1
|
Di Luca A, Ianni A, Bennato F, Martino C, Henry M, Meleady P, Martino G. Comparative Proteomics Analysis of Pig Muscle Exudate through Label-Free Liquid Chromatography-Mass Spectrometry. Animals (Basel) 2023; 13:ani13091460. [PMID: 37174497 PMCID: PMC10177093 DOI: 10.3390/ani13091460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/13/2023] [Accepted: 04/18/2023] [Indexed: 05/15/2023] Open
Abstract
Capital-driven animal husbandry systems undertaken in the last century led to the abandoning of many pig breeds that were not profitable. These local pig breeds and their respective production systems have great potential as they are able to respond to the high criteria and needs of modern society concerning some environmental aspects, animal-welfare, healthiness, etc. This is the case of the black pigs of Italy. The Apulo-Calabrese is a breed of black pig, known by many other names such as Nero d'Abruzzo. In order to further understand the biological differences between different types of porcine genetics (Nero d'Abruzzo and commercial-hybrid) we used a label-free LC-MS strategy and Western-blot to characterize the proteomes of muscle-exudate collected from these pigs. This proteomics approach identified 1669 proteins of which 100 changed significantly in abundance between breeds. Bioinformatics functional analysis indicated that differentially expressed proteins were involved in several biological processes related to energy-metabolism and response to oxidative stress, suggesting that these functions might distinguish between these pigs. Fatty-acid synthase, catalase and glutathione-peroxidase, involved in enzymatic activity were found to be more represented in samples obtained from the Nero d'Abruzzo. This biological information can potentially provide new biological factors that could determine the different production performances of these pigs, distinguished by their different genetic backgrounds.
Collapse
Affiliation(s)
- Alessio Di Luca
- Department of Bioscience and Technology for Food Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy
| | - Andrea Ianni
- Department of Bioscience and Technology for Food Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy
| | - Francesca Bennato
- Department of Bioscience and Technology for Food Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy
| | - Camillo Martino
- Department of Veterinary Medicine, University of Perugia, 06126 Perugia, Italy
| | - Michael Henry
- National Institute for Cellular Biotechnology, Dublin City University, Dublin 9, Dublin, Ireland
| | - Paula Meleady
- National Institute for Cellular Biotechnology, Dublin City University, Dublin 9, Dublin, Ireland
- School of Biotechnology, Dublin City University, Dublin 9, Dublin, Ireland
| | - Giuseppe Martino
- Department of Bioscience and Technology for Food Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy
| |
Collapse
|
2
|
Garrido N, Izquierdo M, Hernández-García FI, Núñez Y, García-Torres S, Benítez R, Padilla JÁ, Óvilo C. Differences in Muscle Lipogenic Gene Expression, Carcass Traits and Fat Deposition among Three Iberian Pig Strains Finished in Two Different Feeding Systems. Animals (Basel) 2023; 13:ani13071138. [PMID: 37048394 PMCID: PMC10092979 DOI: 10.3390/ani13071138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 04/14/2023] Open
Abstract
The Iberian pig breed includes several well-differentiated strains. The present study evaluated carcass traits, fat deposition and muscle expression of important lipogenic genes (SCD, ME1, ACACA, FASN, EGR1, ACOX and ACLY) using 65 male pigs of 3 Iberian strains (20 Lampiño, 23 Torbiscal, and 22 Retinto) finished either in a conventional, concentrate-based system (CF) or in montanera (MF), a traditional free-range system with acorn feeding. Torbiscal had the highest ham, Longissimus thoracis and prime cuts yields, and the thinnest subcutaneous adipose tissue (SAT). Retinto had the highest monounsaturated fatty acids (MUFA) and percentage of intramuscular fat (IMF), while Lampiño had the greatest content of saturated fatty acids (SFA), polyunsaturated fatty acids (PUFA), atherogenic (AI) and thrombogenic (TI) indexes in SAT. Conventionally finished pigs had the highest ham, L. thoracis and prime cuts yields, and SFA. Montanera-finished animals had the highest PUFA and MUFA contents, and the lowest AI, TI and n6/n3 ratio in SAT. In relation to gene expression, Retinto had the greatest SCD, FASN and ACLY levels. Most studied genes were overexpressed in CF pigs. In conclusion, MF pigs had healthier fat than CF pigs, and Retinto had the healthiest fat and the greatest lipogenic trend in muscle, supported by IMF and lipogenic gene expression.
Collapse
Affiliation(s)
| | | | | | - Yolanda Núñez
- Departamento de Mejora Genética Animal, INIA-CSIC, Ctra. La Coruña km 7.5, 28040 Madrid, Spain
| | | | - Rita Benítez
- Departamento de Mejora Genética Animal, INIA-CSIC, Ctra. La Coruña km 7.5, 28040 Madrid, Spain
| | - José Á Padilla
- Facultad de Veterinaria, Universidad de Extremadura, 10003 Cáceres, Spain
| | - Cristina Óvilo
- Departamento de Mejora Genética Animal, INIA-CSIC, Ctra. La Coruña km 7.5, 28040 Madrid, Spain
| |
Collapse
|
3
|
Bioactive Compounds of Porcine Hearts and Aortas May Improve Cardiovascular Disorders in Humans. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18147330. [PMID: 34299780 PMCID: PMC8307898 DOI: 10.3390/ijerph18147330] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 07/01/2021] [Accepted: 07/06/2021] [Indexed: 01/02/2023]
Abstract
Functional foods promote health benefits in human metabolism, with bioactive compounds acting as therapeutic agents. The aim was to investigate the biological effects of a pâté made of pork hearts and aortas, minced, sterilised and packed in tins. Adults (61–66 years old) with a body mass index of 26.4–60.7 kg/m2 (n = 36) were randomly divided into two groups: one group consumed a low-calorie diet (LCD), while the other consumed an LCD with the developed meat product (MP) for 28–30 days. Serum biochemical parameters, anthropometry and blood pressure were measured. Consumption of an LCD + MP by experimental group participants helped to maintain reduced cholesterol levels. The difference in total cholesterol was significantly different (p = 0.018) from that of the control group, mainly due to the difference in low-density lipoprotein cholesterol (p = 0.005). Six peptides with potential cholesterol-binding properties and four peptides with potential antioxidant activity were identified in the MP, while elevation of the content of two peptides with potential angiotensin-converting enzyme-inhibitory activity was detected in patients’ plasma. Intervention with the MP can be considered as a supportive therapy to the main treatment for medical cardiovascular diseases due to a positive effect on serum cholesterol.
Collapse
|
4
|
Lipid and Oxidative Methods to Assess the Stability of “Lacon”. FOOD ANAL METHOD 2021. [DOI: 10.1007/s12161-021-02052-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
5
|
Domínguez R, Pateiro M, Gagaoua M, Barba FJ, Zhang W, Lorenzo JM. A Comprehensive Review on Lipid Oxidation in Meat and Meat Products. Antioxidants (Basel) 2019; 8:E429. [PMID: 31557858 PMCID: PMC6827023 DOI: 10.3390/antiox8100429] [Citation(s) in RCA: 781] [Impact Index Per Article: 130.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 09/20/2019] [Accepted: 09/23/2019] [Indexed: 11/17/2022] Open
Abstract
Meat and meat products are a fundamental part of the human diet. The protein and vitamin content, as well as essential fatty acids, gives them an appropriate composition to complete the nutritional requirements. However, meat constituents are susceptible to degradation processes. Among them, the most important, after microbial deterioration, are oxidative processes, which affect lipids, pigments, proteins and vitamins. During these reactions a sensory degradation of the product occurs, causing consumer rejection. In addition, there is a nutritional loss that leads to the formation of toxic substances, so the control of oxidative processes is of vital importance for the meat industry. Nonetheless, despite lipid oxidation being widely investigated for decades, the complex reactions involved in the process, as well as the different pathways and factors that influenced them, make that lipid oxidation mechanisms have not yet been completely understood. Thus, this article reviews the fundamental mechanisms of lipid oxidation, the most important oxidative reactions, the main factors that influence lipid oxidation, and the routine methods to measure compounds derived from lipid oxidation in meat.
Collapse
Affiliation(s)
- Rubén Domínguez
- Centro Tecnológico de la Carne de Galicia, Rúa Galicia Nº 4, Parque Tecnológico de Galicia, 32900 San Cibrao das Viñas, Spain.
| | - Mirian Pateiro
- Centro Tecnológico de la Carne de Galicia, Rúa Galicia Nº 4, Parque Tecnológico de Galicia, 32900 San Cibrao das Viñas, Spain.
| | - Mohammed Gagaoua
- Food Quality and Sensory Science Department, Teagasc Ashtown Food Research Centre, Ashtown, Dublin 15, Ireland.
| | - Francisco J Barba
- Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, Universitat de València, 46100 València, Spain.
| | - Wangang Zhang
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education China, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - José M Lorenzo
- Centro Tecnológico de la Carne de Galicia, Rúa Galicia Nº 4, Parque Tecnológico de Galicia, 32900 San Cibrao das Viñas, Spain.
| |
Collapse
|
6
|
Analysis of meat quality traits and gene expression profiling of pigs divergent in residual feed intake. Meat Sci 2018; 137:265-274. [DOI: 10.1016/j.meatsci.2017.11.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 09/08/2017] [Accepted: 11/16/2017] [Indexed: 11/19/2022]
|
7
|
Méndez-Cid FJ, Franco I, Martínez S, Carballo J. Lipid characteristics of dry-cured “Tocino” during the manufacturing process. Effects of salting intensity and ripening temperature. J Food Compost Anal 2016. [DOI: 10.1016/j.jfca.2016.07.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
8
|
Salazar E, Abellán A, Cayuela JM, Poto Á, Tejada L. Dry-cured loin from the native pig breed Chato murciano with high unsaturated fatty acid content undergoes intense lipolysis of neutral and polar lipids during processing. EUR J LIPID SCI TECH 2015. [DOI: 10.1002/ejlt.201500150] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Eva Salazar
- Departamento de Tecnología de la Alimentación y Nutrición; Universidad Católica San Antonio; Guadalupe Murcia Spain
| | - Adela Abellán
- Departamento de Tecnología de la Alimentación y Nutrición; Universidad Católica San Antonio; Guadalupe Murcia Spain
| | - José María Cayuela
- Departamento de Tecnología de la Alimentación y Nutrición; Universidad Católica San Antonio; Guadalupe Murcia Spain
| | - Ángel Poto
- Equipo de Mejora Genética Animal; Instituto Murciano de Investigación y Desarrollo Agrario y Alimentario (IMIDA); La Alberca Murcia Spain
| | - Luis Tejada
- Departamento de Tecnología de la Alimentación y Nutrición; Universidad Católica San Antonio; Guadalupe Murcia Spain
| |
Collapse
|