1
|
Bai X, Xu M, Jin S, Pow EHN, Chen Y, Tsoi JKH. Direct colour printing on zirconia using 222 nm UV-C photons. Dent Mater 2025; 41:101-112. [PMID: 39488475 DOI: 10.1016/j.dental.2024.10.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 10/28/2024] [Indexed: 11/04/2024]
Abstract
OBJECTIVES To proof the feasibility of direct colour printing on 3Y-TZP using 222 nm UV-C through investigating the degree and durability of the colour changes, and testifying whether surface, mechanical and biological properties are influenced by the treatment. METHODS 222 nm UV-C light (Irradiance: 1.870 mW/cm2) was used to treat 3Y-TZP for durations from 15 min to 24 h. ΔE*, TP, crystalline structure, surface morphology, Sa, BFS and biological activities were investigated before and after irradiation. SPSS 28.0 was used for statistical analysis (α = 0.05). RESULTS 222 nm UV-C irradiation was capable to shade white 3Y-TZP into tooth colours. With the increase of ΔE*, TP decreased, such that the longer the irradiation time, the higher the ΔE* (logarithmic relationship) and lower the TP. Despite the induced optical changes being prone to fade, the process can be predicted by inversely proportional relationships between ΔE*, TP and the testing points. The treated surface exhibited enhanced hydrophilicity, while the recovery phenomenon was observed. Other properties were not altered by the treatment. SIGNIFICANCE This is the seminal study demonstrating the feasibility of direct colour printing on 3Y-TZP using 222 nm UV-C. The new relationship between the colour centre and Eg of 3Y-TZP was established, whereas the induced optical changes were stabilised after a certain period and were highly predictable by controlling the irradiation periods. The irradiation was only correlated to the electron excitation and oxygen vacancies, and would not lead to any changes of other properties. A simple, safe and promising approach to achieve satisfactory colours on 3Y-TZP in clinical practice can be developed.
Collapse
Affiliation(s)
- Xuedong Bai
- Dental Materials Science, Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong
| | - Mengxiao Xu
- Dental Materials Science, Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong
| | - Shixin Jin
- Dental Materials Science, Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong
| | - Edmond H N Pow
- Prosthodontics, Restorative Dental Sciences, Faculty of Dentistry, The University of Hong Kong, Hong Kong
| | - Yanning Chen
- Cariology, Restorative Dental Sciences, Faculty of Dentistry, The University of Hong Kong, Hong Kong.
| | - James K H Tsoi
- Dental Materials Science, Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong.
| |
Collapse
|
2
|
Smirnov A, Guitián F, Ramirez-Rico J, Bartolomé JF. A zirconia/tantalum biocermet: in vitro and in vivo evaluation for biomedical implant applications. J Mater Chem B 2024; 12:8919-8928. [PMID: 39158622 DOI: 10.1039/d4tb01158a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
A biocermet made of zirconia/20 vol% tantalum (3Y-TZP/Ta) is a new composite with exceptional capabilities due to a combination of properties that are rarely achieved in conventional materials (high strength and toughness, cyclic fatigue resistance and flaw tolerance, wear resistance, corrosion resistance, electrical conductivity, etc.). In this study, for the first time, the biomedical performance of a 3Y-TZP/Ta biocermet was evaluated in detail. Its in vitro biocompatibility was assessed using mesenchymal stem cell culture. The effectiveness of in vivo osteointegration of the biocermet was confirmed 6 months after implantation into the proximal tibiae of New Zealand white rabbits. In addition, the possibility of using magnetic resonance imaging (MRI) for medical analysis of the considered biocermet material was studied. The 3Y-TZP/Ta composite showed no injurious effect on cell morphology, extracellular matrix production or cell proliferation. Moreover, the implanted biocermet appeared to be capable of promoting bone growth without adverse reactions. On the other hand, this biocermet demonstrates artefact-free performance in MRI biomedical image analysis studies, making it more suitable for implant applications. These findings open up possibilities for a wide range of applications of these materials in orthopedics, dentistry and other areas such as replacement of hard tissues.
Collapse
Affiliation(s)
- Anton Smirnov
- Federal State Budgetary Educational Institution of the Higher Education Moscow State University of Technology "STANKIN", Moscow, Russian Federation
| | - Francisco Guitián
- Instituto de Materiales, iMATUS - USC, Santiago de Compostela, Spain
| | - Joaquín Ramirez-Rico
- Instituto de Ciencia de Materiales de Sevilla, CSIC - Universidad de Sevilla, Avda. Américo Vespucio 49, 41092 Seville, Spain
- Dpto. Física de La Materia Condensada, Universidad de Sevilla, Avda. Reina Mercedes SN, 41012 Seville, Spain
| | - José F Bartolomé
- Instituto de Ciencia de Materiales de Madrid (ICMM), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain.
| |
Collapse
|
3
|
Yotsuya M, Nakano M, Umehara K, Awazawa S, Nomura T, Kuribayashi N, Yoshinari M, Sekine H. A Case of Anterior Single Tooth Implant with Fractured Zirconia Abutment due to Trauma. THE BULLETIN OF TOKYO DENTAL COLLEGE 2024; 65:31-40. [PMID: 38749760 DOI: 10.2209/tdcpublication.2023-0028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
In recent years, a wide variety of materials have been used in dental implant treatment. In selecting the superstructures and abutments to be used it is important to consider their potential effect on the stability and durability of the planned implant. Excessive force applied to an implant during maintenance commonly results in complications, such as fracture of the superstructure or abutment, and loosening or fracture of the screws. This report describes a case of implant treatment for a 23-year-old man with esthetic disturbance due to trauma to the maxillary anterior teeth. The left maxillary central incisor could not be conserved due to this trauma, which had been caused by a traffic accident. After extraction, the tooth was restored with an anterior bridge. The crown of the left maxillary lateral incisor was fractured at the crown margin and, at the patient's request, implant treatment was selected as the restorative treatment for the missing tooth. A thorough preoperative examination was performed using placement simulation software. One titanium screw-type implant was placed in the maxillary left central incisor under local anesthesia. An all-ceramic crown with a zirconia frame was placed as a screw-fixed direct superstructure. At one year postoperatively, however, the superstructure and abutment became detached due to trauma. The fractured zirconia abutment was removed and replaced with a remanufactured abutment and superstructure. The patient has reported no subsequent dental complaint over the last 11 years. In this case, a surface analysis of the fractured zirconia abutment was performed. The scanned images revealed a difference in the fracture surfaces between the tensile and compressive sides, and electron probe microanalysis demonstrated the presence of titanium on the fracture surface. It was inferred that the hard zirconia abutment had scraped the titanium from the internal surface of the implant.
Collapse
Affiliation(s)
- Mamoru Yotsuya
- Department of Fixed Prosthodontics, Tokyo Dental College
| | - Masahiro Nakano
- Department of Fixed Prosthodontics, Tokyo Dental College
- Aomori Implant Research Group
| | - Kazuhiro Umehara
- Department of Fixed Prosthodontics, Tokyo Dental College
- Aomori Implant Research Group
| | | | | | | | | | - Hideshi Sekine
- Department of Fixed Prosthodontics, Tokyo Dental College
| |
Collapse
|
4
|
Cao L, Lin H, Wang S, Zhan X, Xiang D, Peng L, Han J. Surface modification of dental zirconia implants with a low infiltration temperature glass. Dent Mater J 2024; 43:597-608. [PMID: 38960668 DOI: 10.4012/dmj.2024-034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
The glass infiltration technique was employed for surface modification of zirconia implants in this study. The prepared glass-infiltrated zirconia with low infiltrating temperature showed excellent mechanical properties and enough infiltrating layer. The zirconia substrate was pre-sintered at 1,200°C and the glass infiltration depth reached 400 μm after infiltrating at 1,200°C for 10 h. The infiltrating glass has good wetting ability, thermal expansion match and good chemical compatibility with the zirconia substrate. Indentation fracture toughness and flexural strength of the dense sintered glass-infiltrated zirconia composite are respectively 5.37±0.45 MPa•m1/2 and 841.03±89.31 MPa. Its elasticity modulus is 163.99±7.6 GPa and has about 500 μm infiltrating layer. The glass-infiltrated zirconia can be acid etched to a medium roughness (1.29±0.09 μm) with a flexural strength of 823.65±87.46 MPa, which promotes cell proliferation and has potential for dental implants.
Collapse
Affiliation(s)
- Lulu Cao
- Department of Dental Materials, Peking University School and Hospital of Stomatology & Dental Medical Devices Testing Center & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & NMPA Key Laboratory for Dental Materials
| | - Hong Lin
- Department of Dental Materials, Peking University School and Hospital of Stomatology & Dental Medical Devices Testing Center & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & NMPA Key Laboratory for Dental Materials
| | - Shuo Wang
- State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences
| | - Xinxin Zhan
- Department of Dental Materials, Peking University School and Hospital of Stomatology & Dental Medical Devices Testing Center & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & NMPA Key Laboratory for Dental Materials
| | - Dong Xiang
- Department of Dental Materials, Peking University School and Hospital of Stomatology & Dental Medical Devices Testing Center & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & NMPA Key Laboratory for Dental Materials
| | - Lian Peng
- State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences
| | - Jianmin Han
- Department of Dental Materials, Peking University School and Hospital of Stomatology & Dental Medical Devices Testing Center & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & NMPA Key Laboratory for Dental Materials
| |
Collapse
|
5
|
Moghaddam A, Bahrami M, Mirzadeh M, Khatami M, Simorgh S, Chimehrad M, Kruppke B, Bagher Z, Mehrabani D, Khonakdar HA. Recent trends in bone tissue engineering: a review of materials, methods, and structures. Biomed Mater 2024; 19:042007. [PMID: 38636500 DOI: 10.1088/1748-605x/ad407d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 04/18/2024] [Indexed: 04/20/2024]
Abstract
Bone tissue engineering (BTE) provides the treatment possibility for segmental long bone defects that are currently an orthopedic dilemma. This review explains different strategies, from biological, material, and preparation points of view, such as using different stem cells, ceramics, and metals, and their corresponding properties for BTE applications. In addition, factors such as porosity, surface chemistry, hydrophilicity and degradation behavior that affect scaffold success are introduced. Besides, the most widely used production methods that result in porous materials are discussed. Gene delivery and secretome-based therapies are also introduced as a new generation of therapies. This review outlines the positive results and important limitations remaining in the clinical application of novel BTE materials and methods for segmental defects.
Collapse
Affiliation(s)
| | - Mehran Bahrami
- Department of Mechanical Engineering and Mechanics, Lehigh University, 27 Memorial Dr W, Bethlehem, PA 18015, United States of America
| | | | - Mehrdad Khatami
- Iran Polymer and Petrochemical Institute (IPPI), Tehran 14965-115, Iran
| | - Sara Simorgh
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammadreza Chimehrad
- Department of Mechanical & Aerospace Engineering, College of Engineering & Computer Science, University of Central Florida, Orlando, FL, United States of America
| | - Benjamin Kruppke
- Max Bergmann Center of Biomaterials and Institute of Materials Science, Technische Universität Dresden, 01069 Dresden, Germany
| | - Zohreh Bagher
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Davood Mehrabani
- Burn and Wound Healing Research Center, Shiraz University of Medical Sciences, Shiraz, Fars 71348-14336, Iran
- Stem Cell Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Fars 71345-1744, Iran
| | - Hossein Ali Khonakdar
- Iran Polymer and Petrochemical Institute (IPPI), Tehran 14965-115, Iran
- Max Bergmann Center of Biomaterials and Institute of Materials Science, Technische Universität Dresden, 01069 Dresden, Germany
| |
Collapse
|
6
|
Majidian H, Ghalandarzadeh A, Kaboosi M, Nikzad L, Ganjali M. Influence of laser intensity and BaTiO 3 content on the surface properties of 3YSZ. Odontology 2024; 112:408-427. [PMID: 37792126 DOI: 10.1007/s10266-023-00853-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 09/06/2023] [Indexed: 10/05/2023]
Abstract
Zirconia-based dental implants are in direct contact with living tissues and any improvements in their bioactivity and adhesion to the tissues are highly welcome. In this study, different ratios of barium titanate (BT) were added to 3 mol% yttria-stabilized zirconia (3YSZ) through conventional sintering. The laser-texturing technique was also conducted to improve the biological performance of 3YSZ ceramics. The composition and the surface of the prepared composites were characterized by X-ray diffraction and scanning electron microscopy (SEM), respectively. The roughness and surface wettability of the composites were also measured. Furthermore, MC3T3-E1 pre-osteoblast cells were used for the in vitro experiments. Cell viability was evaluated using a commercial resazurin-based method. Morphology and cellular adhesion were observed using SEM. Based on the results, the laser texturing and the barium titanate content influenced the surface characteristics of the prepared composites. The laser-textured 3YSZ/7 mol% BT composites showed a lower water contact angle compared to the other samples, which indicated superior surface hydrophilicity. The cell viability and cell adhesion of 3YSZ/BT composites increased with the rise in the barium titanate content and laser power. An elongated cell morphology and apatite nucleation were also observed by the BT content. Overall, the laser-treated 3YSZ/5 and 7 mol% BT composites may be promising candidates in hard tissue repair due to their good cell response.
Collapse
Affiliation(s)
- Hudsa Majidian
- Department of Ceramic, Materials and Energy Research Center, Karaj, Iran.
| | - Arash Ghalandarzadeh
- School of Metallurgy and Materials Engineering, Iran University of Science and Technology, Tehran, Iran
| | - Majid Kaboosi
- School of Metallurgy and Materials Engineering, Iran University of Science and Technology, Tehran, Iran
| | - Leila Nikzad
- Department of Ceramic, Materials and Energy Research Center, Karaj, Iran
| | - Monireh Ganjali
- Department of Nanotechnology and Advanced Materials, Materials and Energy Research Center, Karaj, Iran
| |
Collapse
|
7
|
Tuna T, Wein M, Altmann B, Steinberg T, Fischer J, Att W. Effect of Hydrogen Peroxide on the Surface and Attractiveness of Various Zirconia Implant Materials on Human Osteoblasts: An In Vitro Study. MATERIALS (BASEL, SWITZERLAND) 2023; 16:961. [PMID: 36769968 PMCID: PMC9918077 DOI: 10.3390/ma16030961] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/12/2023] [Accepted: 01/17/2023] [Indexed: 06/18/2023]
Abstract
The aim of this in vitro study was to investigate the effect of hydrogen peroxide (H2O2) on the surface properties of various zirconia-based dental implant materials and the response of human alveolar bone osteoblasts. For this purpose, discs of two zirconia-based materials with smooth and roughened surfaces were immersed in 20% H2O2 for two hours. Scanning electron and atomic force microscopy showed no topographic changes after H2O2-treatment. Contact angle measurements (1), X-ray photoelectron spectroscopy (2) and X-ray diffraction (3) indicated that H2O2-treated surfaces (1) increased in hydrophilicity (p < 0.05) and (2) on three surfaces the carbon content decreased (33-60%), while (3) the monoclinic phase increased on all surfaces. Immunofluorescence analysis of the cell area and DNA-quantification and alkaline phosphatase activity revealed no effect of H2O2-treatment on cell behavior. Proliferation activity was significantly higher on three of the four untreated surfaces, especially on the smooth surfaces (p < 0.05). Within the limitations of this study, it can be concluded that exposure of zirconia surfaces to 20% H2O2 for 2 h increases the wettability of the surfaces, but also seems to increase the monoclinic phase, especially on roughened surfaces, which can be considered detrimental to material stability. Moreover, the H2O2-treatment has no influence on osteoblast behavior.
Collapse
Affiliation(s)
- Taskin Tuna
- Department of Prosthodontics and Biomaterials, School of Dentistry, RWTH University Aachen, Pauwelsstr. 30, 52062 Aachen, Germany
| | - Martin Wein
- Division of Oral Biotechnology, Center for Dental Medicine, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Brigitte Altmann
- G.E.R.N. Research Center for Tissue Replacement, Regeneration & Neogenesis, Department of Prosthetic Dentistry, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Thorsten Steinberg
- Division of Oral Biotechnology, Center for Dental Medicine, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Jens Fischer
- Division of Biomaterials and Technology, Clinic for Reconstructive Dentistry University Center for Dental Medicine UZB, University of Basel, 4058 Basel, Switzerland
| | - Wael Att
- Department of Prosthodontics, School of Dental Medicine Tufts University, Boston, MA 02111, USA
| |
Collapse
|
8
|
Ding H, Yang Y, Li X, Cheung GSP, Matinlinna JP, Burrow M, Tsoi JKH. A simple AI-enabled method for quantifying bacterial adhesion on dental materials. Biomater Investig Dent 2022; 9:75-83. [PMID: 36081491 PMCID: PMC9448434 DOI: 10.1080/26415275.2022.2114479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Affiliation(s)
- Hao Ding
- Dental Materials Science, Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Pokfulam, Hong Kong
| | - Yunzhen Yang
- Dental Materials Science, Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Pokfulam, Hong Kong
| | - Xin Li
- Restorative Dental Sciences, Faculty of Dentistry, The University of Hong Kong, Pokfulam, Hong Kong
- Department of Stomatology Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen, China
| | - Gary Shun-Pan Cheung
- Restorative Dental Sciences, Faculty of Dentistry, The University of Hong Kong, Pokfulam, Hong Kong
| | - Jukka Pekka Matinlinna
- Dental Materials Science, Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Pokfulam, Hong Kong
| | - Michael Burrow
- Restorative Dental Sciences, Faculty of Dentistry, The University of Hong Kong, Pokfulam, Hong Kong
| | - James Kit-Hon Tsoi
- Dental Materials Science, Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Pokfulam, Hong Kong
| |
Collapse
|
9
|
The evaluation of prepared microstructure pattern by carbon-dioxide laser on zirconia-based ceramics for dental implant application: an in vitro study. Odontology 2022:10.1007/s10266-022-00781-x. [DOI: 10.1007/s10266-022-00781-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 11/12/2022] [Indexed: 12/24/2022]
|
10
|
Wang D, Dong W. Application Effect of New Material after Surface Modification of Zirconia Ceramics and Analysis of Patient Evaluation. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2022; 2022:1589209. [PMID: 35837209 PMCID: PMC9276471 DOI: 10.1155/2022/1589209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/10/2022] [Accepted: 06/15/2022] [Indexed: 01/10/2023]
Abstract
Objective To explore the application effect of new material after surface modification of zirconia ceramics and patient evaluation. Methods A total of 60 patients with tooth defect treated in our hospital from April 2020 to April 2021 were selected as the study subjects and randomly divided into the control group and experimental group, with 30 cases each. The patients in the control group were treated with glass-ceramics, and those in the experimental group received LiSi surface treatment, so as to compare the application effect and patients' evaluation between the two groups. Results Between the two groups, no obvious differences in surface loss, adhesive strength, and transmittance at 3 months, 6 months, and 1 year were not observed (P > 0.05); and after intervention, the score on dental aesthetics, hardness value, and occlusal force were obviously higher in the experimental group than in the control group (P < 0.001). Conclusion The new material enables forming an acid etchable coating on the zirconia surface, increases the adhesive strength, and achieves an aesthetic degree that is welcomed by the patients; meanwhile, after grinding, the edge is defect free and the tightness is higher. Further research will help to establish a better solution for patients.
Collapse
Affiliation(s)
- Dongjiang Wang
- Department of Stomatology, Tianjin Second Hospital, Tianjin 300010, China
| | - Wenjie Dong
- Department of Stomatology, The Second Affiliated Hospital of Mudanjiang Medical College, Mudanjiang 157000, Heilongjiang, China
| |
Collapse
|
11
|
Surface Structure of Zirconia Implants: An Integrative Review Comparing Clinical Results with Preclinical and In Vitro Data. MATERIALS 2022; 15:ma15103664. [PMID: 35629692 PMCID: PMC9143528 DOI: 10.3390/ma15103664] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/13/2022] [Accepted: 05/19/2022] [Indexed: 01/27/2023]
Abstract
Background: The purpose of this review was to analyze and correlate the findings for zirconia implants in clinical, preclinical and in vitro cell studies in relation to surface structure. Methods: Electronic searches were conducted to identify clinical, preclinical and in vitro cell studies on zirconia implant surfaces. The primary outcomes were mean bone loss (MBL) for clinical studies, bone-to-implant contact (BIC) and removal torque (RT) for preclinical studies and cell spreading, cell proliferation and gene expression for cell studies. The secondary outcomes included comparisons of data found for those surfaces that were investigated in all three study types. Results: From 986 screened titles, 40 studies were included for data extraction. In clinical studies, only micro-structured surfaces were investigated. The lowest MBL was reported for sandblasted and subsequently etched surfaces, followed by a sinter and slurry treatment and sandblasted surfaces. For BIC, no clear preference of one surface structure was observable, while RT was slightly higher for micro-structured than smooth surfaces. All cell studies showed that cell spreading and cytoskeletal formation were enhanced on smooth compared with micro-structured surfaces. Conclusions: No correlation was observed for the effect of surface structure of zirconia implants within the results of clinical, preclinical and in vitro cell studies, underlining the need for standardized procedures for human, animal and in vitro studies.
Collapse
|
12
|
|
13
|
Zheng Z, Ao X, Xie P, Zheng X, Lee K, Chen W. Nonthermal Plasma Brush Treatment on Titanium and Zirconia To Improve Periabutment Epithelium Formation. ACS Biomater Sci Eng 2021; 7:5039-5047. [PMID: 34637254 DOI: 10.1021/acsbiomaterials.1c00895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The peri-implant soft tissue with inferior adhesion takes a long healing period to form, which is undesirable for the reaction around the peri-implant soft tissues. The aim of this study is to improve the physicochemical properties of titanium (Ti) and zirconia (ZrO2) implant abutments and shorten the formation period of periabutment epithelium tissue. A nonthermal atmospheric plasma brush (NTAPB, N) was employed for Ti and ZrO2 activation. The surface topographies, roughness, crystallinity, wettability, and chemical elements of the abutment materials were examined. The epithelial cell behavior analysis and tissue remodeling of the periabutment epithelial tissue were performed in vitro and in vivo. N-Ti and N-ZrO2 had a similar good surface wettability, with a 65 and 70% increase in oxygen content and a 70 and 75% decrease in carbon content, respectively. Both N-Ti and N-ZrO2 showed excellent adhesion, spread, and proliferation of epithelial cells in vitro, with improved adhesion molecule expression levels compared to untreated samples. N-Ti and N-ZrO2 abutments were placed in the implantation sites of rats. From week 2 to week 6 after implantation, N-Ti and N-ZrO2 had similar periabutment epithelium tissue formation, and both had increased plectin-positive and laminin γ2-positive cell numbers compared to Ti and ZrO2. The NTAPB shows promising abutment modification abilities. It promotes the expression levels of adhesion molecules and the epithelial cell performance, which later leads to a quicker formation and remodeling of the important periabutment epithelial tissue.
Collapse
Affiliation(s)
- Zheng Zheng
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610065, China.,Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610065, China
| | - Xiaogang Ao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610065, China.,Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610065, China
| | - Peng Xie
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610065, China.,Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610065, China
| | - Xiao Zheng
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610065, China.,Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610065, China
| | - Kevin Lee
- Department of Stomatology, Medical College of Soochow University, Suzhou, Jiangsu Province 215123, China
| | - Wenchuan Chen
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610065, China.,Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610065, China
| |
Collapse
|
14
|
Sun L, Hong G. Surface Modifications for Zirconia Dental Implants: A Review. FRONTIERS IN DENTAL MEDICINE 2021. [DOI: 10.3389/fdmed.2021.733242] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Zirconia-based bioceramic is a potential material for dental implants developed and introduced in dentistry 30 years ago. However, some limitations still exist for zirconia implants caused by several factors, such as manufacturing difficulties, low-temperature degradation (LTD), long-term stability, and clinical experience. Several studies validated that some subtle changes on the zirconia surface might significantly impact its mechanical properties and osseointegration. Thus, attention was paid to the effect of surface modification of zirconia implants. This review generally summarizes the surface modifications of zirconia implants to date classified as physical treatment, chemical treatment, and surface coating, aiming to give an overall perspective based on the current situation. In conclusion, surface modification is an effective and essential method for zirconia implant application. However, before clinical use, we need more knowledge about these modification methods.
Collapse
|
15
|
Ding H, Tsoi JKH, Kan CW, Matinlinna JP. A simple solution to recycle and reuse dental CAD/CAM zirconia block from its waste residuals. J Prosthodont Res 2021; 65:311-320. [PMID: 33028797 DOI: 10.2186/jpr.jpr_d_20_00002] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Purpose To seek a simple solution that can recycle and regenerate dental CAD/CAM zirconia green blanks from its waste residuals.Methods Waste residuals (3M® Lava™ Plus HT) were pulverized after dry milling and cutting, and subsequently sieved before pickling in a 0.5 M nitric acid. These powders were then dry-pressed and pre-sintered into blocks at seven different temperatures in the range 800-1100 °C. New zirconia blocks flagged with the same batch numbers were used as control. These blocks were cut into bars before subjected them to manufacturer-recommended sintering at 1450 °C. Crystalline phases (by XRD), elemental compositions (by EDX), surface morphologies (by SEM), machinability, linear shrinkage rate, relative density, and Knoop microhardness were evaluated before and after sintering, and four-point flexural strengths were also evaluated for the sintered zirconia bars.Results Only tetragonal phases were found in both pre- and fully-sintered recycled zirconia blocks. SEM results showed that pre-sintered samples at 950 °C had smooth and flat surfaces with evenly distributed particles. Recycled and control zirconia blocks had similar elemental compositions. Results from machined surface, linear shrinkage rate, relative density, and Knoop microhardness established that 950 °C and 1000 °C were suitable pre-sintering temperatures for recycling zirconia. Pre-sintered recycled zirconia had no significant differences in flexural strengths, however, samples pre-sintered at 1000 °C exhibited the closest value (897 MPa) compared to that of the control (904 MPa).Conclusions Dental CAD/CAM zirconia can be recycled and reused from its waste residuals by adopting a simple method that requires a pre-sintering at 950 or 1000 °C.
Collapse
Affiliation(s)
- Hao Ding
- Dental Materials Science, Discipline of Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR
| | - James Kit-Hon Tsoi
- Dental Materials Science, Discipline of Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR
| | - Chi-Wai Kan
- Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hong Kong SAR
| | - Jukka P Matinlinna
- Dental Materials Science, Discipline of Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR
| |
Collapse
|
16
|
Kunrath MF, Gupta S, Lorusso F, Scarano A, Noumbissi S. Oral Tissue Interactions and Cellular Response to Zirconia Implant-Prosthetic Components: A Critical Review. MATERIALS 2021; 14:ma14112825. [PMID: 34070589 PMCID: PMC8198172 DOI: 10.3390/ma14112825] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/15/2021] [Accepted: 05/18/2021] [Indexed: 12/20/2022]
Abstract
Background: Dental components manufactured with zirconia (ZrO2) represent a significant percentage of the implant prosthetic market in dentistry. However, during the last few years, we have observed robust clinical and pre-clinical scientific investigations on zirconia both as a prosthetic and an implantable material. At the same time, we have witnessed consistent technical and manufacturing updates with regards to the applications of zirconia which appear to gradually clarify points which until recently were not well understood. Methods: This critical review evaluated the “state of the art” in relation to applications of this biomaterial in dental components and its interactions with oral tissues. Results: The physico-chemical and structural properties as well as the current surface treatment methodologies for ZrO2 were explored. A critical investigation of the cellular response to this biomaterial was completed and the clinical implications discussed. Finally, surface treatments of ZrO2 demonstrate that excellent osseointegration is possible and provide encouraging prospects for rapid bone adhesion. Furthermore, sophisticated surface treatment techniques and technologies are providing impressive oral soft tissue cell responses thus leading to superior biological seal. Conclusions: Dental devices manufactured from ZrO2 are structurally and chemically stable with biocompatibility levels allowing for safe and long-term function in the oral environment.
Collapse
Affiliation(s)
- Marcel F. Kunrath
- Dentistry Department, School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul (PUCRS), P.O. Box 6681, Porto Alegre 90619-900, RS, Brazil;
- Materials and Nanoscience Laboratory, Pontifical Catholic University of Rio Grande do Sul (PUCRS), P.O. Box 6681, Porto Alegre 90619-900, RS, Brazil
| | - Saurabh Gupta
- Zirconia Implant Research Group (Z.I.R.G), International Academy of Ceramic Implantology, Silver Spring, MD 20901, USA; (S.G.); (S.N.)
- Master Dental Science, Universitat Jaume I, 12071 Castellón de la Plana, Spain
| | - Felice Lorusso
- Department of Innovative Technologies in Medicine & Dentistry, University of Chieti-Pescara, Via dei Vestini, 31-66100 Chieti, CH, Italy;
| | - Antonio Scarano
- Zirconia Implant Research Group (Z.I.R.G), International Academy of Ceramic Implantology, Silver Spring, MD 20901, USA; (S.G.); (S.N.)
- Department of Innovative Technologies in Medicine & Dentistry, University of Chieti-Pescara, Via dei Vestini, 31-66100 Chieti, CH, Italy;
- Correspondence: ; Tel.: +08713554084
| | - Sammy Noumbissi
- Zirconia Implant Research Group (Z.I.R.G), International Academy of Ceramic Implantology, Silver Spring, MD 20901, USA; (S.G.); (S.N.)
- Department of Innovative Technologies in Medicine & Dentistry, University of Chieti-Pescara, Via dei Vestini, 31-66100 Chieti, CH, Italy;
| |
Collapse
|
17
|
Lee SW, Phillips KS, Gu H, Kazemzadeh-Narbat M, Ren D. How microbes read the map: Effects of implant topography on bacterial adhesion and biofilm formation. Biomaterials 2020; 268:120595. [PMID: 33360301 DOI: 10.1016/j.biomaterials.2020.120595] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 11/24/2020] [Accepted: 12/06/2020] [Indexed: 12/19/2022]
Abstract
Microbes have remarkable capabilities to attach to the surface of implanted medical devices and form biofilms that adversely impact device function and increase the risk of multidrug-resistant infections. The physicochemical properties of biomaterials have long been known to play an important role in biofilm formation. More recently, a series of discoveries in the natural world have stimulated great interest in the use of 3D surface topography to engineer antifouling materials that resist bacterial colonization. There is also increasing evidence that some medical device surface topographies, such as those designed for tissue integration, may unintentionally promote microbial attachment. Despite a number of reviews on surface topography and biofilm control, there is a missing link between how bacteria sense and respond to 3D surface topographies and the rational design of antifouling materials. Motivated by this gap, we present a review of how bacteria interact with surface topographies, and what can be learned from current laboratory studies of microbial adhesion and biofilm formation on specific topographic features and medical devices. We also address specific biocompatibility considerations and discuss how to improve the assessment of the anti-biofilm performance of topographic surfaces. We conclude that 3D surface topography, whether intended or unintended, is an important consideration in the rational design of safe medical devices. Future research on next-generation smart antifouling materials could benefit from a greater focus on translation to real-world applications.
Collapse
Affiliation(s)
- Sang Won Lee
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, NY, 13244, United States; Syracuse Biomaterials Institute, Syracuse University, Syracuse, NY, 13244, United States
| | - K Scott Phillips
- United States Food and Drug Administration, Office of Medical Products and Tobacco, Center for Devices and Radiological Health, Office of Science and Engineering Laboratories, Division of Biology, Chemistry, and Materials Science, Silver Spring, MD, 20993, United States.
| | - Huan Gu
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, NY, 13244, United States; Syracuse Biomaterials Institute, Syracuse University, Syracuse, NY, 13244, United States
| | - Mehdi Kazemzadeh-Narbat
- United States Food and Drug Administration, Office of Medical Products and Tobacco, Center for Devices and Radiological Health, Office of Product Evaluation and Quality, Office of Health Technology 6, Silver Spring, MD, 20993, United States; Musculoskeletal Clinical Regulatory Advisers (MCRA), Washington DC, 20001, United States
| | - Dacheng Ren
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, NY, 13244, United States; Syracuse Biomaterials Institute, Syracuse University, Syracuse, NY, 13244, United States; Department of Civil and Environmental Engineering, Syracuse University, Syracuse, NY, 13244, United States; Department of Biology, Syracuse University, Syracuse, NY, 13244, United States.
| |
Collapse
|