1
|
Shi YH, Shen JX, Tao Y, Xia YL, Zhang ZB, Fu YX, Zhang KQ, Liu SQ. Dissecting the Binding Affinity of Anti-SARS-CoV-2 Compounds to Human Transmembrane Protease, Serine 2: A Computational Study. Int J Mol Sci 2025; 26:587. [PMID: 39859303 PMCID: PMC11766390 DOI: 10.3390/ijms26020587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 01/05/2025] [Accepted: 01/09/2025] [Indexed: 01/27/2025] Open
Abstract
The human transmembrane protease, serine 2 (TMPRSS2), essential for SARS-CoV-2 entry, is a key antiviral target. Here, we computationally profiled the TMPRSS2-binding affinities of 15 antiviral compounds. Molecular dynamics (MD) simulations for the docked complexes revealed that three compounds exited the substrate-binding cavity (SBC), suggesting noncompetitive inhibition. Of the remaining compounds, five charged ones exhibited reduced binding stability due to competing electrostatic interactions and increased solvent exposure, while seven neutral compounds showed stronger binding affinity driven by van der Waals (vdW) interactions compensating for unfavorable electrostatic effects (including electrostatic interactions and desolvation penalties). Positive and negative hotspot residues were identified as uncharged and charged, respectively, both lining the SBC. Despite forming diverse interactions with compounds, the burial of positive hotspots led to strong vdW interactions that overcompensated for unfavorable electrostatic effects, whereas negative hotspots incurred high desolvation penalties, negating any favorable contributions. Charged residues at the SBC's outer rim can reduce binding affinity significantly when forming hydrogen bonds or salt bridges. These findings underscore the importance of enhancing vdW interactions with uncharged residues and minimizing the unfavorable electrostatic effects of charged residues, providing valuable insights for designing effective TMPRSS2 inhibitors.
Collapse
Affiliation(s)
- Yue-Hui Shi
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan and School of Life Sciences, Yunnan University, Kunming 650091, China; (Y.-H.S.); (J.-X.S.); (Y.T.); (Y.-L.X.); (K.-Q.Z.)
| | - Jian-Xin Shen
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan and School of Life Sciences, Yunnan University, Kunming 650091, China; (Y.-H.S.); (J.-X.S.); (Y.T.); (Y.-L.X.); (K.-Q.Z.)
| | - Yan Tao
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan and School of Life Sciences, Yunnan University, Kunming 650091, China; (Y.-H.S.); (J.-X.S.); (Y.T.); (Y.-L.X.); (K.-Q.Z.)
| | - Yuan-Ling Xia
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan and School of Life Sciences, Yunnan University, Kunming 650091, China; (Y.-H.S.); (J.-X.S.); (Y.T.); (Y.-L.X.); (K.-Q.Z.)
| | - Zhi-Bi Zhang
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Biomedical Engineering Research Center, Kunming Medical University, Kunming 650500, China;
| | - Yun-Xin Fu
- Human Genetics Center and Department of Biostatistics and Data Science, School of Public Health, The University of Texas Health Science Center, Houston, TX 77030, USA;
| | - Ke-Qin Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan and School of Life Sciences, Yunnan University, Kunming 650091, China; (Y.-H.S.); (J.-X.S.); (Y.T.); (Y.-L.X.); (K.-Q.Z.)
| | - Shu-Qun Liu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan and School of Life Sciences, Yunnan University, Kunming 650091, China; (Y.-H.S.); (J.-X.S.); (Y.T.); (Y.-L.X.); (K.-Q.Z.)
| |
Collapse
|
2
|
Glenn IS, Hall LN, Khalid MM, Ott M, Shoichet BK. Colloidal Aggregation Confounds Cell-Based Covid-19 Antiviral Screens. J Med Chem 2024; 67:10263-10274. [PMID: 38864383 PMCID: PMC11236530 DOI: 10.1021/acs.jmedchem.4c00597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
Colloidal aggregation is one of the largest contributors to false positives in early drug discovery. Here, we consider aggregation's role in cell-based infectivity assays in Covid-19 drug repurposing. We investigated the potential aggregation of 41 drug candidates reported as SARs-CoV-2 entry inhibitors. Of these, 17 formed colloidal particles by dynamic light scattering and exhibited detergent-dependent enzyme inhibition. To evaluate the impact of aggregation on antiviral efficacy in cells, we presaturated the colloidal drug suspensions with BSA or spun them down by centrifugation and measured the effects on spike pseudovirus infectivity. Antiviral potencies diminished by at least 10-fold following both BSA and centrifugation treatments, supporting a colloid-based mechanism. Aggregates induced puncta of the labeled spike protein in fluorescence microscopy, consistent with sequestration of the protein on the colloidal particles. These observations suggest that colloidal aggregation is common among cell-based antiviral drug repurposing and offers rapid counter-screens to detect and eliminate these artifacts.
Collapse
Affiliation(s)
- Isabella S Glenn
- Department of Pharmaceutical Chemistry, University of California San Francisco (UCSF), San Francisco, California 94143, United States
| | - Lauren N Hall
- Department of Pharmaceutical Chemistry, University of California San Francisco (UCSF), San Francisco, California 94143, United States
| | - Mir M Khalid
- Gladstone Institutes, San Francisco, California 94158, United States
- Department of Medicine, University of California, San Francisco, San Francisco, California 94158, United States
| | - Melanie Ott
- Gladstone Institutes, San Francisco, California 94158, United States
- Department of Medicine, University of California, San Francisco, San Francisco, California 94158, United States
- Chan Zuckerberg Biohub, San Francisco, California 94158, United States
| | - Brian K Shoichet
- Department of Pharmaceutical Chemistry, University of California San Francisco (UCSF), San Francisco, California 94143, United States
| |
Collapse
|
3
|
Shin JS, Jang Y, Kim DS, Jung E, Lee MK, Kim B, Ahn S, Shin Y, Jang SS, Yun CS, Yoo J, Lim YC, Han SB, Kim M. Inhibition of endocytic uptake of severe acute respiratory syndrome coronavirus 2 and endo-lysosomal acidification by diphenoxylate. Antimicrob Agents Chemother 2024; 68:e0034124. [PMID: 38742905 PMCID: PMC11620506 DOI: 10.1128/aac.00341-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 04/17/2024] [Indexed: 05/16/2024] Open
Abstract
Cell culture-based screening of a chemical library identified diphenoxylate as an antiviral agent against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The observed 50% effective concentrations ranged between 1.4 and 4.9 µM against the original wild-type strain and its variants. Time-of-addition experiments indicated that diphenoxylate is an entry blocker targeting a host factor involved in viral infection. Fluorescence microscopic analysis visualized that diphenoxylate prevented SARS-CoV-2 particles from penetrating the cell membrane and also impaired endo-lysosomal acidification. Diphenoxylate exhibited a synergistic inhibitory effect on SARS-CoV-2 infection in human lung epithelial Calu-3 cells when combined with a transmembrane serine protease 2 (TMPRSS2) inhibitor, nafamostat. This synergy suggested that efficient antiviral activity is achieved by blocking both TMPRSS2-mediated early and endosome-mediated late SARS-CoV-2 entry pathways. The antiviral efficacy of diphenoxylate against SARS-CoV-2 was reproducible in a human tonsil organoids system. In a transgenic mouse model expressing the obligate SARS-CoV-2 receptor, human angiotensin-converting enzyme 2, intranasal administration of diphenoxylate (10 mg/kg/day) significantly reduced the viral RNA copy number in the lungs by 70% on day 3. This study underscores that diphenoxylate represents a promising core scaffold, warranting further exploration for chemical modifications aimed at developing a new class of clinically effective antiviral drugs against SARS-CoV-2.
Collapse
Affiliation(s)
- Jin Soo Shin
- Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon, Republic of Korea
| | - Yejin Jang
- Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon, Republic of Korea
| | - Dong-Su Kim
- Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon, Republic of Korea
| | - Eunhye Jung
- Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon, Republic of Korea
| | - Myoung Kyu Lee
- Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon, Republic of Korea
| | - Byungil Kim
- Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon, Republic of Korea
| | - Sunjoo Ahn
- Therapeutics and Biotechnology Division, Korea Research Institute of Chemical Technology (KRICT), Daejeon, Republic of Korea
| | - Yeonju Shin
- Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon, Republic of Korea
| | - Su San Jang
- Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon, Republic of Korea
| | - Chang Soo Yun
- Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon, Republic of Korea
| | - Jongman Yoo
- CHA Organoid Research Center, CHA University, Seongnam, Gyeonggi-do, Republic of Korea
| | - Young Chang Lim
- Department of Otorhinolaryngology-Head and Neck Surgery, The Research Institute, Konkuk University School of Medicine, Seoul, Republic of Korea
| | - Soo Bong Han
- Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon, Republic of Korea
- Medicinal Chemistry and Pharmacology, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Meehyein Kim
- Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon, Republic of Korea
| |
Collapse
|
4
|
Alipour Z, Zarezadeh S, Ghotbi-Ravandi AA. The Potential of Anti-coronavirus Plant Secondary Metabolites in COVID-19 Drug Discovery as an Alternative to Repurposed Drugs: A Review. PLANTA MEDICA 2024; 90:172-203. [PMID: 37956978 DOI: 10.1055/a-2209-6357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
In early 2020, a global pandemic was announced due to the emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), known to cause COVID-19. Despite worldwide efforts, there are only limited options regarding antiviral drug treatments for COVID-19. Although vaccines are now available, issues such as declining efficacy against different SARS-CoV-2 variants and the aging of vaccine-induced immunity highlight the importance of finding more antiviral drugs as a second line of defense against the disease. Drug repurposing has been used to rapidly find COVID-19 therapeutic options. Due to the lack of clinical evidence for the therapeutic benefits and certain serious side effects of repurposed antivirals, the search for an antiviral drug against SARS-CoV-2 with fewer side effects continues. In recent years, numerous studies have included antiviral chemicals from a variety of plant species. A better knowledge of the possible antiviral natural products and their mechanism against SARS-CoV-2 will help to develop stronger and more targeted direct-acting antiviral agents. The aim of the present study was to compile the current data on potential plant metabolites that can be investigated in COVID-19 drug discovery and development. This review represents a collection of plant secondary metabolites and their mode of action against SARS-CoV and SARS-CoV-2.
Collapse
Affiliation(s)
- Zahra Alipour
- Department of Plant Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Somayeh Zarezadeh
- Department of Plant Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Ali Akbar Ghotbi-Ravandi
- Department of Plant Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
5
|
Hondo E, Katta T, Sato A, Kadofusa N, Ishibashi T, Shimoda H, Katoh H, Iida A. Antiviral effects of micafungin against pteropine orthoreovirus, an emerging zoonotic virus carried by bats. Virus Res 2024; 339:199248. [PMID: 37858730 PMCID: PMC10665676 DOI: 10.1016/j.virusres.2023.199248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/16/2023] [Indexed: 10/21/2023]
Abstract
Bat-borne emerging zoonotic viruses cause major outbreaks, such as the Ebola virus, Nipah virus, and/or beta coronavirus. Pteropine orthoreovirus (PRV), whose spillover event occurred from fruits bats to humans, causes respiratory syndrome in humans widely in South East Asia. Repurposing approved drugs against PRV is an effective tool to confront future PRV pandemics. We screened 2,943 compounds in an FDA-approved drug library and identified eight hit compounds that reduce viral cytopathic effects on cultured Vero cells. Real-time quantitative PCR analysis revealed that six of eight hit compounds significantly inhibited PRV replication. Among them, micafungin used clinically as an antifungal drug, displayed a prominent antiviral effect on PRV. Secondly, the antiviral effects of micafungin on PRV infected human cell lines (HEK293T and A549), and their transcriptome changes by PRV infection were investigated, compared to four different bat-derived cell lines (FBKT1 (Ryukyu flying fox), DEMKT1 (Leschenault's rousette), BKT1 (Greater horseshoe bat), YUBFKT1 (Eastern bent-wing bats)). In two human cell lines, unlike bat cells that induce an IFN-γ response pathway, an endoplasmic reticulum stress response pathway was commonly activated. Additionally, micafungin inhibits viral release rather than suppressing PRV genome replication in human cells, although it was disturbed in Vero cells. The target of micafungin's action may vary depending on the animal species, but it must be useful for human purposes as a first choice of medical care.
Collapse
Affiliation(s)
- Eiichi Hondo
- Laboratory of Animal Morphology, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan.
| | - Tetsufumi Katta
- Laboratory of Animal Morphology, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Ayato Sato
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya 464-8601, Japan
| | - Naoya Kadofusa
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya 464-8601, Japan
| | - Tomoki Ishibashi
- Laboratory for Physical Biology, RIKEN Center for Biosystems Dynamics Research, Kobe 650-0047, Japan
| | - Hiroshi Shimoda
- Laboratory of Veterinary Microbiology, Joint Graduate School of Veterinary Medicine, Yamaguchi University, 1677-1 Yoshida, Yamaguchi, 753-8515, Japan
| | - Hirokazu Katoh
- Department of Virology, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8558, Japan
| | - Atsuo Iida
- Laboratory of Animal Morphology, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| |
Collapse
|
6
|
Kim TH, Bae S, Goo S, Myoung J. Distinctive Combinations of RBD Mutations Contribute to Antibody Evasion in the Case of the SARS-CoV-2 Beta Variant. J Microbiol Biotechnol 2023; 33:1587-1295. [PMID: 37915256 PMCID: PMC10772562 DOI: 10.4014/jmb.2308.08020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/13/2023] [Accepted: 10/13/2023] [Indexed: 11/03/2023]
Abstract
Since its first report in 2019, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has posed a grave threat to public health. Virus-specific countermeasures, such as vaccines and therapeutics, have been developed and have contributed to the control of the viral pandemic, which has become endemic. Nonetheless, new variants continue to emerge and could cause a new pandemic. Consequently, it is important to comprehensively understand viral evolution and the roles of mutations in viral infectivity and transmission. SARS-CoV-2 beta variant encode mutations (D614G, N501Y, E484K, and K417N) in the spike which are frequently found in other variants as well. While their individual role in viral infectivity has been elucidated against various therapeutic antibodies, it still remains unclear whether those mutations may act additively or synergistically when combined. Here, we report that N501Y mutation shows differential effect on two therapeutic antibodies tested. Interestingly, the relative importance of E484K and K417N mutations in antibody evasion varies depending on the antibody type. Collectively, these findings suggest that continuous efforts to develop effective antibody therapeutics and combinatorial treatment with multiple antibodies are more rational and effective forms of treatment.
Collapse
Affiliation(s)
- Tae-Hun Kim
- Korea Zoonosis Research Institute, Department of Bioactive Material Science and Genetic Engineering Research Institute, Jeonbuk National University, Jeonju 54531, Republic of Korea
| | - Sojung Bae
- Korea Zoonosis Research Institute, Department of Bioactive Material Science and Genetic Engineering Research Institute, Jeonbuk National University, Jeonju 54531, Republic of Korea
| | - Sunggeun Goo
- Korea Zoonosis Research Institute, Department of Bioactive Material Science and Genetic Engineering Research Institute, Jeonbuk National University, Jeonju 54531, Republic of Korea
| | - Jinjong Myoung
- Korea Zoonosis Research Institute, Department of Bioactive Material Science and Genetic Engineering Research Institute, Jeonbuk National University, Jeonju 54531, Republic of Korea
| |
Collapse
|
7
|
Glenn IS, Hall LN, Khalid MM, Ott M, Shoichet BK. Colloidal aggregation confounds cell-based Covid-19 antiviral screens. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.27.564435. [PMID: 37961552 PMCID: PMC10634915 DOI: 10.1101/2023.10.27.564435] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Colloidal aggregation is one of the largest contributors to false-positives in early drug discovery and chemical biology. Much work has focused on its impact on pure-protein screens; here we consider aggregations role in cell-based infectivity assays in Covid-19 drug repurposing. We began by investigating the potential aggregation of 41 drug candidates reported as SARs-CoV-2 entry inhibitors. Of these, 17 formed colloidal-particles by dynamic light scattering and exhibited detergent-dependent enzyme inhibition. To evaluate antiviral efficacy of the drugs in cells we used spike pseudotyped lentivirus and pre-saturation of the colloids with BSA. The antiviral potency of the aggregators was diminished by at least 10-fold and often entirely eliminated in the presence of BSA, suggesting antiviral activity can be attributed to the non-specific nature of the colloids. In confocal microscopy, the aggregates induced fluorescent puncta of labeled spike protein, consistent with sequestration of the protein on the colloidal particles. Addition of either non-ionic detergent or of BSA disrupted these puncta. These observations suggest that colloidal aggregation is common among cell-based anti-viral drug repurposing, and perhaps cell-based assays more broadly, and offers rapid counter-screens to detect and eliminate these artifacts, allowing the community invest resources in compounds with true potential as a Covid-19 therapeutic.
Collapse
Affiliation(s)
- Isabella S Glenn
- Department of Pharmaceutical Chemistry, University of California San Francisco (UCSF), San Francisco, CA, USA
| | - Lauren N Hall
- Department of Pharmaceutical Chemistry, University of California San Francisco (UCSF), San Francisco, CA, USA
| | - Mir M Khalid
- Gladstone Institutes, San Francisco, California, United States
- Department of Medicine, University of California, San Francisco, San Francisco, California, United States
| | - Melanie Ott
- Gladstone Institutes, San Francisco, California, United States
- Department of Medicine, University of California, San Francisco, San Francisco, California, United States
- Chan Zuckerberg Biohub, San Francisco, California, United States
| | - Brian K Shoichet
- Department of Pharmaceutical Chemistry, University of California San Francisco (UCSF), San Francisco, CA, USA
| |
Collapse
|
8
|
Tomezsko PJ, Phillipson CW, Walsh ME. Lessons Learned From Limited Overlap of 15 In Vitro COVID-19 Drug Repurposing Screens. Health Secur 2023; 21:249-257. [PMID: 37196212 PMCID: PMC10357111 DOI: 10.1089/hs.2022.0132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 03/16/2023] [Accepted: 03/17/2023] [Indexed: 05/19/2023] Open
Abstract
Drug repurposing can quickly and cost-effectively identify medical countermeasures against pathogens with pandemic potential and could be used as a down-selection method for selecting US Food and Drug Administration-approved drugs to test in clinical trials. We compared results from 15 high-throughput in vitro screening efforts that tested approved and clinically evaluated drugs for activity against SARS-CoV-2 replication. From the 15 studies, 304 drugs were identified as displaying the highest level of confidence from the individual screens. Of those 304 drugs, 30 were identified in 2 or more screens, while only 3 drugs (apilimod, tetrandrine, and salinomycin) were identified in 4 screens. The lack of concordance in high-confidence hits and variations in protocols makes it challenging to use the collective data as down-selection criteria for identifying repurposing candidates to move into a clinical trial.
Collapse
Affiliation(s)
- Phillip J. Tomezsko
- Phillip J. Tomezsko, PhD, is Technical Staff, Counter WMD Systems Group, MIT Lincoln Laboratory, Lexington, MA
| | | | - Matthew E. Walsh
- Matthew E. Walsh was Associate Technical Staff, Biological and Chemical Technologies Group, MIT Lincoln Laboratory, Lexington, MA
- Matthew E. Walsh is currently a PhD Student, Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
| |
Collapse
|
9
|
Jantan I, Arshad L, Septama AW, Haque MA, Mohamed-Hussein ZA, Govender NT. Antiviral effects of phytochemicals against severe acute respiratory syndrome coronavirus 2 and their mechanisms of action: A review. Phytother Res 2023; 37:1036-1056. [PMID: 36343627 PMCID: PMC9878073 DOI: 10.1002/ptr.7671] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 10/16/2022] [Accepted: 10/17/2022] [Indexed: 11/09/2022]
Abstract
The worldwide spreading of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has posed a serious threat to health, economic, environmental, and social aspects of human lives. Currently, there are no approved treatments that can effectively block the virus although several existing antimalarial and antiviral agents have been repurposed and allowed use during the pandemic under the emergency use authorization (EUA) status. This review gives an updated overview of the antiviral effects of phytochemicals including alkaloids, flavonoids, and terpenoids against the COVID-19 virus and their mechanisms of action. Search for natural lead molecules against SARS-CoV-2 has been focusing on virtual screening and in vitro studies on phytochemicals that have shown great promise against other coronaviruses such as SARS-CoV. Until now, there is limited data on in vivo investigations to examine the antiviral activity of plants in SARS-CoV-2-infected animal models and the studies were performed using crude extracts. Further experimental and preclinical investigations on the in vivo effects of phytochemicals have to be performed to provide sufficient efficacy and safety data before clinical studies can be performed to develop them into COVID-19 drugs. Phytochemicals are potential sources of new chemical leads for the development of safe and potent anti-SARS-CoV-2 agents.
Collapse
Affiliation(s)
- Ibrahim Jantan
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, UKM Bangi, Selangor, Malaysia
| | - Laiba Arshad
- Department of Pharmacy, Forman Christian College (A Chartered University), Lahore, Pakistan
| | - Abdi Wira Septama
- Research Center for Pharmaceutical Ingredient and Traditional Medicine, National Research and Innovation Agency (BRIN), Cibinong Science Center, West Java, Indonesia
| | - Md Areeful Haque
- Department of Symptom Research, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Zeti-Azura Mohamed-Hussein
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, UKM Bangi, Selangor, Malaysia.,Department of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM Bangi, Selangor, Malaysia
| | - Nisha T Govender
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, UKM Bangi, Selangor, Malaysia
| |
Collapse
|
10
|
Nakajima S, Ohashi H, Akazawa D, Torii S, Suzuki R, Fukuhara T, Watashi K. Antiviral Activity of Micafungin and Its Derivatives against SARS-CoV-2 RNA Replication. Viruses 2023; 15:v15020452. [PMID: 36851666 PMCID: PMC9958940 DOI: 10.3390/v15020452] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/27/2023] [Accepted: 02/02/2023] [Indexed: 02/08/2023] Open
Abstract
Echinocandin antifungal drugs, including micafungin, anidulafungin, and caspofungin, have been recently reported to exhibit antiviral effects against various viruses such as flavivirus, alphavirus, and coronavirus. In this study, we focused on micafungin and its derivatives and analyzed their antiviral activities against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The micafungin derivatives Mi-2 and Mi-5 showed higher antiviral activity than micafungin, with 50% maximal inhibitory concentration (IC50) of 5.25 and 6.51 µM, respectively (3.8 to 4.7-fold stronger than micafungin) and 50% cytotoxic concentration (CC50) of >64 µM in VeroE6/TMPRSS2 cells. This high anti-SARS-CoV-2 activity was also conserved in human lung epithelial cell-derived Calu-3 cells. Micafungin, Mi-2, and Mi-5 were suggested to inhibit the intracellular virus replication process; additionally, these compounds were active against SARS-CoV-2 variants, including Delta (AY.122, hCoV-19/Japan/TY11-927/2021), Omicron (BA.1.18, hCoV-19/Japan/TY38-873/2021), a variant resistant to remdesivir (R10/E796G C799F), and a variant resistant to casirivimab/imdevimab antibody cocktail (E406W); thus, our results provide basic evidence for the potential use of micafungin derivatives for developing antiviral agents.
Collapse
Affiliation(s)
- Shogo Nakajima
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
- Department of Virology II, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
- Choju Medical Institute, Fukushimura Hospital, 19-14 Yamanaka, Noyoricho, Toyohashi-shi 441-8124, Japan
| | - Hirofumi Ohashi
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Daisuke Akazawa
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Shiho Torii
- Laboratory of Virus Control, Research Institute for Microbial Diseases, Osaka University, Suita 565-0871, Japan
- Insect-Virus Interactions Unit, Department of Virology, Institut Pasteur, 75015 Paris, France
| | - Rigel Suzuki
- Department of Microbiology and Immunology, Faculty of Medicine, Hokkaido University, N-15, W-7, Kita-ku, Sapporo 060-8638, Japan
| | - Takasuke Fukuhara
- Department of Microbiology and Immunology, Faculty of Medicine, Hokkaido University, N-15, W-7, Kita-ku, Sapporo 060-8638, Japan
| | - Koichi Watashi
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
- Department of Virology II, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
- Department of Applied Biological Sciences, Tokyo University of Science, 2641 Yamazaki, Noda 278-8510, Japan
- Correspondence:
| |
Collapse
|
11
|
Piplani S, Singh P, Winkler DA, Petrovsky N. Potential COVID-19 Therapies from Computational Repurposing of Drugs and Natural Products against the SARS-CoV-2 Helicase. Int J Mol Sci 2022; 23:7704. [PMID: 35887049 PMCID: PMC9322913 DOI: 10.3390/ijms23147704] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/06/2022] [Accepted: 07/08/2022] [Indexed: 02/05/2023] Open
Abstract
Repurposing of existing drugs is a rapid way to find potential new treatments for SARS-CoV-2. Here, we applied a virtual screening approach using Autodock Vina and molecular dynamic simulation in tandem to screen and calculate binding energies of repurposed drugs against the SARS-CoV-2 helicase protein (non-structural protein nsp13). Amongst the top hits from our study were antivirals, antihistamines, and antipsychotics, plus a range of other drugs. Approximately 30% of our top 87 hits had published evidence indicating in vivo or in vitro SARS-CoV-2 activity. Top hits not previously reported to have SARS-CoV-2 activity included the antiviral agents, cabotegravir and RSV-604; the NK1 antagonist, aprepitant; the trypanocidal drug, aminoquinuride; the analgesic, antrafenine; the anticancer intercalator, epirubicin; the antihistamine, fexofenadine; and the anticoagulant, dicoumarol. These hits from our in silico SARS-CoV-2 helicase screen warrant further testing as potential COVID-19 treatments.
Collapse
Affiliation(s)
- Sakshi Piplani
- Vaxine Pty Ltd., 11 Walkley Avenue, Adelaide 5046, Australia; (S.P.); (P.S.)
| | - Puneet Singh
- Vaxine Pty Ltd., 11 Walkley Avenue, Adelaide 5046, Australia; (S.P.); (P.S.)
| | - David A. Winkler
- Biochemistry and Chemistry Department, La Trobe University, Kingsbury Drive, Melbourne 3086, Australia;
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, Australia
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| | - Nikolai Petrovsky
- Vaxine Pty Ltd., 11 Walkley Avenue, Adelaide 5046, Australia; (S.P.); (P.S.)
- Department of Diabetes and Endocrinology, Flinders Medical Centre, Flinders University, 1 Flinders Drive, Adelaide 5042, Australia
| |
Collapse
|
12
|
Ahamad S, Ali H, Secco I, Giacca M, Gupta D. Anti-Fungal Drug Anidulafungin Inhibits SARS-CoV-2 Spike-Induced Syncytia Formation by Targeting ACE2-Spike Protein Interaction. Front Genet 2022; 13:866474. [PMID: 35401674 PMCID: PMC8990323 DOI: 10.3389/fgene.2022.866474] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/01/2022] [Indexed: 12/25/2022] Open
Abstract
Drug repositioning continues to be the most effective, practicable possibility to treat COVID-19 patients. The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus enters target cells by binding to the ACE2 receptor via its spike (S) glycoprotein. We used molecular docking-based virtual screening approaches to categorize potential antagonists, halting ACE2-spike interactions by utilizing 450 FDA-approved chemical compounds. Three drug candidates (i.e., anidulafungin, lopinavir, and indinavir) were selected, which show high binding affinity toward the ACE2 receptor. The conformational stability of selected docked complexes was analyzed through molecular dynamics (MD) simulations. The MD simulation trajectories were assessed and monitored for ACE2 deviation, residue fluctuation, the radius of gyration, solvent accessible surface area, and free energy landscapes. The inhibitory activities of the selected compounds were eventually tested in-vitro using Vero and HEK-ACE2 cells. Interestingly, besides inhibiting SARS-CoV-2 S glycoprotein induced syncytia formation, anidulafungin and lopinavir also blocked S-pseudotyped particle entry into target cells. Altogether, anidulafungin and lopinavir are ranked the most effective among all the tested drugs against ACE2 receptor-S glycoprotein interaction. Based on these findings, we propose that anidulafungin is a novel potential drug targeting ACE2, which warrants further investigation for COVID-19 treatment.
Collapse
Affiliation(s)
- Shahzaib Ahamad
- Translational Bioinformatics Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Hashim Ali
- School of Cardiovascular Medicine and Sciences, British Heart Foundation Centre of Research Excellence, King’s College London, London, United Kingdom
- Division of Virology, Department of Pathology, Addenbrooke’s Hospital, University of Cambridge, Cambridge, United Kingdom
| | - Ilaria Secco
- School of Cardiovascular Medicine and Sciences, British Heart Foundation Centre of Research Excellence, King’s College London, London, United Kingdom
| | - Mauro Giacca
- School of Cardiovascular Medicine and Sciences, British Heart Foundation Centre of Research Excellence, King’s College London, London, United Kingdom
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Dinesh Gupta
- Translational Bioinformatics Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| |
Collapse
|
13
|
Magalhães AC, Ricardo S, Moreira AC, Nunes M, Tavares M, Pinto RJ, Gomes MS, Pereira L. InfectionCMA: A Cell MicroArray Approach for Efficient Biomarker Screening in In Vitro Infection Assays. Pathogens 2022; 11:pathogens11030313. [PMID: 35335638 PMCID: PMC8955223 DOI: 10.3390/pathogens11030313] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 02/24/2022] [Accepted: 03/01/2022] [Indexed: 02/01/2023] Open
Abstract
The recently emerged severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has forced the scientific community to acquire knowledge in real-time, when total lockdowns and the interruption of flights severely limited access to reagents as the global pandemic became established. This unique reality made researchers aware of the importance of designing efficient in vitro set-ups to evaluate infectious kinetics. Here, we propose a histology-based method to evaluate infection kinetics grounded in cell microarray (CMA) construction, immunocytochemistry and in situ hybridization techniques. We demonstrate that the chip-like organization of the InfectionCMA has several advantages, allowing side-by-side comparisons between diverse cell lines, infection time points, and biomarker expression and cytolocalization evaluation in the same slide. In addition, this methodology has the potential to be easily adapted for drug screening.
Collapse
Affiliation(s)
- Ana C. Magalhães
- i3S–Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (A.C.M.); (S.R.); (A.C.M.); (M.N.); (R.J.P.); (M.S.G.)
- Ipatimup–Instituto de Patologia e Imunologia Molecular, Universidade do Porto, 4200-135 Porto, Portugal
- ICBAS–Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| | - Sara Ricardo
- i3S–Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (A.C.M.); (S.R.); (A.C.M.); (M.N.); (R.J.P.); (M.S.G.)
- Ipatimup–Instituto de Patologia e Imunologia Molecular, Universidade do Porto, 4200-135 Porto, Portugal
- TOXRUN, Toxicology Research Unit, University Institute of Health Sciences, Advanced Polytechnic and University Cooperative (CESPU), 4585-116 Gandra, Portugal
| | - Ana C. Moreira
- i3S–Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (A.C.M.); (S.R.); (A.C.M.); (M.N.); (R.J.P.); (M.S.G.)
- ICBAS–Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
- IBMC–Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-319 Porto, Portugal
| | - Mariana Nunes
- i3S–Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (A.C.M.); (S.R.); (A.C.M.); (M.N.); (R.J.P.); (M.S.G.)
- Ipatimup–Instituto de Patologia e Imunologia Molecular, Universidade do Porto, 4200-135 Porto, Portugal
- ICBAS–Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| | - Margarida Tavares
- Department of Infectious Diseases and Emerging Infectious Disease Unit, CHUSJ–Centro Hospitalar Universitário S. João, 4200-319 Porto, Portugal;
- Public Health and Forensic Sciences and Medical Education Department, FMUP–Faculdade de Medicina, Universidade do Porto, 4200-319 Porto, Portugal
- EPIUnit–Instituto de Saúde Pública, Universidade do Porto, 4050-091 Porto, Portugal
| | - Ricardo J. Pinto
- i3S–Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (A.C.M.); (S.R.); (A.C.M.); (M.N.); (R.J.P.); (M.S.G.)
- Ipatimup–Instituto de Patologia e Imunologia Molecular, Universidade do Porto, 4200-135 Porto, Portugal
- ICBAS–Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| | - Maria Salomé Gomes
- i3S–Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (A.C.M.); (S.R.); (A.C.M.); (M.N.); (R.J.P.); (M.S.G.)
- ICBAS–Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
- IBMC–Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-319 Porto, Portugal
| | - Luisa Pereira
- i3S–Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (A.C.M.); (S.R.); (A.C.M.); (M.N.); (R.J.P.); (M.S.G.)
- Ipatimup–Instituto de Patologia e Imunologia Molecular, Universidade do Porto, 4200-135 Porto, Portugal
- Correspondence:
| |
Collapse
|
14
|
Urda L, Kreuter MH, Drewe J, Boonen G, Butterweck V, Klimkait T. The Petasites hybridus CO 2 Extract (Ze 339) Blocks SARS-CoV-2 Replication In Vitro. Viruses 2022; 14:v14010106. [PMID: 35062310 PMCID: PMC8781559 DOI: 10.3390/v14010106] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 12/12/2022] Open
Abstract
The coronavirus disease 2019 (COVID-19), caused by a novel coronavirus (SARS-CoV-2), has spread worldwide, affecting over 250 million people and resulting in over five million deaths. Antivirals that are effective are still limited. The antiviral activities of the Petasites hybdridus CO2 extract Ze 339 were previously reported. Thus, to assess the anti-SARS-CoV-2 activity of Ze 339 as well as isopetasin and neopetasin as major active compounds, a CPE and plaque reduction assay in Vero E6 cells was used for viral output. Antiviral effects were tested using the original virus (Wuhan) and the Delta variant of SARS-CoV-2. The antiviral drug remdesivir was used as control. Pre-treatment with Ze 339 in SARS-CoV-2-infected Vero E6 cells with either virus variant significantly inhibited virus replication with IC50 values of 0.10 and 0.40 μg/mL, respectively. The IC50 values obtained for isopetasin ranged between 0.37 and 0.88 μM for both virus variants, and that of remdesivir ranged between 1.53 and 2.37 μM. In conclusion, Ze 339 as well as the petasins potently inhibited SARS-CoV-2 replication in vitro of the Wuhan and Delta variants. Since time is of essence in finding effective treatments, clinical studies will have to demonstrate if Ze339 can become a therapeutic option to treat SARS-CoV-2 infections.
Collapse
Affiliation(s)
- Lorena Urda
- Department Biomedicine, University of Basel, Petersplatz 10, 4051 Basel, Switzerland
| | | | - Jürgen Drewe
- Medical Department, Max Zeller & Söhne AG, Seeblickstrasse 4, 8590 Romanshorn, Switzerland
| | - Georg Boonen
- Medical Department, Max Zeller & Söhne AG, Seeblickstrasse 4, 8590 Romanshorn, Switzerland
| | - Veronika Butterweck
- Medical Department, Max Zeller & Söhne AG, Seeblickstrasse 4, 8590 Romanshorn, Switzerland
| | - Thomas Klimkait
- Department Biomedicine, University of Basel, Petersplatz 10, 4051 Basel, Switzerland
| |
Collapse
|
15
|
Españo E, Kim J, Lee K, Kim JK. Phytochemicals for the treatment of COVID-19. J Microbiol 2021; 59:959-977. [PMID: 34724178 PMCID: PMC8559138 DOI: 10.1007/s12275-021-1467-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/20/2021] [Accepted: 10/20/2021] [Indexed: 12/15/2022]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has underscored the lack of approved drugs against acute viral diseases. Plants are considered inexhaustible sources of drugs for several diseases and clinical conditions, but plant-derived compounds have seen little success in the field of antivirals. Here, we present the case for the use of compounds from vascular plants, including alkaloids, flavonoids, polyphenols, and tannins, as antivirals, particularly for the treatment of COVID-19. We review current evidence for the use of these phytochemicals against SARS-CoV-2 infection and present their potential targets in the SARS-CoV-2 replication cycle.
Collapse
Affiliation(s)
- Erica Españo
- Department of Pharmacy, Korea University College of Pharmacy, Sejong, 30019, Republic of Korea
| | - Jiyeon Kim
- Department of Pharmacy, Korea University College of Pharmacy, Sejong, 30019, Republic of Korea
| | - Kiho Lee
- Department of Pharmacy, Korea University College of Pharmacy, Sejong, 30019, Republic of Korea
| | - Jeong-Ki Kim
- Department of Pharmacy, Korea University College of Pharmacy, Sejong, 30019, Republic of Korea.
| |
Collapse
|
16
|
Mslati H, Gentile F, Perez C, Cherkasov A. Comprehensive Consensus Analysis of SARS-CoV-2 Drug Repurposing Campaigns. J Chem Inf Model 2021; 61:3771-3788. [PMID: 34313439 PMCID: PMC8340583 DOI: 10.1021/acs.jcim.1c00384] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Indexed: 01/18/2023]
Abstract
The current COVID-19 pandemic has elicited extensive repurposing efforts (both small and large scale) to rapidly identify COVID-19 treatments among approved drugs. Herein, we provide a literature review of large-scale SARS-CoV-2 antiviral drug repurposing efforts and highlight a marked lack of consistent potency reporting. This variability indicates the importance of standardizing best practices-including the use of relevant cell lines, viral isolates, and validated screening protocols. We further surveyed available biochemical and virtual screening studies against SARS-CoV-2 targets (Spike, ACE2, RdRp, PLpro, and Mpro) and discuss repurposing candidates exhibiting consistent activity across diverse, triaging assays and predictive models. Moreover, we examine repurposed drugs and their efficacy against COVID-19 and the outcomes of representative repurposed drugs in clinical trials. Finally, we propose a drug repurposing pipeline to encourage the implementation of standard methods to fast-track the discovery of candidates and to ensure reproducible results.
Collapse
Affiliation(s)
- Hazem Mslati
- Vancouver Prostate Centre, University of
British Columbia, 2660 Oak Street, Vancouver, BC V6H 3Z6,
Canada
| | - Francesco Gentile
- Vancouver Prostate Centre, University of
British Columbia, 2660 Oak Street, Vancouver, BC V6H 3Z6,
Canada
| | - Carl Perez
- Vancouver Prostate Centre, University of
British Columbia, 2660 Oak Street, Vancouver, BC V6H 3Z6,
Canada
| | - Artem Cherkasov
- Vancouver Prostate Centre, University of
British Columbia, 2660 Oak Street, Vancouver, BC V6H 3Z6,
Canada
| |
Collapse
|