Laboratory (CMPL), Division of Obstetrics and Gynaecology, Faculty of Medicine, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Carlos Sanhueza
- Cellular and Molecular Physiology Laboratory (CMPL), Division of Obstetrics and Gynaecology, Faculty of Medicine, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Jaime Agustín Gutiérrez
- Cellular Signaling and Differentiation Laboratory (CSDL), Medical Technology School, Health Sciences Faculty, Universidad San Sebastian, Santiago, Chile
- Cellular and Molecular Physiology Laboratory (CMPL), Division of Obstetrics and Gynaecology, Faculty of Medicine, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Martha Lappas
- Obstetrics, Nutrition and Endocrinology Group, Department of Obstetrics and Gynaecology, University of Melbourne, Melbourne, VIC, Australia
- Mercy Perinatal Research Centre, Mercy Hospital for Women, Heidelberg, VIC, Australia
| | - Dilys Jane Freeman
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Carlos Salomon
- Exosome Biology Laboratory, Centre for Clinical Diagnostics, University of Queensland Centre for Clinical Research, Royal Brisbane and Women’s Hospital, The University of Queensland, Brisbane, QLD, Australia
- Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Ochsner Clinic Foundation, New Orleans, LA, United States
- Faculty of Pharmacy, Department of Clinical Biochemistry and Immunology, University of Concepción, Concepción, Chile
- Mater Research Institute-University of Queensland, Translational Research Institute, Woolloongabba, QLD, Australia
- *Correspondence: Carlos Salomon,
| |
Collapse
|
35
|
El Bassit G, Patel RS, Carter G, Shibu V, Patel AA, Song S, Murr M, Cooper DR, Bickford PC, Patel NA. MALAT1 in Human Adipose Stem Cells Modulates Survival and Alternative Splicing of PKCδII in HT22 Cells. Endocrinology 2017; 158:183-195. [PMID: 27841943 PMCID: PMC5412980 DOI: 10.1210/en.2016-1819] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 11/04/2016] [Indexed: 01/15/2023]
Abstract
Brain injury may be caused by trauma or may occur in stroke and neurodegenerative diseases. Because the central nervous system is unable to regenerate efficiently, there is utmost interest in the use of stem cells to promote neuronal survival. Of interest here are human adipose-derived stem cells (hASCs), which secrete factors that enhance regeneration and survival of neurons in sites of injury. We evaluated the effect of hASC secretome on immortalized mouse hippocampal cell line (HT22) after injury. Protein kinase C δ (PKCδ) activates survival and proliferation in neurons and is implicated in memory. We previously showed that alternatively spliced PKCδII enhances neuronal survival via B-cell lymphoma 2 Bcl2 in HT22 neuronal cells. Our results demonstrate that following injury, treatment with exosomes from the hASC secretome increases expression of PKCδII in HT22 cells and increases neuronal survival and proliferation. Specifically, we demonstrate that metastasis-associated lung adenocarcinoma transcript 1 (MALAT1), a long noncoding RNA contained in the hASC exosomes mediates PKCδII splicing, thereby increasing neuronal survival. Using antisense oligonucleotides for MALAT1 and RNA immunoprecipitation assays, we demonstrate that MALAT1 recruits splice factor serine-arginine-rich splice factor 2 (SRSF2) to promote alternative splicing of PKCδII. Finally, we evaluated the role of insulin in enhancing hASC-mediated neuronal survival and demonstrated that insulin treatment dramatically increases the association of MALAT1 and SRSF2 and substantially increases survival and proliferation after injury in HT22 cells. In conclusion, we demonstrate the mechanism of action of hASC exosomes in increasing neuronal survival. This effect of hASC exosomes to promote wound healing can be further enhanced by insulin treatment in HT22 cells.
Collapse
Affiliation(s)
| | | | - Gay Carter
- James A. Haley Veterans Hospital, Tampa, Florida 33612; and
| | | | | | - Shijie Song
- James A. Haley Veterans Hospital, Tampa, Florida 33612; and
| | | | - Denise R. Cooper
- James A. Haley Veterans Hospital, Tampa, Florida 33612; and
- Molecular Medicine,
| | - Paula C. Bickford
- James A. Haley Veterans Hospital, Tampa, Florida 33612; and
- Neurosurgery and Brain Survival, University of South Florida, Tampa, Florida 33612
| | - Niketa A. Patel
- James A. Haley Veterans Hospital, Tampa, Florida 33612; and
- Molecular Medicine,
| |
Collapse
|
36
|
Lafosse A, Dufeys C, Beauloye C, Horman S, Dufrane D. Impact of Hyperglycemia and Low Oxygen Tension on Adipose-Derived Stem Cells Compared with Dermal Fibroblasts and Keratinocytes: Importance for Wound Healing in Type 2 Diabetes. PLoS One 2016; 11:e0168058. [PMID: 27992567 PMCID: PMC5167273 DOI: 10.1371/journal.pone.0168058] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 11/25/2016] [Indexed: 12/11/2022] Open
Abstract
Aim Adipose-derived stem cells (ASC) are currently proposed for wound healing in those with type 2 diabetes mellitus (T2DM). Therefore, this study investigated the impact of diabetes on adipose tissue in relation to ASC isolation, proliferation, and growth factor release and the impact of hyperglycemia and low oxygen tension (found in diabetic wounds) on dermal fibroblasts, keratinocytes, and ASC in vitro. Methods Different sequences of hypoxia and hyperglycemia were applied in vitro to ASC from nondiabetic (n = 8) or T2DM patients (n = 4) to study cell survival, proliferation, and growth factor release. Comparisons of dermal fibroblasts (n = 8) and keratinocytes (primary lineage) were made. Results No significant difference of isolation and proliferation capacities was found in ASC from nondiabetic and diabetic humans. Hypoxia and hyperglycemia did not impact cell viability and proliferation. Keratinocyte Growth Factor release was significantly lower in diabetic ASC than in nondiabetic ASC group in each condition, while Vascular Endothelial Growth Factor release was not affected by the diabetic origin. Nondiabetic ASC exposition to hypoxia (0.1% oxygen) combined with hyperglycemia (25mM glucose), resulted in a significant increase in VEGF secretion (+64%, p<0.05) with no deleterious impact on KGF release in comparison to physiological conditions (5% oxygen and 5 mM glucose). Stromal cell-Derived Factor-1α (-93%, p<0.001) and KGF (-20%, p<0.05) secretion by DF decreased in these conditions. Conclusions A better profile of growth factor secretion (regarding wound healing) was found in vitro for ASC in hyperglycemia coupled with hypoxia in comparison to dermal fibroblasts and keratinocytes. Interestingly, ASC from T2DM donors demonstrated cellular growth rates and survival (in hypoxia and hyperglycemic conditions) similar to those of healthy ASC (from normoglycemic donors); however, KGF secretion was significantly depleted in ASC obtained from T2DM patients. This study demonstrated the impact of diabetes on ASC for regenerative medicine and wound healing.
Collapse
Affiliation(s)
| | - Cécile Dufeys
- Pole de Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Christophe Beauloye
- Pole de Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Sandrine Horman
- Pole de Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Denis Dufrane
- Novadip Biosciences, Mont-Saint-Guibert, Belgium
- * E-mail:
| |
Collapse
|