1
|
Seidler Y, Rimbach G, Lüersen K, Vinderola G, Ipharraguerre IR. The postbiotic potential of Aspergillus oryzae - a narrative review. Front Microbiol 2024; 15:1452725. [PMID: 39507340 PMCID: PMC11538067 DOI: 10.3389/fmicb.2024.1452725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 10/07/2024] [Indexed: 11/08/2024] Open
Abstract
The filamentous fungus Aspergillus oryzae has a long tradition in East Asian food processing. It is therefore not surprising that in recent years fermentation products of A. oryzae have attracted attention in the emerging field of postbiotics. This review aims to provide a comprehensive summary of the potential postbiotic effects of fermentation products from A. oryzae, by discussing possible mechanisms of action against the background of the molecular composition determined so far. In particular, cell wall constituents, enzymes, extracellular polymeric substances, and various metabolites found in A. oryzae fermentation preparations are described in detail. With reference to the generally assumed key targets of postbiotics, their putative beneficial bioactivities in modulating the microbiota, improving epithelial barrier function, influencing immune responses, metabolic reactions and signaling through the nervous system are assessed. Drawing on existing literature and case studies, we highlight A. oryzae as a promising source of postbiotics, particularly in the context of animal health and nutrition. Challenges and opportunities in quality control are also addressed, with a focus on the necessity for standardized methods to fully harness the potential of fungal-based postbiotics. Overall, this article sheds light on the emerging field of A. oryzae-derived postbiotics and emphasizes the need for further research to fully realize their therapeutic potential.
Collapse
Affiliation(s)
- Yvonne Seidler
- Institute of Human Nutrition and Food Science, Division of Food Science, Faculty of Agricultural and Nutritional Sciences, University of Kiel, Kiel, Germany
| | - Gerald Rimbach
- Institute of Human Nutrition and Food Science, Division of Food Science, Faculty of Agricultural and Nutritional Sciences, University of Kiel, Kiel, Germany
| | - Kai Lüersen
- Institute of Human Nutrition and Food Science, Division of Food Science, Faculty of Agricultural and Nutritional Sciences, University of Kiel, Kiel, Germany
| | - Gabriel Vinderola
- Instituto de Lactología Industrial (CONICET-UNL), Faculty of Chemical Engineering, National University of Litoral, Santa Fe, Argentina
| | - Ignacio R. Ipharraguerre
- Institute of Human Nutrition and Food Science, Division of Food Science, Faculty of Agricultural and Nutritional Sciences, University of Kiel, Kiel, Germany
| |
Collapse
|
2
|
Lee SY, Ra CH. Comparison of Liquid and Solid-State Fermentation Processes for the Production of Enzymes and Beta-Glucan from Hulled Barley. J Microbiol Biotechnol 2022; 32:317-323. [PMID: 34949745 PMCID: PMC9628851 DOI: 10.4014/jmb.2111.11002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/12/2021] [Accepted: 12/13/2021] [Indexed: 12/15/2022]
Abstract
Solid-state fermentation using hulled barley was carried out to produce enzymes and β-glucan. The one-factor-at-a-time experiments were carried out to determine the optimal composition of the basal medium. The modified synthetic medium composition in liquid-state fermentation was determined to be 70 g/l hulled barley, 0 g/l rice bran, 5 g/l soytone, and 6 g/l ascorbic acid. Optimal pretreatment conditions of hulled barley by solid-state fermentation were evaluated in terms of maximum production of fungal biomass, amylase, protease, and β-glucan, which were 1.26 mg/g, 31310.34 U/g, 2614.95 U/g, and 14.6% (w/w), respectively, at 60 min of pretreatment condition. Thus, the solid-state fermentation process was found to enhance the overall fermentation yields of hulled barley to produce high amounts of enzymes and β-glucan.
Collapse
Affiliation(s)
- Se Yeon Lee
- Department of Food Science and Biotechnology, College of Engineering, Global K-Food Research Center, Hankyong National University, Anseong-Si 17579, Republic of Korea
| | - Chae Hun Ra
- Department of Food Science and Biotechnology, College of Engineering, Global K-Food Research Center, Hankyong National University, Anseong-Si 17579, Republic of Korea,Corresponding author Phone: +82-31-670-5157 Fax: +82-504-437-0217 E-mail:
| |
Collapse
|
3
|
Utama GL, Dio C, Sulistiyo J, Yee Chye F, Lembong E, Cahyana Y, Kumar Verma D, Thakur M, Patel AR, Singh S. Evaluating comparative β-glucan production aptitude of Saccharomyces cerevisiae, Aspergillus oryzae, Xanthomonas campestris, and Bacillus natto. Saudi J Biol Sci 2021; 28:6765-6773. [PMID: 34866975 PMCID: PMC8626220 DOI: 10.1016/j.sjbs.2021.07.051] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 07/13/2021] [Accepted: 07/16/2021] [Indexed: 11/26/2022] Open
Abstract
β-glucan is a natural polysaccharide derivative composed of a group of glucose monomers with β-glycoside bonds that can be synthesized intra- or extra-cellular by various microorganisms such as yeasts, bacteria, and moulds. The study aimed to discover the potential of various microorganisms such as Saccharomyces cerevisiae, Aspergillus oryzae, Xanthomonas campestris, and Bacillus natto in producing β-glucan. The experimental method used and the data were analyzed descriptively. The four microorganisms above were cultured under a submerged state in Yeast glucose (YG) broth for 120 h at 30 °C with 200 rpm agitation. During the growth, several parameters were examined including total population by optical density, the pH, and glucose contents of growth media. β-glucan was extracted using acid-alkaline methods from the growth media then the weight was measured. The results showed that S. cerevisiae, A. oryzae X. campestris, and B. natto were prospective for β-glucans production in submerged fermentation up to 120 h. The highest β-glucans yield was shown by B. natto (20.38%) with the β-glucans mass of 1.345 ± 0.08 mg and globular diameter of 600 μm. The highest β-glucan mass was achieved by A. oryzae of 82.5 ± 0.03 mg with the total population in optical density of 0.1246, a final glucose level of 769 ppm, the pH of 6.67, and yield of 13.97% with a globular diameter of 1400 μm.
Collapse
Affiliation(s)
- Gemilang Lara Utama
- Faculty of Agro-Industrial Technology, Universitas Padjadjaran, Sumedang 45363, Indonesia.,Center for Environment and Sustainability Science, UniversitasPadjadjaran, Bandung 40132, Indonesia
| | - Casey Dio
- Faculty of Agro-Industrial Technology, Universitas Padjadjaran, Sumedang 45363, Indonesia
| | - Joko Sulistiyo
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Kota Kinabalu, Malaysia
| | - Fook Yee Chye
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Kota Kinabalu, Malaysia
| | - Elazmanawati Lembong
- Faculty of Agro-Industrial Technology, Universitas Padjadjaran, Sumedang 45363, Indonesia
| | - Yana Cahyana
- Faculty of Agro-Industrial Technology, Universitas Padjadjaran, Sumedang 45363, Indonesia
| | - Deepak Kumar Verma
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| | - Mamta Thakur
- Department of Food Engineering and Technology, Sant Longowal Institute of Engineering and Technology, Longowal 148106, Punjab, India
| | - Ami R Patel
- Division of Dairy Microbiology, Mansinhbhai Institute of Dairy & Food Technology-MIDFT, Dudhsagar Dairy Campus, Mehsana384 002, Gujarat State, India
| | - Smita Singh
- Department of Life Sciences (Food Technology), Graphic Era (Deemed to be) University, Dehradun, Uttarakhand 248002, India
| |
Collapse
|