1
|
Reinoso-Peláez EL, Puente-Sánchez F, Serrano M, Calvo JH, Ramón M, Saura M. Characterization of bacterial communities of ewe's vaginal tract and its potential impact on reproductive efficiency. Anim Microbiome 2025; 7:48. [PMID: 40369688 PMCID: PMC12079919 DOI: 10.1186/s42523-025-00383-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 02/07/2025] [Indexed: 05/16/2025] Open
Abstract
The success rate of artificial insemination in sheep remains suboptimal, which has led to an emerging interest in the impact of the reproductive tract microbiome on this process. This research aims to identify the ewes' vaginal core bacterial community, examine the factors influencing bacterial composition, and to determine the association between vaginal bacteria and pregnancy success. By using a robust dataset comprising 331 multiparous ewes from three Spanish breeds (Latxa, Manchega, Rasa Aragonesa) across four herds, this study performed the sequencing of the hypervariable regions V3-V4 of the 16S ribosomal RNA gene and the identification of Amplicon Sequence Variants (ASV) to analyze the bacterial community. Our analysis revealed a core bacterial primarily consisting of the genera Streptobacillus, Histophilus, Fusobacterium, Oceanivirga, and Parvimonas. Alpha and beta diversity, as well as Random Forest analysis, identified that herd and breed were the main drivers of bacterial variability. PERMANOVA analysis also showed significant differences in bacterial composition and abundance associated with pregnancy outcomes. Notably, specific ASVs associated with Fusobacterium, Leptotrichia, Histophilus, Escherichia, and Bacteroides were predominantly found in non-pregnant ewes, while genera such as Pseudomonas, Acinetobacter, and Brevundimonas were more abundant in pregnant ewes. This study contributes to the knowledge about the critical roles of specific bacteria in determining reproductive success in sheep and provides novel insights about the importance of different factors involved in the composition of ewes' vaginal bacterial communities.
Collapse
Affiliation(s)
- E L Reinoso-Peláez
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Ctra. de La Coruña, km 7.5, 28040, Madrid, Spain.
- Escuela Técnica Superior de Ingeniería Agronómica, Universidad Politécnica de Madrid, Alimentaria y de Biosistemas, Madrid, Spain.
| | - F Puente-Sánchez
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - M Serrano
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Ctra. de La Coruña, km 7.5, 28040, Madrid, Spain
| | - J H Calvo
- ARAID-Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA)-IA2, Av. de Montañana, 930, 50059, Zaragoza, Spain
| | - M Ramón
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Ctra. de La Coruña, km 7.5, 28040, Madrid, Spain
| | - M Saura
- Instituto de Investigaciones Marinas (IIM-CSIC), Rúa Eduardo Cabello 6, 36208, Vigo, Spain
| |
Collapse
|
2
|
Jonas LC, Youngs CR, Schmitz-Esser S. Combined analysis of 16S rRNA gene sequencing data reveals core vaginal bacteria across livestock species. Front Microbiol 2025; 16:1524000. [PMID: 39996073 PMCID: PMC11849051 DOI: 10.3389/fmicb.2025.1524000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 01/21/2025] [Indexed: 02/26/2025] Open
Abstract
Investigating the livestock vaginal microbiota is of increasing interest due to its relationship with animal reproductive performance. Recent publications have uncovered a high degree of variability of the livestock vaginal microbiota, making it difficult to focus functional research on individual microorganisms. To address this variability, we conducted a combined analysis of publicly available 16S rRNA gene amplicon sequencing datasets to reveal the core vaginal microbiota in cattle, sheep, and pigs. The goal of this combined analysis was to identify bacterial genera that were shared despite a diverse overall sample population. A total of 2,911 vaginal samples (715 cattle, 964 sheep, and 1,232 pigs) from 29 different datasets were used in this combined analysis. Beta diversity analysis revealed structural differences of the vaginal microbiota between different animal species. Compositionally, the most abundant phyla were Bacillota, Pseudomonadota, and Bacteroidota. At the genus level, an unclassified Pasteurellaceae genus, Ureaplasma, and Streptococcus were the most abundant. Across the vaginal microbiota of individual livestock species, compositional differences were observed. The cattle and sheep vaginal microbiota contained a higher abundance of Ureaplasma and Histophilus whereas the pig vaginal microbiota contained more Fusobacterium and Parvimonas than that of the other livestock samples. Among the cattle, 120 OTUs and 82 genera were present in 70% of the vaginal samples. At the same threshold, pig samples had 40 core OTUs and 63 core genera, while the sheep samples had 22 core OTUs and 50 core genera. There were 19 overlapping core vaginal genera across the three animal species. The core vaginal OTUs were largely species-specific, although there were eight overlapping OTUs. These included Streptococcus (OTU 21), Clostridium sensu stricto 1 (OTU 18), and Corynebacterium (OTU 6), which were also some of the most abundant members of the livestock core vaginal microbiota. A better understanding of the livestock vaginal microbiota is required for future studies aimed at elucidation of the functional significance of individual microbes with respect to livestock reproductive efficiency. The core vaginal genera identified in this analysis will help guide research on mechanisms/pathways through which individual organisms enhance or impede animal reproductive efficiency.
Collapse
Affiliation(s)
- Lucille C. Jonas
- Department of Animal Science, Iowa State University, Ames, IA, United States
- Microbiology Graduate Program, Iowa State University, Ames, IA, United States
| | - Curtis R. Youngs
- Department of Animal Science, Iowa State University, Ames, IA, United States
| | - Stephan Schmitz-Esser
- Department of Animal Science, Iowa State University, Ames, IA, United States
- Microbiology Graduate Program, Iowa State University, Ames, IA, United States
| |
Collapse
|
3
|
Dias NW, Poole R, Soffa DR, Brown KJH. Dynamic principles of the microbiome and the bovine vagina: a review. Front Microbiol 2024; 15:1434498. [PMID: 39703711 PMCID: PMC11655496 DOI: 10.3389/fmicb.2024.1434498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 11/12/2024] [Indexed: 12/21/2024] Open
Abstract
The role of microbes inhabiting various body sites in supporting host physiology and health is substantial, and recent advancements in DNA sequencing technology have facilitated a more in-depth understanding of these microbial contributions. The influence of microbiota within a given organ can be broadly categorized as having two main functions: (1) promoting organ homeostasis and (2) creating conditions that inhibit the growth of pathogenic microorganisms, thereby protecting the host from diseases. In livestock production, numerous phenotypes critical to industry outcomes are affected by the microbiome, which has sparked considerable academic interest in recent years. This review aims to analyze the extensive data available on the microbiomes of humans and other mammalian species, examining microbiome ecology to elucidate principles that may assist in interpreting data on livestock microbiomes. Additionally, the review will discuss techniques available for investigating various microbiome aspects and will examine existing data on the reproductive microbiome, with a particular focus on the bovine vaginal microbiome.
Collapse
Affiliation(s)
- Nicholas Wege Dias
- Department of Animal Sciences & Industry, Kansas State University, Manhattan, KS, United States
| | - Rebecca Poole
- Department of Animal Science, Texas A and M University, College Station, TX, United States
| | - Dallas R. Soffa
- Department of Animal Science, Texas A and M University, College Station, TX, United States
| | | |
Collapse
|
4
|
Adnane M, Chapwanya A. Microbial Gatekeepers of Fertility in the Female Reproductive Microbiome of Cattle. Int J Mol Sci 2024; 25:10923. [PMID: 39456706 PMCID: PMC11507627 DOI: 10.3390/ijms252010923] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/04/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
This review paper delves into the intricate relationship between the genital microbiome and fertility outcomes in livestock, with a specific focus on cattle. Drawing upon insights derived from culture-independent metagenomics studies, the paper meticulously examines the composition and dynamics of the genital microbiome. Through advanced techniques such as high-throughput sequencing, the review illuminates the temporal shifts in microbial communities and their profound implications for reproductive health. The analysis underscores the association between dysbiosis-an imbalance in microbial communities-and the development of reproductive diseases, shedding light on the pivotal role of microbial gatekeepers in livestock fertility. Furthermore, the paper emphasizes the need for continued exploration of uncharted dimensions of the female reproductive microbiome to unlock new insights into its impact on fertility. By elucidating the complex interplay between microbial communities and reproductive health, this review underscores the importance of innovative strategies aimed at enhancing fertility and mitigating reproductive diseases in livestock populations.
Collapse
Affiliation(s)
- Mounir Adnane
- Department of Biomedicine, Institute of Veterinary Sciences, University of Tiaret, Tiaret 14000, Algeria;
| | - Aspinas Chapwanya
- Department of Clinical Sciences, Ross University School of Veterinary Medicine, Basseterre 00265, Saint Kitts and Nevis
| |
Collapse
|
5
|
Luo Y, Wang Z, Zhao X, Xing J, Chen Z, Zhao W, Long X, Zhang Y, Shao Y. Combining the Vaginal Microbiome and Serum Metabolome to Screen for Potential Biomarkers of Early Pregnancy in Cows. Metabolites 2024; 14:469. [PMID: 39330476 PMCID: PMC11434538 DOI: 10.3390/metabo14090469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/16/2024] [Accepted: 08/24/2024] [Indexed: 09/28/2024] Open
Abstract
Early pregnancy diagnostic techniques are of significant importance in livestock farming, particularly in dairy farming. This study aimed to screen artificially inseminated cows for potential biomarkers at day 21 of pregnancy using microbiota-metabolomics analysis. The microbiome analysis revealed significant changes (p < 0.05) in the composition and abundance of the vaginal microbiota in cows after pregnancy. Notably, there was an increase in the abundance of [Eubacterium]_hallii_group (p < 0.05) associated with the production of short-chain fatty acids in the pregnant group compared with the non-pregnant group. Furthermore, significant alterations were observed in the serum metabolome, with notable changes in the concentrations of prolyl-hydroxyproline (Pro-Hyp) (p < 0.01) and bonactin (p < 0.01). The majority of differential metabolites clustered within the pathways of amino acid metabolism and lipid metabolism, with lipid metabolism exhibiting a higher proportion and playing a pivotal role in early pregnancy. An enzyme-linked immunosorbent assay was employed to quantify three key metabolites of the arachidonic acid pathway. The results demonstrated significant decreases in serum concentrations of leukotriene B4 (LTB4) (p < 0.05) and prostaglandin F2α (PGF2α) (p < 0.01) and no significant changes in arachidonic acid (AA) (NS) concentrations after 21 days of gestation in cows. Spearman's correlation analysis was utilized to investigate the interrelationship between the vaginal microbiota and serum metabolites. In conclusion, the present study demonstrated that biomaterials such as bonactin, Pro-hyp, LTB4, PGF2α in serum metabolites and [Eubacterium]_hallii_group in the vaginal flora of cows could be utilized as potential biomarkers for 21 days of gestation in cows.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Yongbin Shao
- College of Animal Science and Technology, Shihezi University, Shihezi 832003, China; (Y.L.); (Z.W.); (X.Z.); (J.X.); (Z.C.); (W.Z.); (X.L.); (Y.Z.)
| |
Collapse
|
6
|
Brulin L, Ducrocq S, Even G, Sanchez MP, Martel S, Merlin S, Audebert C, Croiseau P, Estellé J. Characterization of bovine vaginal microbiota using 16S rRNA sequencing: associations with host fertility, longevity, health, and production. Sci Rep 2024; 14:19277. [PMID: 39164272 PMCID: PMC11336114 DOI: 10.1038/s41598-024-69715-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 08/07/2024] [Indexed: 08/22/2024] Open
Abstract
Due to their potential impact on the host's phenotype, organ-specific microbiotas are receiving increasing attention in several animal species, including cattle. Specifically, the vaginal microbiota of ruminants is attracting growing interest, due to its predicted critical role on cows' reproductive functions in livestock contexts. Notably, fertility disorders represent a leading cause for culling, and additional research would help to fill relevant knowledge gaps. In the present study, we aimed to characterize the vaginal microbiota of a large cohort of 1171 female dairy cattle from 19 commercial herds in Northern France. Vaginal samples were collected using a swab and the composition of the microbiota was determined through 16S rRNA sequencing targeting the V3-V4 hypervariable regions. Initial analyses allowed us to define the core bacterial vaginal microbiota, comprising all the taxa observed in more than 90% of the animals. Consequently, four phyla, 16 families, 14 genera and a single amplicon sequence variant (ASV) met the criteria, suggesting a high diversity of bacterial vaginal microbiota within the studied population. This variability was partially attributed to various environmental factors such as the herd, sampling season, parity, and lactation stage. Next, we identified numerous significant associations between the diversity and composition of the vaginal microbiota and several traits related to host's production and reproduction performance, as well as reproductive tract health. Specifically, 169 genera were associated with at least one trait, with 69% of them significantly associated with multiple traits. Among these, the abundances of Negativibacillus and Ruminobacter were positively correlated with the cows' performances (i.e., longevity, production performances). Other genera showed mixed relationships with the phenotypes, such as Leptotrichia being overabundant in cows with improved fertility records and reproductive tract health, but also in cows with lower production levels. Overall, the numerous associations underscored the complex interactions between the vaginal microbiota and its host. Given the large number of samples collected from commercial farms and the diversity of the phenotypes considered, this study marks an initial step towards a better understanding of the intimate relationship between the vaginal microbiota and the dairy cow's phenotypes.
Collapse
Affiliation(s)
- L Brulin
- GD Biotech-Gènes Diffusion, 59000, Lille, France.
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France.
| | - S Ducrocq
- GD Biotech-Gènes Diffusion, 59000, Lille, France
- PEGASE-Biosciences, Institut Pasteur de Lille, 1 Rue du Professeur Calmette, 59019, Lille, France
| | - G Even
- GD Biotech-Gènes Diffusion, 59000, Lille, France
- PEGASE-Biosciences, Institut Pasteur de Lille, 1 Rue du Professeur Calmette, 59019, Lille, France
| | - M P Sanchez
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
| | - S Martel
- GD Biotech-Gènes Diffusion, 59000, Lille, France
- PEGASE-Biosciences, Institut Pasteur de Lille, 1 Rue du Professeur Calmette, 59019, Lille, France
| | - S Merlin
- GD Biotech-Gènes Diffusion, 59000, Lille, France
- PEGASE-Biosciences, Institut Pasteur de Lille, 1 Rue du Professeur Calmette, 59019, Lille, France
| | - C Audebert
- GD Biotech-Gènes Diffusion, 59000, Lille, France
- PEGASE-Biosciences, Institut Pasteur de Lille, 1 Rue du Professeur Calmette, 59019, Lille, France
| | - P Croiseau
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
| | - J Estellé
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
| |
Collapse
|
7
|
Zangirolamo AF, Souza AK, Yokomizo DN, Miguel AKA, da Costa MC, Alfieri AA, Seneda MM. Updates and Current Challenges in Reproductive Microbiome: A Comparative Analysis between Cows and Women. Animals (Basel) 2024; 14:1971. [PMID: 38998083 PMCID: PMC11240322 DOI: 10.3390/ani14131971] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 07/14/2024] Open
Abstract
The microbiota plays an important role in numerous physiological processes, pathogenesis, development, and metabolism in different animal species. In humans, several studies have demonstrated an association between the vaginal microbiota and fertility rates, and even success in assisted reproduction techniques. In the context of cattle reproduction, although few studies have addressed the microbiota in a healthy state (which is not associated with diseases that affect the reproductive tract of cows), changes in its composition also seem to influence fertility. This review aims to explain the importance of the reproductive microbiota in female bovines and what is available in the literature regarding its possible role in increasing fertility. What are the challenges involved in this process? Future perspectives on its use and manipulation as a selection or intervention tool. Will it be possible to one day extrapolate the findings to reality and apply them in the field? In short, understanding the role of the reproductive microbiota of female bovines can signal the prospect of increasing production, whether of milk or meat, from the same number of animals, as it can optimize reproductive efficiency and perhaps become an allied tool for the economic profitability and sustainability of livestock farming.
Collapse
Affiliation(s)
- Amanda Fonseca Zangirolamo
- National Institute of Science and Technology for Dairy Production Chain (INCT–LEITE), Universidade Estadual de Londrina, Londrina 86057-970, PR, Brazil; (A.F.Z.); (A.A.A.)
- Laboratory of Animal Reproduction, Universidade Estadual de Londrina, Londrina 86057-970, PR, Brazil; (A.K.S.); (D.N.Y.); (A.K.A.M.)
| | - Anne Kemmer Souza
- Laboratory of Animal Reproduction, Universidade Estadual de Londrina, Londrina 86057-970, PR, Brazil; (A.K.S.); (D.N.Y.); (A.K.A.M.)
| | - Deborah Nakayama Yokomizo
- Laboratory of Animal Reproduction, Universidade Estadual de Londrina, Londrina 86057-970, PR, Brazil; (A.K.S.); (D.N.Y.); (A.K.A.M.)
| | - Ana Karolyne Alves Miguel
- Laboratory of Animal Reproduction, Universidade Estadual de Londrina, Londrina 86057-970, PR, Brazil; (A.K.S.); (D.N.Y.); (A.K.A.M.)
| | | | - Amauri Alcindo Alfieri
- National Institute of Science and Technology for Dairy Production Chain (INCT–LEITE), Universidade Estadual de Londrina, Londrina 86057-970, PR, Brazil; (A.F.Z.); (A.A.A.)
| | - Marcelo Marcondes Seneda
- National Institute of Science and Technology for Dairy Production Chain (INCT–LEITE), Universidade Estadual de Londrina, Londrina 86057-970, PR, Brazil; (A.F.Z.); (A.A.A.)
- Laboratory of Animal Reproduction, Universidade Estadual de Londrina, Londrina 86057-970, PR, Brazil; (A.K.S.); (D.N.Y.); (A.K.A.M.)
| |
Collapse
|
8
|
Várhidi Z, Csikó G, Bajcsy ÁC, Jurkovich V. Uterine Disease in Dairy Cows: A Comprehensive Review Highlighting New Research Areas. Vet Sci 2024; 11:66. [PMID: 38393084 PMCID: PMC10893454 DOI: 10.3390/vetsci11020066] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/28/2024] [Accepted: 01/30/2024] [Indexed: 02/25/2024] Open
Abstract
Uterine disease is an intensely studied part of dairy cattle health management as it heavily affects many commercial dairy farms and has serious economic consequences. Forms of the disease, pathophysiology, pathogens involved and the effects of uterine disease on the health and performance of cows have already been well described by various authors. Lately, researchers' attention has shifted towards the healthy microbiome of the uterus and the vagina to put emphasis on prevention rather than treatment. This aligns with the growing demand to reduce the use of antibiotics or-whenever possible-replace them with alternative treatment options in farm animal medicine. This review provides a comprehensive summary of the last 20 years of uterine disease research and highlights promising new areas for future studies.
Collapse
Affiliation(s)
- Zsóka Várhidi
- Department of Animal Hygiene, Herd Health and Mobile Clinic, University of Veterinary Medicine, 1078 Budapest, Hungary
| | - György Csikó
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, 1078 Budapest, Hungary;
| | - Árpád Csaba Bajcsy
- Clinic for Cattle, University of Veterinary Medicine Hannover, Foundation, 30173 Hannover, Germany;
| | - Viktor Jurkovich
- Centre for Animal Welfare, University of Veterinary Medicine, 1078 Budapest, Hungary
| |
Collapse
|
9
|
Barba M, Toquet M, García-Roselló E, Gomis J, Quereda JJ, González-Torres P, Carbonetto B, Gómez-Martín Á. Description of the vaginal microbiota in nulliparous ewes during natural mating and pregnancy: preliminary signs of the male preputial microbiota modulation. Front Microbiol 2024; 14:1224910. [PMID: 38274751 PMCID: PMC10808482 DOI: 10.3389/fmicb.2023.1224910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 12/21/2023] [Indexed: 01/27/2024] Open
Abstract
The vaginal microbiota plays a key role in animals' health. Understanding its diversity and composition and associated changes occurring through the reproductive cycle represents valuable knowledge to disclose the mechanisms leading to dysbiosis and eventually to infection. Even if the human vaginal microbiota has been thoroughly studied, scarce research has been conducted on the vaginal microbiota of livestock. In this study, 16S rRNA gene-based sequencing was performed on vaginal samples of ten nulliparous ewes at three different sampling points: before the estrus synchronization protocol (T0), at the time of estrus before mating (Testrus), and the day of the pregnancy diagnosis (Tpreg). Preputial samples from the three males collected pre and post-mating were also analyzed. Firmicutes, Proteobacteria, Bacteroidetes, and Actinobacteria were the most abundant phyla in vaginal samples. The most abundant genera were Porphyromonas, Anaerococcus, and Peptinophilius. Vaginal microbiota biodiversity decreased during pregnancy. Tenericutes (Ureaplasma spp.) increased significantly at Tpreg in both pregnant and non-pregnant ewes. Differences were observed between pregnant and non-pregnant ewes at Tpreg where pregnant ewes had a significantly higher abundance of Actinobacillus spp. and Ureaplasma spp. Ewes that were diagnosed with pregnancy at Tpreg showed a decreased abundance of gram-negative bacteria such as Bacteroidales, Campylobacterales, and Enterobacteriales. In addition, a significant decrease in the relative abundances of genera within Firmicutes, such as Alloicoccus (Lactobacillales), Atopostipes (Lactobacillales), and an uncultured bacteria W5053 from Family XI (Firmicutes, Clostridiales) was observed in non-pregnant ewes at Tpreg. The four most abundant phyla in the rams' prepuce were the same as in the ewes' vagina. The most abundant genus was Corynebacterium. No major differences were observed in the ram's preputial microbiota between pre and post-mating samples. Nevertheless, the differences in the taxonomic composition of ewes' vaginal microbiota between Testrus and Tpreg could be explained by the exposure to the preputial microbiota. This study offers new insights into the effects of several key steps of the ewe's reproductive cycle such as estrus-synchronization protocol, mating, and pregnancy on ovine vaginal microbiota. The knowledge of the microbiota dynamics during the reproductive cycle can help improve the reproductive outcomes of dams by identifying biomarkers and putative probiotics.
Collapse
Affiliation(s)
- Marta Barba
- Microbiological Agents Associated with Animal Reproduction (ProVaginBIO) Research Group, Departamento Producción y Sanidad Animal, Salud Pública Veterinaria y Ciencia y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, Carrer Tirant lo Blanc, Alfara del Patriarca, Valencia, Spain
- Agrifood Research and Technology Centre of Aragon (CITA), Teruel, Spain
| | - Marion Toquet
- Microbiological Agents Associated with Animal Reproduction (ProVaginBIO) Research Group, Departamento Producción y Sanidad Animal, Salud Pública Veterinaria y Ciencia y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, Carrer Tirant lo Blanc, Alfara del Patriarca, Valencia, Spain
| | - Empar García-Roselló
- Microbiological Agents Associated with Animal Reproduction (ProVaginBIO) Research Group, Departamento Producción y Sanidad Animal, Salud Pública Veterinaria y Ciencia y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, Carrer Tirant lo Blanc, Alfara del Patriarca, Valencia, Spain
| | - Jesús Gomis
- Microbiological Agents Associated with Animal Reproduction (ProVaginBIO) Research Group, Departamento Producción y Sanidad Animal, Salud Pública Veterinaria y Ciencia y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, Carrer Tirant lo Blanc, Alfara del Patriarca, Valencia, Spain
| | - Juan J. Quereda
- Research Group Intracellular Pathogens: Biology and Infection, Departamento Producción y Sanidad Animal, Salud Pública Veterinaria y Ciencia y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, Valencia, Spain
| | - Pedro González-Torres
- Microbiological Agents Associated with Animal Reproduction (ProVaginBIO) Research Group, Departamento Producción y Sanidad Animal, Salud Pública Veterinaria y Ciencia y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, Carrer Tirant lo Blanc, Alfara del Patriarca, Valencia, Spain
- Microomics Systems S.L., Barcelona, Spain
| | - Belén Carbonetto
- Microbiological Agents Associated with Animal Reproduction (ProVaginBIO) Research Group, Departamento Producción y Sanidad Animal, Salud Pública Veterinaria y Ciencia y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, Carrer Tirant lo Blanc, Alfara del Patriarca, Valencia, Spain
- Microomics Systems S.L., Barcelona, Spain
| | - Ángel Gómez-Martín
- Microbiological Agents Associated with Animal Reproduction (ProVaginBIO) Research Group, Departamento Producción y Sanidad Animal, Salud Pública Veterinaria y Ciencia y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, Carrer Tirant lo Blanc, Alfara del Patriarca, Valencia, Spain
| |
Collapse
|
10
|
Jia X, He Y, Kang Z, Chen S, Sun W, Wang J, Lai S. Comparison of Fecal Microbiota Communities between Primiparous and Multiparous Cows during Non-Pregnancy and Pregnancy. Animals (Basel) 2023; 13:ani13050869. [PMID: 36899725 PMCID: PMC10000135 DOI: 10.3390/ani13050869] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 03/06/2023] Open
Abstract
Imbalances in the gut microbiota composition may lead to several reproductive disorders and diseases during pregnancy. This study investigates the fecal microbiome composition between primiparous and multiparous cows during non-pregnancy and pregnancy to analyze the host-microbial balance at different stages. The fecal samples obtained from six cows before their first pregnancy (BG), six cows during their first pregnancy (FT), six open cows with more than three lactations (DCNP), and six pregnant cows with more than three lactations (DCP) were subjected to 16S rRNA sequencing, and a differential analysis of the fecal microbiota composition was performed. The three most abundant phyla in fecal microbiota were Firmicutes (48.68%), Bacteroidetes (34.45%), and Euryarchaeota (15.42%). There are 11 genera with more than 1.0% abundance at the genus level. Both alpha diversity and beta diversity showed significant differences among the four groups (p < 0.05). Further, primiparous women were associated with a profound alteration of the fecal microbiota. The most representative taxa included Rikenellaceae_RC9_gut_group, Prevotellaceae_UCG_003, Christensenellaceae_R_7_group, Ruminococcaceae UCG-005, Ruminococcaceae UCG-013, Ruminococcaceae UCG-014, Methanobrevibacter, and [Eubacterium] coprostanoligenes group, which were associated with energy metabolism and inflammation. The findings indicate that host-microbial interactions promote adaptation to pregnancy and will benefit the development of probiotics or fecal transplantation for treating dysbiosis and preventing disease development during pregnancy.
Collapse
|
11
|
Poole RK, Soffa DR, McAnally BE, Smith MS, Hickman-Brown KJ, Stockland EL. Reproductive Microbiomes in Domestic Livestock: Insights Utilizing 16S rRNA Gene Amplicon Community Sequencing. Animals (Basel) 2023; 13:485. [PMID: 36766374 PMCID: PMC9913168 DOI: 10.3390/ani13030485] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/16/2023] [Accepted: 01/28/2023] [Indexed: 02/04/2023] Open
Abstract
Advancements in 16S rRNA gene amplicon community sequencing have vastly expanded our understanding of the reproductive microbiome and its role in fertility. In humans, Lactobacillus is the overwhelmingly dominant bacteria within reproductive tissues and is known to be commensal and an indicator of fertility in women and men. It is also known that Lactobacillus is not as largely abundant in the reproductive tissues of domestic livestock species. Thus, the objective of this review is to summarize the research to date on both female and male reproductive microbiomes in domestic livestock species (i.e., dairy cattle, beef cattle, swine, small ruminants, and horses). Having a comprehensive understanding of reproductive microbiota and its role in modulating physiological functions will aid in the development of management and therapeutic strategies to improve reproductive efficiency.
Collapse
Affiliation(s)
- Rebecca K. Poole
- Department of Animal Science, Texas A&M University, College Station, TX 77843-2471, USA
| | | | | | | | | | | |
Collapse
|
12
|
Reinoso-Peláez EL, Saura M, González-Recio Ó, González C, Fernández A, Peiro-Pastor R, López-García A, Saborío-Montero A, Calvo JH, Ramón M, Serrano M. Impact of oestrus synchronization devices on ewes vaginal microbiota and artificial insemination outcome. Front Microbiol 2023; 14:1063807. [PMID: 37032869 PMCID: PMC10076614 DOI: 10.3389/fmicb.2023.1063807] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 02/16/2023] [Indexed: 04/11/2023] Open
Abstract
Introduction The low pregnancy rate by artificial insemination in sheep represents a fundamental challenge for breeding programs. In this species, oestrus synchronization is carried out by manipulating hormonal regimens through the insertion of progestogen intravaginal devices. This reproductive strategy may alter the vaginal microbiota affecting the artificial insemination outcome. Methods In this study, we analyzed the vaginal microbiome of 94 vaginal swabs collected from 47 ewes with alternative treatments applied to the progesterone-releasing intravaginal devices (probiotic, maltodextrin, antibiotic and control), in two sample periods (before placing and after removing the devices). To our knowledge, this is the first study using nanopore-based metagenome sequencing for vaginal microbiome characterization in livestock. Results Our results revealed a significant lower abundance of the genera Oenococcus (Firmicutes) and Neisseria (Proteobacteria) in pregnant compared to non-pregnant ewes. We also detected a significant lower abundance of Campylobacter in the group of samples treated with the probiotic. Discussion Although the use of probiotics represents a promising practice to improve insemination results, the election of the suitable species and concentration requires further investigation. In addition, the use of progestogen in the synchronization devices seemed to increase the alpha-diversity and decrease the abundance of harmful microorganisms belonging to Gammaproteobacteria and Fusobacteriia classes, suggesting a beneficial effect of their use.
Collapse
Affiliation(s)
- Edgar L. Reinoso-Peláez
- Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Madrid, Spain
- Departamento de Producción Agraria, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, Spain
- *Correspondence: Edgar L. Reinoso-Peláez,
| | - María Saura
- Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Madrid, Spain
- María Saura,
| | - Óscar González-Recio
- Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Madrid, Spain
| | - Carmen González
- Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Madrid, Spain
| | - Almudena Fernández
- Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Madrid, Spain
| | - Ramón Peiro-Pastor
- Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Madrid, Spain
| | - Adrián López-García
- Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Madrid, Spain
| | - Alejandro Saborío-Montero
- Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Madrid, Spain
| | - Jorge H. Calvo
- Departamento de Ciencia Animal, Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA-ARAID-IA2), Zaragoza, Spain
| | - Manuel Ramón
- Departamento de Investigación en Reproducción y Mejora Genética Animal, Centro Regional de Selección y Reproducción Animal de Castilla La Mancha (CERSYRA-IRIAF), Valdepeñas, Spain
| | - Malena Serrano
- Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Madrid, Spain
| |
Collapse
|
13
|
Shi Y, Tang L, Bai X, Du K, Wang H, Jia X, Lai S. Heat Stress Altered the Vaginal Microbiome and Metabolome in Rabbits. Front Microbiol 2022; 13:813622. [PMID: 35495670 PMCID: PMC9048824 DOI: 10.3389/fmicb.2022.813622] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 02/10/2022] [Indexed: 12/23/2022] Open
Abstract
Heat stress can have an impact on parental gamete maturation and reproduction functions. According to current research, the microbial composition of the vaginal cavity is species specific. Pregnancy, menstruation, and genital diseases have been linked to the dynamics of vaginal ecology. In this study, we characterized the vaginal microbiota and metabolites after heat stress. At the phylum level, the rabbit’s vaginal microbial composition of rabbit showed high similarity with that of humans. In the Heat group, the relative abundance of the dominant microbiota Actinobacteria, Bacteroidetes, and Proteobacteria increased, while the relative abundance of Firmicutes decreased. Furthermore, heat stress significantly increased the relative abundance of W5053, Helcococcus, Thiopseudomonas, ldiomaarina, atopostipes, and facklamia, whereas the relative abundance of 12 genera significantly decreased, including Streptococcus, UCG-005, Alistipes, [Eubacterium]_xylanophilum_group, Comamonas, RB41, Fastidiosipila, Intestinimonas, Arthrobacter, Lactobacillus, Leucobacter, and Family_xlll_AD3011_group. Besides, the relative concentrations of 158 metabolites differed significantly between the Heat and Control groups. Among them, the endocrine hormone estradiol (E2) increased in the Heat group and was positively associated with a number of metabolites such as linolelaidic acid (C18:2N6T), N-acetylsphingosine, N-oleoyl glycine, trans-petroselinic acid, syringic acid, 2-(1-adamantyl)-1-morpholinoethan-1-one, 5-OxoETE, and 16-heptadecyne-1,2,4-triol. Further, the majority of the differential metabolites were enriched in steroid biosynthesis and endocrine and other factor-regulated calcium reabsorption pathways, reflecting that heat stress may affect calcium metabolism, hormone-induced signaling, and endocrine balance of vaginal ecology. These findings provide a comprehensive depiction of rabbit vaginal ecology and reveal the effects of heat stress on the vagina via the analysis of vaginal microbiome and metabolome, which may provide a new thought for low female fertility under heat stress.
Collapse
|
14
|
Evaluation of Host Depletion and Extraction Methods for Shotgun Metagenomic Analysis of Bovine Vaginal Samples. Microbiol Spectr 2022; 10:e0041221. [PMID: 35404108 PMCID: PMC9045270 DOI: 10.1128/spectrum.00412-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The reproductive tract metagenome plays a significant role in the various reproductive system functions, including reproductive cycles, health, and fertility. One of the major challenges in bovine vaginal metagenome studies is host DNA contamination, which limits the sequencing capacity for metagenomic content and reduces the accuracy of untargeted shotgun metagenomic profiling. This is the first study comparing the effectiveness of different host depletion and DNA extraction methods for bovine vaginal metagenomic samples. The host depletion methods evaluated were slow centrifugation (Soft-spin), NEBNext Microbiome DNA Enrichment kit (NEBNext), and propidium monoazide (PMA) treatment, while the extraction methods were DNeasy Blood and Tissue extraction (DNeasy) and QIAamp DNA Microbiome extraction (QIAamp). Soft-spin and QIAamp were the most effective host depletion method and extraction methods, respectively, in reducing the number of cattle genomic content in bovine vaginal samples. The reduced host-to-microbe ratio in the extracted DNA increased the sequencing depth for microbial reads in untargeted shotgun sequencing. Bovine vaginal samples extracted with QIAamp presented taxonomical profiles which closely resembled the mock microbial composition, especially for the recovery of Gram-positive bacteria. Additionally, samples extracted with QIAamp presented extensive functional profiles with deep coverage. Overall, a combination of Soft-spin and QIAamp provided the most robust representation of the vaginal microbial community in cattle while minimizing host DNA contamination. IMPORTANCE In addition to the host tissue collected during the sampling process, bovine vaginal samples are saturated with large amounts of extracellular DNA and secreted proteins that are essential for physiological purposes, including the reproductive cycle and immune defense. Due to the high host-to-microbe genome ratio, which hampers the sequencing efficacy for metagenome samples and the recovery of the actual metagenomic profiles, bovine vaginal samples cannot benefit from the full potential of shotgun sequencing. This is the first investigation on the most effective host depletion and extraction methods for bovine vaginal metagenomic samples. This study demonstrated an effective combination of host depletion and extraction methods, which harvested higher percentages of 16S rRNA genes and microbial reads, which subsequently led to a taxonomical profile that resembled the actual community and a functional profile with deeper coverage. A representative metagenomic profile is essential for investigating the role of the bovine vaginal metagenome for both reproductive function and susceptibility to infections.
Collapse
|
15
|
Adnane M, Chapwanya A. A Review of the Diversity of the Genital Tract Microbiome and Implications for Fertility of Cattle. Animals (Basel) 2022; 12:ani12040460. [PMID: 35203168 PMCID: PMC8868056 DOI: 10.3390/ani12040460] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 01/30/2022] [Accepted: 01/31/2022] [Indexed: 12/11/2022] Open
Abstract
Cattle have a genital microbiome that is established early in life, even before calving. Microbial influx into the reproductive system of cows, during calving or mating, is unavoidable and is likely to alter the commensal microflora composition. It is now well established that a commensal endometrial flora is largely responsible for the overall fertility of cows. These microbes are important for maintenance of structural integrity of the genital mucosal barrier, immunomodulation, and protection against pathogens. Further, the genital microbiome functions in the semiochemical communication between a male and female. An optimal balance between the abundance and diversity of the microbiome is essential to promote female genital tract health. Disruption of this balance leads to dysbiosis and genital diseases and perturbed fertility. As part of the global strategy of One World, One Health, there is a need to reduce antibiotic use in animals. This area of research has the potential to expand the knowledge about the nexus between the endometrial microbiome and fertility including being probiotic in different species.
Collapse
Affiliation(s)
- Mounir Adnane
- Institute of Veterinary Sciences, University of Tiaret, Tiaret 14000, Algeria
- Correspondence: ; Tel.: +21-3542-477061
| | - Aspinas Chapwanya
- Department of Clinical Sciences, Ross University School of Veterinary Medicine, West Indies, Basseterre 00265, Saint Kitts and Nevis;
| |
Collapse
|
16
|
Srinivasan M, Adnane M, Archunan G. Significance of cervico-vaginal microbes in bovine reproduction and pheromone production - A hypothetical review. Res Vet Sci 2021; 135:66-71. [PMID: 33450498 DOI: 10.1016/j.rvsc.2021.01.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/10/2020] [Accepted: 01/03/2021] [Indexed: 01/08/2023]
Abstract
The vaginal microbiota has been studied in animal reproduction and fertility, in particular little information of vaginal microbes in reference to bovine reproduction and pheromone production is known. The vaginal mucosa in healthy cow is colonized by an equilibrated and dynamic composition of aerobic, facultative anaerobic and obligate anaerobic microbes. Cervico-vaginal mucus (CVM) composition, viscosity and volume vary with the cyclicity and health status of the reproductive tract. In addition, CVM contains pheromones, volatile compounds, and proteins that attract males for coitus. Commensal microbiota plays a key role in protection of the genital tract from pathogenic microbes by competition effect. In the bovine species, the microbial composition, its abundance and diversity in the female gut, vagina, urine, saliva, and feces, and the associated chemical communication remains poorly documented. The impact of microbes in the reproductive tract of cow, buffalo and certain mammals are discussed in this review. Since the microbial population diversity of CVM is modified during estrus phase it presumes that it may have a role for pheromone production in conspecific. Herein, we would like to critically discuss the current state of knowledge on microbially produced signals in animals and the role of genital and CVM microbiota in estrous cycle and pregnancy.
Collapse
Affiliation(s)
- M Srinivasan
- Department of Animal Science, Bharathidasan University, Tiruchirappalli, India
| | - M Adnane
- Institute of Veterinary Sciences, University of Tiaret, Algeria.
| | - G Archunan
- Department of Animal Science, Bharathidasan University, Tiruchirappalli, India.
| |
Collapse
|