1
|
Armstrong EE, Li C, Campana MG, Ferrari T, Kelley JL, Petrov DA, Solari KA, Mooney JA. A Pipeline and Recommendations for Population and Individual Diagnostic SNP Selection in Non-Model Species. Mol Ecol Resour 2025; 25:e14048. [PMID: 39611246 PMCID: PMC11887608 DOI: 10.1111/1755-0998.14048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 10/16/2024] [Accepted: 11/06/2024] [Indexed: 11/30/2024]
Abstract
Despite substantial reductions in the cost of sequencing over the last decade, genetic panels remain relevant due to their cost-effectiveness and flexibility across a variety of sample types. In particular, single nucleotide polymorphism (SNP) panels are increasingly favoured for conservation applications. SNP panels are often used because of their adaptability, effectiveness with low-quality samples, and cost-efficiency for population monitoring and forensics. However, the selection of diagnostic SNPs for population assignment and individual identification can be challenging. The consequences of poor SNP selection are under-powered panels, inaccurate results, and monetary loss. Here, we develop a novel and user-friendly SNP selection pipeline (mPCRselect) that can be used to select SNPs for population assignment and/or individual identification. mPCRselect allows any researcher, who has sufficient SNP-level data, to design a successful and cost-effective SNP panel for a diploid species of conservation concern.
Collapse
Affiliation(s)
- Ellie E. Armstrong
- School of Biological SciencesWashington State UniversityPullmanWashingtonUSA
- Department of Evolution, Ecology and Organismal BiologyUniversity of California, RiversideRiversideCaliforniaUSA
| | - Chenyang Li
- Department of Quantitative and Computational BiologyUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Michael G. Campana
- Smithsonian's National Zoo and Conservation Biology InstituteWashingtonDCUSA
| | - Tessa Ferrari
- Department of Quantitative and Computational BiologyUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Joanna L. Kelley
- Department of Ecology and Evolutionary BiologyUniversity of California, Santa CruzSanta CruzCaliforniaUSA
| | - Dmitri A. Petrov
- Department of BiologyStanford UniversityStanfordCaliforniaUSA
- Chan Zuckerberg BioHubSan FranciscoCaliforniaUSA
- Program for Conservation Genomics, Center for Computational, Evolutionary, and Human GenomicsStanfordCaliforniaUSA
| | | | - Jazlyn A. Mooney
- Department of Quantitative and Computational BiologyUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| |
Collapse
|
2
|
Premachandra HKA, Piza-Roca C, Casteriano A, Higgins DP, Hohwieler K, Powell D, Cristescu RH. Advancements in noninvasive koala monitoring through combining Chlamydia detection with a targeted koala genotyping assay. Sci Rep 2024; 14:30371. [PMID: 39638795 PMCID: PMC11621440 DOI: 10.1038/s41598-024-76873-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 10/17/2024] [Indexed: 12/07/2024] Open
Abstract
Wildlife diseases are major players in local and global extinctions. Effective disease surveillance, management and conservation strategies require accurate estimates of pathogen prevalence. Yet pathogen detection in wild animals remains challenging. Current gold standards often require samples collected through veterinary examination, but this method is costly, intensive, invasive, and requires specialised staff and equipment. Collection of non-invasive samples, such as scats, is an effective monitoring tool which can be deployed at large scale, as scats contain DNA of both host and pathogens. The koala (Phascolarctos cinereus) is listed as 'endangered' under the EPBC Act 1999, with chlamydial disease representing a major threat. Here, we present a new approach that combines restriction-enzyme associated sequencing and targeted-sequence-capture genotyping, namely DArTcap, to detect Chlamydia pecorum in koala scats. We found this method has similar accuracy to current gold standards (qPCR of swab samples), with a sensitivity of 91.7% and a specificity of 100%. This method can be incorporated into existing koala genetic studies using marker panels, where population attributes can be estimated alongside C. pecorum presence, using the same scat samples, with the option to add further markers of interest. Such a one-stop-shop panel would considerably reduce processing times and cost.
Collapse
Affiliation(s)
- H K A Premachandra
- University of the Sunshine Coast, 90 Sippy Downs Drive, Sippy Downs, QLD, 4556, Australia
| | - Carme Piza-Roca
- University of the Sunshine Coast, 90 Sippy Downs Drive, Sippy Downs, QLD, 4556, Australia
| | - Andrea Casteriano
- Faculty of Science/ Sydney School of Veterinary Science, University of Sydney, NSW, 2006, Camperdown, Australia
| | - Damien P Higgins
- Faculty of Science/ Sydney School of Veterinary Science, University of Sydney, NSW, 2006, Camperdown, Australia
| | - Katrin Hohwieler
- University of the Sunshine Coast, 90 Sippy Downs Drive, Sippy Downs, QLD, 4556, Australia
| | - Daniel Powell
- University of the Sunshine Coast, 90 Sippy Downs Drive, Sippy Downs, QLD, 4556, Australia
| | - Romane H Cristescu
- University of the Sunshine Coast, 90 Sippy Downs Drive, Sippy Downs, QLD, 4556, Australia.
| |
Collapse
|
3
|
Thavornkanlapachai R, Armstrong KN, Knuckey C, Huntley B, Hanrahan N, Ottewell K. Species-specific SNP arrays for non-invasive genetic monitoring of a vulnerable bat. Sci Rep 2024; 14:1847. [PMID: 38253562 PMCID: PMC10803360 DOI: 10.1038/s41598-024-51461-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
Genetic tagging from scats is one of the minimally invasive sampling (MIS) monitoring approaches commonly used to guide management decisions and evaluate conservation efforts. Microsatellite markers have traditionally been used but are prone to genotyping errors. Here, we present a novel method for individual identification in the Threatened ghost bat Macroderma gigas using custom-designed Single Nucleotide Polymorphism (SNP) arrays on the MassARRAY system. We identified 611 informative SNPs from DArTseq data from which three SNP panels (44-50 SNPs per panel) were designed. We applied SNP genotyping and molecular sexing to 209 M. gigas scats collected from seven caves in the Pilbara, Western Australia, employing a two-step genotyping protocol and identifying unique genotypes using a custom-made R package, ScatMatch. Following data cleaning, the average amplification rate was 0.90 ± 0.01 and SNP genotyping errors were low (allelic dropout 0.003 ± 0.000) allowing clustering of scats based on one or fewer allelic mismatches. We identified 19 unique bats (9 confirmed/likely males and 10 confirmed/likely females) from a maternity and multiple transitory roosts, with two male bats detected using roosts, 9 km and 47 m apart. The accuracy of our SNP panels enabled a high level of confidence in the identification of individual bats. Targeted SNP genotyping is a valuable tool for monitoring and tracking of non-model species through a minimally invasive sampling approach.
Collapse
Affiliation(s)
- Rujiporn Thavornkanlapachai
- Department of Biodiversity, Conservation and Attractions, Bentley Delivery Centre, Locked Bag 104, Bentley, WA, 6983, Australia.
| | - Kyle N Armstrong
- School of Biological Sciences, The University of Adelaide, Adelaide, SA, 5005, Australia
- South Australian Museum, Adelaide, SA, 5000, Australia
| | - Chris Knuckey
- Biologic Environmental, 24 Wickham Street, East Perth, WA, 6004, Australia
| | - Bart Huntley
- Department of Biodiversity, Conservation and Attractions, Bentley Delivery Centre, Locked Bag 104, Bentley, WA, 6983, Australia
| | - Nicola Hanrahan
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, 2753, Australia
- Research Institute for the Environment and Livelihoods, Charles Darwin University, Darwin, NT, 0815, Australia
| | - Kym Ottewell
- Department of Biodiversity, Conservation and Attractions, Bentley Delivery Centre, Locked Bag 104, Bentley, WA, 6983, Australia
| |
Collapse
|
4
|
Balmori‐de la Puente A, Escoda L, Fernández‐González Á, Menéndez‐Pérez D, González‐Esteban J, Castresana J. Evaluating the use of non-invasive hair sampling and ddRAD to characterize populations of endangered species: Application to a peripheral population of the European mink. Ecol Evol 2023; 13:e10530. [PMID: 37727778 PMCID: PMC10506391 DOI: 10.1002/ece3.10530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 07/17/2023] [Accepted: 08/30/2023] [Indexed: 09/21/2023] Open
Abstract
The application of next-generation sequencing (NGS) to non-invasive samples is one of the most promising methods in conservation genomics, but these types of samples present significant challenges for NGS. The European mink (Mustela lutreola) is critically endangered throughout its range. However, important aspects such as census size and inbreeding remain still unknown in many populations, so it is crucial to develop new methods to monitor this species. In this work, we placed hair tubes along riverbanks in a border area of the Iberian population, which allowed the genetic identification of 76 European mink hair samples. We then applied a reduced representation genomic sequencing (ddRAD) technique to a subset of these samples to test whether we could extract sufficient genomic information from them. We show that several problems with the DNA, including contamination, fragmentation, oxidation, and possibly sample mixing, affected the samples. Using various bioinformatic techniques to reduce these problems, we were able to unambiguously genotype 19 hair samples belonging to six individuals. This small number of individuals showed that the demographic status of the species in this peripheral population is worse than expected. The data obtained also allowed us to perform preliminary analyses of relatedness and inbreeding. Although further improvements in sampling and analysis are needed, the application of the ddRAD technique to non-invasively obtained hairs represents a significant advance in the genomic study of endangered species.
Collapse
Affiliation(s)
| | - Lídia Escoda
- Institute of Evolutionary Biology (CSIC‐Universitat Pompeu Fabra)BarcelonaSpain
| | | | | | | | - Jose Castresana
- Institute of Evolutionary Biology (CSIC‐Universitat Pompeu Fabra)BarcelonaSpain
| |
Collapse
|
5
|
Pereira KS, Gibson L, Biggs D, Samarasinghe D, Braczkowski AR. Individual Identification of Large Felids in Field Studies: Common Methods, Challenges, and Implications for Conservation Science. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.866403] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Large felids represent some of the most threatened large mammals on Earth, critical for both tourism economies and ecosystem function. Most populations are in a state of decline, and their monitoring and enumeration is therefore critical for conservation. This typically rests on the accurate identification of individuals within their populations. We review the most common and current survey methods used in individual identification studies of large felid ecology (body mass > 25 kg). Remote camera trap photography is the most extensively used method to identify leopards, snow leopards, jaguars, tigers, and cheetahs which feature conspicuous and easily identifiable coat patterning. Direct photographic surveys and genetic sampling are commonly used for species that do not feature easily identifiable coat patterning such as lions. We also discuss the accompanying challenges encountered in several field studies, best practices that can help increase the precision and accuracy of identification and provide generalised ratings for the common survey methods used for individual identification.
Collapse
|
6
|
|
7
|
Fitak RR, Antonides JD, Baitchman EJ, Bonaccorso E, Braun J, Kubiski S, Chiu E, Fagre AC, Gagne RB, Lee JS, Malmberg JL, Stenglein MD, Dusek RJ, Forgacs D, Fountain-Jones NM, Gilbertson MLJ, Worsley-Tonks KEL, Funk WC, Trumbo DR, Ghersi BM, Grimaldi W, Heisel SE, Jardine CM, Kamath PL, Karmacharya D, Kozakiewicz CP, Kraberger S, Loisel DA, McDonald C, Miller S, O'Rourke D, Ott-Conn CN, Páez-Vacas M, Peel AJ, Turner WC, VanAcker MC, VandeWoude S, Pecon-Slattery J. The Expectations and Challenges of Wildlife Disease Research in the Era of Genomics: Forecasting with a Horizon Scan-like Exercise. J Hered 2020; 110:261-274. [PMID: 31067326 DOI: 10.1093/jhered/esz001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 01/08/2019] [Indexed: 12/14/2022] Open
Abstract
The outbreak and transmission of disease-causing pathogens are contributing to the unprecedented rate of biodiversity decline. Recent advances in genomics have coalesced into powerful tools to monitor, detect, and reconstruct the role of pathogens impacting wildlife populations. Wildlife researchers are thus uniquely positioned to merge ecological and evolutionary studies with genomic technologies to exploit unprecedented "Big Data" tools in disease research; however, many researchers lack the training and expertise required to use these computationally intensive methodologies. To address this disparity, the inaugural "Genomics of Disease in Wildlife" workshop assembled early to mid-career professionals with expertise across scientific disciplines (e.g., genomics, wildlife biology, veterinary sciences, and conservation management) for training in the application of genomic tools to wildlife disease research. A horizon scanning-like exercise, an activity to identify forthcoming trends and challenges, performed by the workshop participants identified and discussed 5 themes considered to be the most pressing to the application of genomics in wildlife disease research: 1) "Improving communication," 2) "Methodological and analytical advancements," 3) "Translation into practice," 4) "Integrating landscape ecology and genomics," and 5) "Emerging new questions." Wide-ranging solutions from the horizon scan were international in scope, itemized both deficiencies and strengths in wildlife genomic initiatives, promoted the use of genomic technologies to unite wildlife and human disease research, and advocated best practices for optimal use of genomic tools in wildlife disease projects. The results offer a glimpse of the potential revolution in human and wildlife disease research possible through multi-disciplinary collaborations at local, regional, and global scales.
Collapse
Affiliation(s)
| | - Jennifer D Antonides
- Department of Forestry & Natural Resources, Purdue University, West Lafayette, IN
| | - Eric J Baitchman
- The Zoo New England Division of Animal Health and Conservation, Boston, MA
| | - Elisa Bonaccorso
- The Instituto BIOSFERA and Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito, vía Interoceánica y Diego de Robles, Quito, Ecuador
| | - Josephine Braun
- The Institute for Conservation Research, San Diego Zoo Global, Escondido, CA
| | - Steven Kubiski
- The Institute for Conservation Research, San Diego Zoo Global, Escondido, CA
| | - Elliott Chiu
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO
| | - Anna C Fagre
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO
| | - Roderick B Gagne
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO
| | - Justin S Lee
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO
| | - Jennifer L Malmberg
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO
| | - Mark D Stenglein
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO
| | - Robert J Dusek
- The U. S. Geological Survey, National Wildlife Health Center, Madison, WI
| | - David Forgacs
- The Interdisciplinary Graduate Program of Genetics, Texas A&M University, College Station, TX
| | | | - Marie L J Gilbertson
- The Department of Veterinary Population Medicine, University of Minnesota, St. Paul, MN
| | | | - W Chris Funk
- The Department of Biology, Colorado State University, Fort Collins, CO
| | - Daryl R Trumbo
- The Department of Biology, Colorado State University, Fort Collins, CO
| | | | | | - Sara E Heisel
- The Odum School of Ecology, University of Georgia, Athens, GA
| | - Claire M Jardine
- The Department of Pathobiology, Canadian Wildlife Health Cooperative, University of Guelph, Guelph, Ontario, Canada
| | - Pauline L Kamath
- The School of Food and Agriculture, University of Maine, Orono, ME
| | | | | | - Simona Kraberger
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ
| | - Dagan A Loisel
- The Department of Biology, Saint Michael's College, Colchester, VT
| | - Cait McDonald
- The Department of Ecology & Evolutionary Biology, Cornell University, Ithaca, NY (McDonald)
| | - Steven Miller
- The Department of Biology, Drexel University, Philadelphia, PA
| | | | - Caitlin N Ott-Conn
- The Michigan Department of Natural Resources, Wildlife Disease Laboratory, Lansing, MI
| | - Mónica Páez-Vacas
- The Centro de Investigación de la Biodiversidad y Cambio Climático (BioCamb), Facultad de Ciencias de Medio Ambiente, Universidad Tecnológica Indoamérica, Machala y Sabanilla, Quito, Ecuador
| | - Alison J Peel
- The Environmental Futures Research Institute, Griffith University, Nathan, Queensland, Australia
| | - Wendy C Turner
- The Department of Biological Sciences, University at Albany, State University of New York, Albany, NY
| | - Meredith C VanAcker
- The Department of Ecology, Evolution, and Environmental Biology, Columbia University, New York, NY
| | - Sue VandeWoude
- The College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO
| | - Jill Pecon-Slattery
- The Center for Species Survival, Smithsonian Conservation Biology Institute-National Zoological Park, Front Royal, VA
| |
Collapse
|
8
|
von Thaden A, Nowak C, Tiesmeyer A, Reiners TE, Alves PC, Lyons LA, Mattucci F, Randi E, Cragnolini M, Galián J, Hegyeli Z, Kitchener AC, Lambinet C, Lucas JM, Mölich T, Ramos L, Schockert V, Cocchiararo B. Applying genomic data in wildlife monitoring: Development guidelines for genotyping degraded samples with reduced single nucleotide polymorphism panels. Mol Ecol Resour 2020. [PMID: 31925943 DOI: 10.1111/1755-0998.13136.applying] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The genomic era has led to an unprecedented increase in the availability of genome-wide data for a broad range of taxa. Wildlife management strives to make use of these vast resources to enable refined genetic assessments that enhance biodiversity conservation. However, as new genomic platforms emerge, problems remain in adapting the usually complex approaches for genotyping of noninvasively collected wildlife samples. Here, we provide practical guidelines for the standardized development of reduced single nucleotide polymorphism (SNP) panels applicable for microfluidic genotyping of degraded DNA samples, such as faeces or hairs. We demonstrate how microfluidic SNP panels can be optimized to efficiently monitor European wildcat (Felis silvestris S.) populations. We show how panels can be set up in a modular fashion to accommodate informative markers for relevant population genetics questions, such as individual identification, hybridization assessment and the detection of population structure. We discuss various aspects regarding the implementation of reduced SNP panels and provide a framework that will allow both molecular ecologists and practitioners to help bridge the gap between genomics and applied wildlife conservation.
Collapse
Affiliation(s)
- Alina von Thaden
- Conservation Genetics Group, Senckenberg Research Institute and Natural History Museum Frankfurt, Gelnhausen, Germany.,Institute for Ecology, Evolution and Diversity, Johann Wolfgang Goethe-University, Frankfurt am Main, Germany
| | - Carsten Nowak
- Conservation Genetics Group, Senckenberg Research Institute and Natural History Museum Frankfurt, Gelnhausen, Germany.,LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Frankfurt am Main, Germany
| | - Annika Tiesmeyer
- Conservation Genetics Group, Senckenberg Research Institute and Natural History Museum Frankfurt, Gelnhausen, Germany.,Institute for Ecology, Evolution and Diversity, Johann Wolfgang Goethe-University, Frankfurt am Main, Germany
| | - Tobias E Reiners
- Conservation Genetics Group, Senckenberg Research Institute and Natural History Museum Frankfurt, Gelnhausen, Germany.,Institute for Ecology, Evolution and Diversity, Johann Wolfgang Goethe-University, Frankfurt am Main, Germany
| | - Paulo C Alves
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO - Laboratório Associado, Universidade do Porto, Vairão, Portugal.,Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Porto, Portugal.,Wildlife Biology Program, University of Montana, Missoula, MT, USA
| | - Leslie A Lyons
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| | - Federica Mattucci
- Area per la Genetica della Conservazione, ISPRA, Ozzano dell'Emilia, Bologna, Italy
| | - Ettore Randi
- Department BIGEA, University of Bologna, Bologna, Italy.,Department 18/Section of Environmental Engineering, Aalborg University, Aalborg, Denmark
| | - Margherita Cragnolini
- Institut für Spezielle Zoologie und Evolutionsbiologie, Biologisch-Pharmazeutische Fakultät, Friedrich-Schiller-Universität Jena, Jena, Germany
| | - José Galián
- Departamento de Zoología y Antropología Física, Facultad de Veterinaria, Universidad de Murcia, Murcia, Spain
| | - Zsolt Hegyeli
- "Milvus Group" Bird and Nature Protection Association, Tîrgu Mureş, Romania
| | - Andrew C Kitchener
- Department of Natural Sciences, National Museums Scotland, Edinburgh, UK.,Institute of Geography, School of Geosciences, University of Edinburgh, Edinburgh, UK
| | - Clotilde Lambinet
- Department of Science and Environmental Management, University of Liège, Liège, Belgium
| | - José M Lucas
- Departamento de Zoología y Antropología Física, Facultad de Veterinaria, Universidad de Murcia, Murcia, Spain
| | - Thomas Mölich
- Landesverband Thüringen e.V., BUND für Umwelt und Naturschutz Deutschland (BUND), Erfurt, Germany
| | - Luana Ramos
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO - Laboratório Associado, Universidade do Porto, Vairão, Portugal.,Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Porto, Portugal
| | - Vinciane Schockert
- Department of Science and Environmental Management, University of Liège, Liège, Belgium
| | - Berardino Cocchiararo
- Conservation Genetics Group, Senckenberg Research Institute and Natural History Museum Frankfurt, Gelnhausen, Germany.,LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Frankfurt am Main, Germany
| |
Collapse
|
9
|
Taillebois L, Sabatino S, Manicki A, Daverat F, Nachón DJ, Lepais O. Variable outcomes of hybridization between declining Alosa alosa and Alosa fallax. Evol Appl 2020; 13:636-651. [PMID: 32211057 PMCID: PMC7086104 DOI: 10.1111/eva.12889] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 09/20/2019] [Accepted: 09/24/2019] [Indexed: 12/19/2022] Open
Abstract
Hybridization dynamics between co-occurring species in environments where human-mediated changes take place are important to quantify for furthering our understanding of human impacts on species evolution and for informing management. The allis shad Alosa alosa (Linnaeus, 1758) and twaite shad Alosa fallax (Lacépède, 1803), two clupeids sister species, have been severely impacted by human activities across Europe. The shrinkage of A. alosa distribution range along with the decline of the remaining populations' abundance threatens its persistence. The main objective was to evaluate the extent of hybridization and introgression between those interacting species. We developed a set of 77 species-specific SNP loci that allowed a better resolution than morphological traits as they enabled the detection of hybrids up to the third generation. Variable rates of contemporary hybridization and introgression patterns were detected in 12 studied sites across the French Atlantic coast. Mitochondrial markers revealed a cyto-nuclear discordance almost invariably involving A. alosa individuals with an A. fallax mitochondrial DNA and provided evidence of historical asymmetric introgression. Overall, contemporary and historical introgression revealed by nuclear and mitochondrial markers strongly suggests that a transfer of genes occurs from A. fallax toward A. alosa genome since at least four generations. Moreover, the outcomes of introgression greatly depend on the catchments where local processes are thought to occur. Undoubtedly, interspecific interaction and gene flow should not be overlooked when considering the management of those species.
Collapse
Affiliation(s)
- Laura Taillebois
- ECOBIOPINRAUniversité de Pau et Pays de l’AdourSaint‐Pée‐sur‐NivelleFrance
| | | | - Aurélie Manicki
- ECOBIOPINRAUniversité de Pau et Pays de l’AdourSaint‐Pée‐sur‐NivelleFrance
| | | | - David José Nachón
- EABXIRSTEACestas CedexFrance
- Estación de Hidrobioloxía ‘Encoro do Con’Universidade de Santiago de CompostelaVilagarcía de ArousaSpain
| | - Olivier Lepais
- ECOBIOPINRAUniversité de Pau et Pays de l’AdourSaint‐Pée‐sur‐NivelleFrance
- BIOGECOINRA, Univ. BordeauxCestasFrance
| |
Collapse
|
10
|
Jensen EL, Tschritter C, de Groot PVC, Hayward KM, Branigan M, Dyck M, Clemente‐Carvalho RBG, Lougheed SC. Canadian polar bear population structure using genome-wide markers. Ecol Evol 2020; 10:3706-3714. [PMID: 32313629 PMCID: PMC7160183 DOI: 10.1002/ece3.6159] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 01/23/2020] [Accepted: 02/18/2020] [Indexed: 12/01/2022] Open
Abstract
Predicting the consequences of environmental changes, including human-mediated climate change on species, requires that we quantify range-wide patterns of genetic diversity and identify the ecological, environmental, and historical factors that have contributed to it. Here, we generate baseline data on polar bear population structure across most Canadian subpopulations (n = 358) using 13,488 genome-wide single nucleotide polymorphisms (SNPs) identified with double-digest restriction site-associated DNA sequencing (ddRAD). Our ddRAD dataset showed three genetic clusters in the sampled Canadian range, congruent with previous studies based on microsatellites across the same regions; however, due to a lack of sampling in Norwegian Bay, we were unable to confirm the existence of a unique cluster in that subpopulation. These data on the genetic structure of polar bears using SNPs provide a detailed baseline against which future shifts in population structure can be assessed, and opportunities to develop new noninvasive tools for monitoring polar bears across their range.
Collapse
Affiliation(s)
- Evelyn L. Jensen
- Department of BiologyQueen’s UniversityKingstonONCanada
- Present address:
Department of Ecology and Evolutionary BiologyYale UniversityNew HavenCTUSA
| | | | | | | | - Marsha Branigan
- Department of Environment and Natural ResourcesGovernment of the Northwest TerritoriesInuvikNTCanada
| | - Markus Dyck
- Department of EnvironmentGovernment of NunavutIgloolikNUCanada
| | | | | |
Collapse
|
11
|
von Thaden A, Nowak C, Tiesmeyer A, Reiners TE, Alves PC, Lyons LA, Mattucci F, Randi E, Cragnolini M, Galián J, Hegyeli Z, Kitchener AC, Lambinet C, Lucas JM, Mölich T, Ramos L, Schockert V, Cocchiararo B. Applying genomic data in wildlife monitoring: Development guidelines for genotyping degraded samples with reduced single nucleotide polymorphism panels. Mol Ecol Resour 2020; 20. [PMID: 31925943 DOI: 10.1111/1755-0998.13136] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 12/24/2019] [Accepted: 01/05/2020] [Indexed: 01/16/2023]
Abstract
The genomic era has led to an unprecedented increase in the availability of genome-wide data for a broad range of taxa. Wildlife management strives to make use of these vast resources to enable refined genetic assessments that enhance biodiversity conservation. However, as new genomic platforms emerge, problems remain in adapting the usually complex approaches for genotyping of noninvasively collected wildlife samples. Here, we provide practical guidelines for the standardized development of reduced single nucleotide polymorphism (SNP) panels applicable for microfluidic genotyping of degraded DNA samples, such as faeces or hairs. We demonstrate how microfluidic SNP panels can be optimized to efficiently monitor European wildcat (Felis silvestris S.) populations. We show how panels can be set up in a modular fashion to accommodate informative markers for relevant population genetics questions, such as individual identification, hybridization assessment and the detection of population structure. We discuss various aspects regarding the implementation of reduced SNP panels and provide a framework that will allow both molecular ecologists and practitioners to help bridge the gap between genomics and applied wildlife conservation.
Collapse
Affiliation(s)
- Alina von Thaden
- Conservation Genetics Group, Senckenberg Research Institute and Natural History Museum Frankfurt, Gelnhausen, Germany.,Institute for Ecology, Evolution and Diversity, Johann Wolfgang Goethe-University, Frankfurt am Main, Germany
| | - Carsten Nowak
- Conservation Genetics Group, Senckenberg Research Institute and Natural History Museum Frankfurt, Gelnhausen, Germany.,LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Frankfurt am Main, Germany
| | - Annika Tiesmeyer
- Conservation Genetics Group, Senckenberg Research Institute and Natural History Museum Frankfurt, Gelnhausen, Germany.,Institute for Ecology, Evolution and Diversity, Johann Wolfgang Goethe-University, Frankfurt am Main, Germany
| | - Tobias E Reiners
- Conservation Genetics Group, Senckenberg Research Institute and Natural History Museum Frankfurt, Gelnhausen, Germany.,Institute for Ecology, Evolution and Diversity, Johann Wolfgang Goethe-University, Frankfurt am Main, Germany
| | - Paulo C Alves
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO - Laboratório Associado, Universidade do Porto, Vairão, Portugal.,Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Porto, Portugal.,Wildlife Biology Program, University of Montana, Missoula, MT, USA
| | - Leslie A Lyons
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| | - Federica Mattucci
- Area per la Genetica della Conservazione, ISPRA, Ozzano dell'Emilia, Bologna, Italy
| | - Ettore Randi
- Department BIGEA, University of Bologna, Bologna, Italy.,Department 18/Section of Environmental Engineering, Aalborg University, Aalborg, Denmark
| | - Margherita Cragnolini
- Institut für Spezielle Zoologie und Evolutionsbiologie, Biologisch-Pharmazeutische Fakultät, Friedrich-Schiller-Universität Jena, Jena, Germany
| | - José Galián
- Departamento de Zoología y Antropología Física, Facultad de Veterinaria, Universidad de Murcia, Murcia, Spain
| | - Zsolt Hegyeli
- "Milvus Group" Bird and Nature Protection Association, Tîrgu Mureş, Romania
| | - Andrew C Kitchener
- Department of Natural Sciences, National Museums Scotland, Edinburgh, UK.,Institute of Geography, School of Geosciences, University of Edinburgh, Edinburgh, UK
| | - Clotilde Lambinet
- Department of Science and Environmental Management, University of Liège, Liège, Belgium
| | - José M Lucas
- Departamento de Zoología y Antropología Física, Facultad de Veterinaria, Universidad de Murcia, Murcia, Spain
| | - Thomas Mölich
- Landesverband Thüringen e.V., BUND für Umwelt und Naturschutz Deutschland (BUND), Erfurt, Germany
| | - Luana Ramos
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO - Laboratório Associado, Universidade do Porto, Vairão, Portugal.,Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Porto, Portugal
| | - Vinciane Schockert
- Department of Science and Environmental Management, University of Liège, Liège, Belgium
| | - Berardino Cocchiararo
- Conservation Genetics Group, Senckenberg Research Institute and Natural History Museum Frankfurt, Gelnhausen, Germany.,LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Frankfurt am Main, Germany
| |
Collapse
|
12
|
De Novo Assembly and Annotation from Parental and F 1 Puma Genomes of the Florida Panther Genetic Restoration Program. G3-GENES GENOMES GENETICS 2019; 9:3531-3536. [PMID: 31519748 PMCID: PMC6829145 DOI: 10.1534/g3.119.400629] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In the mid-1990s, the population size of Florida panthers became so small that many individuals manifested traits associated with inbreeding depression (e.g., heart defects, cryptorchidism, high pathogen-parasite load). To mitigate these effects, pumas from Texas were introduced into South Florida to augment genetic variation in Florida panthers. In this study, we report a de novo puma genome assembly and annotation after resequencing 10 individual genomes from partial Florida-Texas-F1 trios. The final genome assembly consisted of ∼2.6 Gb and 20,561 functionally annotated protein-coding genes. Foremost, expanded gene families were associated with neuronal and embryological development, whereas contracted gene families were associated with olfactory receptors. Despite the latter, we characterized 17 positively selected genes related to the refinement of multiple sensory perceptions, most notably to visual capabilities. Furthermore, genes under positive selection were enriched for the targeting of proteins to the endoplasmic reticulum, degradation of mRNAs, and transcription of viral genomes. Nearly half (48.5%) of ∼6.2 million SNPs analyzed in the total sample set contained putative unique Texas alleles. Most of these alleles were likely inherited to subsequent F1 Florida panthers, as these individuals manifested a threefold increase in observed heterozygosity with respect to their immediate, canonical Florida panther predecessors. Demographic simulations were consistent with a recent colonization event in North America by a small number of founders from South America during the last glacial period. In conclusion, we provide an extensive set of genomic resources for pumas and elucidate the genomic effects of genetic rescue on this iconic conservation success story.
Collapse
|
13
|
Bourgeois S, Kaden J, Senn H, Bunnefeld N, Jeffery KJ, Akomo-Okoue EF, Ogden R, McEwing R. Improving cost-efficiency of faecal genotyping: New tools for elephant species. PLoS One 2019; 14:e0210811. [PMID: 30699177 PMCID: PMC6353156 DOI: 10.1371/journal.pone.0210811] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 01/02/2019] [Indexed: 11/18/2022] Open
Abstract
Despite the critical need for non-invasive tools to improve monitoring of wildlife populations, especially for endangered and elusive species, faecal genetic sampling has not been adopted as regular practice, largely because of the associated technical challenges and cost. Substantial work needs to be undertaken to refine sample collection and preparation methods in order to improve sample set quality and provide cost-efficient tools that can effectively support wildlife management. In this study, we collected an extensive set of forest elephant (Loxodonta cyclotis) faecal samples throughout Gabon, Central Africa, and prepared them for genotyping using 107 single-nucleotide polymorphism assays. We developed a new quantitative polymerase chain reaction (PCR) assay targeting a 130-bp nuclear DNA fragment and demonstrated its suitability for degraded samples in all three elephant species. Using this assay to compare the efficacy of two sampling methods for faecal DNA recovery, we found that sampling the whole surface of a dung pile with a swab stored in a small tube of lysis buffer was a convenient method producing high extraction success and DNA yield. We modelled the influence of faecal quality and storage time on DNA concentration in order to provide recommendations for optimized collection and storage. The maximum storage time to ensure 75% success was two months for samples collected within 24 hours after defecation and extended to four months for samples collected within one hour. Lastly, the real-time quantitative PCR assay allowed us to predict genotyping success and pre-screen DNA samples, thus further increasing the cost-efficiency of our approach. We recommend combining the validation of an efficient sampling method, the build of in-country DNA extraction capacity for reduced storage time and the development of species-specific quantitative PCR assays in order to increase the cost-efficiency of routine non-invasive DNA analyses and expand the use of next-generation markers to non-invasive samples.
Collapse
Affiliation(s)
- Stéphanie Bourgeois
- Agence Nationale des Parcs Nationaux, Libreville, Gabon
- WildGenes Laboratory, The Royal Zoological Society of Scotland, RZSS Edinburgh Zoo, Edinburgh, United Kingdom
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, United Kingdom
- * E-mail:
| | - Jenny Kaden
- WildGenes Laboratory, The Royal Zoological Society of Scotland, RZSS Edinburgh Zoo, Edinburgh, United Kingdom
| | - Helen Senn
- WildGenes Laboratory, The Royal Zoological Society of Scotland, RZSS Edinburgh Zoo, Edinburgh, United Kingdom
| | - Nils Bunnefeld
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, United Kingdom
| | - Kathryn J. Jeffery
- Agence Nationale des Parcs Nationaux, Libreville, Gabon
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, United Kingdom
- Institut de Recherche en Écologie Tropicale, Libreville, Gabon
| | | | - Rob Ogden
- TRACE Wildlife Forensics Network, Edinburgh, United Kingdom
| | - Ross McEwing
- TRACE Wildlife Forensics Network, Edinburgh, United Kingdom
| |
Collapse
|
14
|
Förster DW, Bull JK, Lenz D, Autenrieth M, Paijmans JLA, Kraus RHS, Nowak C, Bayerl H, Kuehn R, Saveljev AP, Sindičić M, Hofreiter M, Schmidt K, Fickel J. Targeted resequencing of coding DNA sequences for SNP discovery in nonmodel species. Mol Ecol Resour 2018; 18:1356-1373. [PMID: 29978939 DOI: 10.1111/1755-0998.12924] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 05/28/2018] [Accepted: 06/05/2018] [Indexed: 11/29/2022]
Abstract
Targeted capture coupled with high-throughput sequencing can be used to gain information about nuclear sequence variation at hundreds to thousands of loci. Divergent reference capture makes use of molecular data of one species to enrich target loci in other (related) species. This is particularly valuable for nonmodel organisms, for which often no a priori knowledge exists regarding these loci. Here, we have used targeted capture to obtain data for 809 nuclear coding DNA sequences (CDS) in a nonmodel organism, the Eurasian lynx Lynx lynx, using baits designed with the help of the published genome of a related model organism (the domestic cat Felis catus). Using this approach, we were able to survey intraspecific variation at hundreds of nuclear loci in L. lynx across the species' European range. A large set of biallelic candidate SNPs was then evaluated using a high-throughput SNP genotyping platform (Fluidigm), which we then reduced to a final 96 SNP-panel based on assay performance and reliability; validation was carried out with 100 additional Eurasian lynx samples not included in the SNP discovery phase. The 96 SNP-panel developed from CDS performed very successfully in the identification of individuals and in population genetic structure inference (including the assignment of individuals to their source population). In keeping with recent studies, our results show that genic SNPs can be valuable for genetic monitoring of wildlife species.
Collapse
Affiliation(s)
- Daniel W Förster
- Department of Evolutionary Genetics, Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany
| | - James K Bull
- Department of Evolutionary Genetics, Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany
| | - Dorina Lenz
- Department of Evolutionary Genetics, Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany
| | - Marijke Autenrieth
- Department of Evolutionary Genetics, Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany.,Institute for Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | | | - Robert H S Kraus
- Department of Biology, University of Konstanz, Konstanz, Germany.,Department of Migration and Immuno-Ecology, Max Planck Institute for Ornithology, Radolfzell, Germany
| | - Carsten Nowak
- Conservation Genetics Group, Senckenberg Research Institute and Natural History Museum Frankfurt, Gelnhausen, Germany
| | - Helmut Bayerl
- Unit of Molecular Zoology, Chair of Zoology, Department of Animal Science, Technical University of Munich, Freising, Germany
| | - Ralph Kuehn
- Unit of Molecular Zoology, Chair of Zoology, Department of Animal Science, Technical University of Munich, Freising, Germany.,Department of Fish, Wildlife and Conservation Ecology, New Mexico State University, Las Cruces, New Mexico
| | - Alexander P Saveljev
- Department of Animal Ecology, Russian Research Institute of Game Management and Fur Farming, Kirov, Russia
| | - Magda Sindičić
- Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | - Michael Hofreiter
- Institute for Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Krzysztof Schmidt
- Mammal Research Institute, Polish Academy of Sciences, Białowieza, Poland
| | - Jörns Fickel
- Department of Evolutionary Genetics, Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany.,Institute for Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| |
Collapse
|
15
|
Giangregorio P, Norman AJ, Davoli F, Spong G. Testing a new SNP-chip on the Alpine and Apennine brown bear (Ursus arctos) populations using non-invasive samples. CONSERV GENET RESOUR 2018. [DOI: 10.1007/s12686-018-1017-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
16
|
Advances in Using Non-invasive, Archival, and Environmental Samples for Population Genomic Studies. POPULATION GENOMICS 2018. [DOI: 10.1007/13836_2018_45] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
17
|
Stetz JB, smith S, Sawaya MA, Ramsey AB, Amish SJ, Schwartz MK, Luikart G. Discovery of 20,000 RAD–SNPs and development of a 52-SNP array for monitoring river otters. CONSERV GENET RESOUR 2016. [DOI: 10.1007/s12686-016-0558-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|