1
|
Xu J, Lv M, Ni X. Marein Alleviates Doxorubicin-Induced Cardiotoxicity through FAK/AKT Pathway Modulation while Potentiating its Anticancer Activity. Cardiovasc Toxicol 2024; 24:818-835. [PMID: 38896162 DOI: 10.1007/s12012-024-09882-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 06/10/2024] [Indexed: 06/21/2024]
Abstract
Doxorubicin (DOX) is an effective anticancer agent, yet its clinical utility is hampered by dose-dependent cardiotoxicity. This study explores the cardioprotective potential of Marein (Mar) against DOX-induced cardiac injury and elucidates underlying molecular mechanisms. Neonatal rat cardiomyocytes (NRCMs) and murine models were employed to assess the impact of Mar on DOX-induced cardiotoxicity (DIC). In vitro, cell viability, oxidative stress were evaluated. In vivo, a chronic injection method was employed to induce a DIC mouse model, followed by eight weeks of Mar treatment. Cardiac function, histopathology, and markers of cardiotoxicity were assessed. In vitro, Mar treatment demonstrated significant cardioprotective effects in vivo, as evidenced by improved cardiac function and reduced indicators of cardiac damage. Mechanistically, Mar reduced inflammation, oxidative stress, and apoptosis in cardiomyocytes, potentially via activation of the Focal Adhesion Kinase (FAK)/AKT pathway. Mar also exhibited an anti-ferroptosis effect. Interestingly, Mar did not compromise DOX's efficacy in cancer cells, suggesting a dual benefit in onco-cardiology. Molecular docking studies suggested a potential interaction between Mar and FAK. This study demonstrates Mar's potential as a mitigator of DOX-induced cardiotoxicity, offering a translational perspective on its clinical application. By activating the FAK/AKT pathway, Mar exerts protective effects against DOX-induced cardiomyocyte damage, highlighting its promise in onco-cardiology. Further research is warranted to validate these findings and advance Mar as a potential adjunctive therapy in cancer treatment.
Collapse
MESH Headings
- Animals
- Doxorubicin/toxicity
- Cardiotoxicity
- Proto-Oncogene Proteins c-akt/metabolism
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/pathology
- Myocytes, Cardiac/enzymology
- Myocytes, Cardiac/metabolism
- Signal Transduction/drug effects
- Focal Adhesion Kinase 1/metabolism
- Oxidative Stress/drug effects
- Apoptosis/drug effects
- Humans
- Disease Models, Animal
- Heart Diseases/chemically induced
- Heart Diseases/metabolism
- Heart Diseases/prevention & control
- Heart Diseases/enzymology
- Heart Diseases/pathology
- Male
- Anthraquinones/pharmacology
- Mice, Inbred C57BL
- Rats, Sprague-Dawley
- Rats
- Cell Line, Tumor
- Cytoprotection
- Cells, Cultured
- Antibiotics, Antineoplastic/toxicity
- Mice
Collapse
Affiliation(s)
- Juanjuan Xu
- Department of Cardiology, Huanggang Central Hospital, Huanggang, China.
| | - Manjun Lv
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaohong Ni
- Department of Neurology, Huanggang Central Hospital, Huanggang, China
| |
Collapse
|
2
|
Chen X, Zhou X, Gao Y. Optimizing Coreopsis tinctoria Flower Extraction and Inhibiting CML Activity: Box-Behnken Design. Anticancer Agents Med Chem 2024; 24:1151-1158. [PMID: 38919005 DOI: 10.2174/0118715206299886240620070011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/22/2024] [Accepted: 05/27/2024] [Indexed: 06/27/2024]
Abstract
BACKGROUND Chronic myelogenous leukemia (CML) is an uncommon type of cancer of the bone marrow associated with high mortality. Although several effective therapies have been developed to reduce symptoms in patients with CML, many of these methods are associated with side effects. Coreopsis tinctoria Nutt. (C. tinctoria) is a natural medicinal material that possesses antioxidant and anticancer activities. Yet, its effect in treating leukemia has still not been fully explored. OBJECTIVE To optimize the C. tinctoria flower extraction process and investigate whether these extracts can impair CML cell survival. METHODS The extraction process of C. tinctoria was optimized by the Box-Behnken design response surface method. K562 cells were treated with different volumes (0, 10, 25, 50, and 100 μL) of C. tinctoria flower extracts. The effect of C. tinctoria extract on cell morphology and cell apoptosis was assessed by light microscopy, laser confocal microscopy, and flow cytometry. RESULTS We established the following optimized C. tinctoria flower extraction conditions: temperature of 84.4°C, extraction period of 10 mins, solid-liquid ratio of 1:65, and times 4. These conditions were applied for C. tinctoria flower extraction. Pre-incubation of extracts prepared under the aforementioned optimal conditions with K562 cells induced cell cytotoxicity and cell apoptosis. CONCLUSION C. tinctoria flower extracts exert obvious anti-leukemia effects in vitro and may be a potential drug candidate for leukemia treatment.
Collapse
MESH Headings
- Humans
- Flowers/chemistry
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Coreopsis/chemistry
- Plant Extracts/pharmacology
- Plant Extracts/chemistry
- Plant Extracts/isolation & purification
- K562 Cells
- Antineoplastic Agents, Phytogenic/pharmacology
- Antineoplastic Agents, Phytogenic/chemistry
- Antineoplastic Agents, Phytogenic/isolation & purification
- Apoptosis/drug effects
- Drug Screening Assays, Antitumor
- Cell Survival/drug effects
- Dose-Response Relationship, Drug
- Cell Proliferation/drug effects
- Structure-Activity Relationship
- Tumor Cells, Cultured
- Molecular Structure
Collapse
Affiliation(s)
- Xinmei Chen
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Xinyu Zhou
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Ya Gao
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| |
Collapse
|
3
|
Yamaguchi M, Yoshiike K, Watanabe H, Watanabe M. The Marine Factor 3,5-dihydroxy-4-methoxybenzyl Alcohol Suppresses Cell Growth, Inflammatory Cytokine Production, and NF-κB Signaling-enhanced Osteoclastogenesis in In vitro Mouse Macrophages RAW264.7 Cells. Curr Mol Med 2024; 24:813-825. [PMID: 37365791 DOI: 10.2174/1566524023666230626141519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 05/24/2023] [Accepted: 05/26/2023] [Indexed: 06/28/2023]
Abstract
BACKGROUND AND OBJECTIVE The novel marine factor 3,5-dihydroxy-4- methoxybenzyl alcohol (DHMBA) was originally identified in the Pacific oyster Crassostrea Gigas. DHMBA has been shown to prevent oxidative stress by scavenging radicals and enhance the production of antioxidant proteins. However, the pharmacologic role of DHMBA has been poorly understood. Inflammation is implicated in the pathogenesis of many diseases. Inflammatory cytokines are produced in macrophages with stimulation of lipopolysaccharide (LPS) and are used as biomarkers that cause diverse disease conditions. Therefore, this study has been undertaken to elucidate whether DHMBA expresses anti-inflammatory effects in in vitro mouse macrophage RAW264.7 cells. METHODS Mouse macrophage RAW264.7 cells were cultured in a medium containing 10% fetal bovine serum (FBS) with or without DHMBA (1-1000 μM). RESULTS Culturing with DHMBA (1-1000 μM) suppressed the growth and stimulated the death of RAW264.7 cells in vitro, leading to a decrease in cell number. Treatment with DHMBA reduced the levels of Ras, PI3K, Akt, MAPK, phospho-MAPK, and mTOR, which are signalling factors to promote cell proliferation, and it raised the levels of p53, p21, Rb, and regucalcin, which are cell growth suppressors. DHMBA treatment elevated caspase-3 and cleaved caspase-3 levels. Interestingly, DHMBA treatment repressed the production of inflammatory cytokines, including tumor necrosis factor-α, interleukin-6, interleukin-1β, or prostaglandin E2, which were enhanced by LPS stimulation. Notably, the levels of NF-κB p65 were increased by LPS treatment, and this augmentation was repres-sed by DHMBA treatment. Moreover, LPS treatment stimulated osteoclastogenesis of RAW264.7 cells. This stimulation was blocked by DHMBA treatment, and this effect was not caused by the presence of an NF-κB signalling inhibitor. CONCLUSION DHMBA was found to potentially suppress the activity of inflammatory macrophages in vitro, suggesting its therapeutic usefulness in inflammatory conditions.
Collapse
Affiliation(s)
- Masayoshi Yamaguchi
- Cancer Biology Program, University of Hawaii Cancer Center, University of Hawaii at Manoa, 701 Ilalo Street, Honolulu, Hawaii, HI 96813, USA
| | - Kenji Yoshiike
- Watanabe Oyster Laboratory Co. Ltd., 490-3, Shimoongata-cho, Hachioji, 192-0154, Tokyo, Japan
| | - Hideaki Watanabe
- Watanabe Oyster Laboratory Co. Ltd., 490-3, Shimoongata-cho, Hachioji, 192-0154, Tokyo, Japan
| | - Mitsugu Watanabe
- Watanabe Oyster Laboratory Co. Ltd., 490-3, Shimoongata-cho, Hachioji, 192-0154, Tokyo, Japan
- Graduate School of Science and Engineering, Soka University, 1-236 Tangi-machi, Hachioji, Tokyo, 192-8577, Japan
- Faculty of Health Sciences, Hokkaido University, Sapporo, 060-0812, Japan
| |
Collapse
|
4
|
Niu G, Zhao Y, Song H, Song Q, Yin X, Zhu Z, Xu J. Marein Ameliorates Myocardial Fibrosis by Inhibiting HIF-1α and TGF-β1/Smad2/3 Signaling Pathway in Isoproterenol-stimulated Mice and TGF-β1-stimulated Cardiac Fibroblasts. Curr Pharm Des 2024; 30:71-80. [PMID: 38151839 DOI: 10.2174/0113816128282062231218075341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 11/30/2023] [Indexed: 12/29/2023]
Abstract
BACKGROUND Myocardial fibrosis significantly contributes to the pathogenesis and progression of heart failure. OBJECTIVE We probe into the impact of marein, a key bioactive compound in functional food Coreopsis tinctoria, on isoproterenol-stimulated myocardial fibrotic mice and transforming growth factor β1 (TGF-β1)-stimulated cardiac fibroblasts (CFs). METHODS Isoproterenol was administered to the experimental mice via subcutaneous injection, and simultaneous administration of marein (25-100 mg/kg) was performed via oral gavage. CFs were stimulated with TGF- β1 to trigger differentiation and collagen synthesis, followed by treatment with marein at concentrations of 5-20 μM. RESULTS Treatment with marein in mice and CFs resulted in a significant reduction in the protein expression levels of α-smooth muscle actin, collagen type I, and collagen type III. Additionally, marein treatment decreased the protein expression levels of TGF-β1, hypoxia-inducible factor-1α (HIF-1α), p-Smad2/3, and Smad2/3. Notably, molecular docking analysis revealed that marein directly targets HIF-1α. CONCLUSION Marein might exert a protective function in isoproterenol-stimulated myocardial fibrotic mice and TGF-β1-stimulated CFs, which might result from the reduction of TGF-β1 induced HIF-1α expression, then inhibiting p-Smad2/3 and Smad2/3 expressions.
Collapse
Affiliation(s)
- Guanghao Niu
- Department of Pharmacy, The Affiliated Infectious Diseases Hospital of Soochow University, The Fifth People's Hospital of Suzhou, Suzhou, China
| | - Ying Zhao
- Department of Pharmacy, The Affiliated Children's Hospital of Soochow University, Suzhou, China
| | - Huafeng Song
- Department of Pharmacy, The Affiliated Infectious Diseases Hospital of Soochow University, The Fifth People's Hospital of Suzhou, Suzhou, China
| | - Quan Song
- Department of Pharmacy, The Affiliated Infectious Diseases Hospital of Soochow University, The Fifth People's Hospital of Suzhou, Suzhou, China
| | - Xiaoyun Yin
- Department of Pharmacy, The Affiliated Infectious Diseases Hospital of Soochow University, The Fifth People's Hospital of Suzhou, Suzhou, China
| | - Zengyan Zhu
- Department of Pharmacy, The Affiliated Children's Hospital of Soochow University, Suzhou, China
| | - Junchi Xu
- Department of Pharmacy, The Affiliated Infectious Diseases Hospital of Soochow University, The Fifth People's Hospital of Suzhou, Suzhou, China
| |
Collapse
|
5
|
Fan P, Ye H, Zhu C, Xie H. Exploring the pathogenesis of osteomyelitis accompanied by diabetic foot ulcers using microarray data analysis. Medicine (Baltimore) 2023; 102:e33962. [PMID: 37904457 PMCID: PMC10615496 DOI: 10.1097/md.0000000000033962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 05/19/2023] [Indexed: 11/01/2023] Open
Abstract
Although numerous studies have shown distinctive similarities between osteomyelitis and diabetic foot ulcers (DFU), the common pathogenesis of both is not fully understood. The current research focuses on an in-depth study of the molecular and pathway mechanisms involved in the complication of these 2 diseases. We downloaded clinical information on osteomyelitis (GSE30119) and DFU (GSE29221) from the GEO database, along with gene expression matrices. Differentially expressed genes (DEGs) among normal individuals and patients with osteomyelitis; normal individuals and patients with DFU were identified by R software, and thus common DEGs were confirmed. We then analyzed these differential genes, including the functional pathway analysis, protein-protein interaction (PPI), modules and hub genes establishment, and transcription factor regulatory networks. We identified 109 common DEGs (46 up-regulated and 63 down-regulated genes) for subsequent analysis. The results of PPI network and the functional pathway analysis revealed the importance of immune response and inflammatory response in both diseases. Among them, chemokines and cytokines were found to be closely related to both osteomyelitis and DFU. In addition, the tumor necrosis factor (TNF) pathway and Staphylococcus aureus infection were found to have more significant roles too. The 12 most essential key genes were later screened by cytoHubba, including matrix metalloproteinases (MMP) 1, MMP3, MMP9, IL8, C-X-C chemokine receptor (CXCR) 2, C-X-C motif chemokine ligand (CXCL) 9, CXCL10, CXCL13, FCGR3B, IL1B, LCN2, S100A12. CXCL10, and MMP1 were validated using the least absolute shrinkage and selection operator (LASSO) and support vector machine-recursive feature elimination (SVM-RFE) algorithms. Osteomyelitis and DFU share similar molecular and pathway mechanisms. These common key genes and pathways may provide new directions toward the future study of osteomyelitis and DFU.
Collapse
Affiliation(s)
- Pan Fan
- Department of Orthopedics, The Second people’s Hospital of Yichang, China Three Gorges University, Yichang, China
| | - Huanhuan Ye
- Department of Orthopedics, The Second people’s Hospital of Yichang, China Three Gorges University, Yichang, China
| | - Chenhua Zhu
- Department of Orthopedics, The Second people’s Hospital of Yichang, China Three Gorges University, Yichang, China
| | - Hu Xie
- Department of Orthopedics, The Second people’s Hospital of Yichang, China Three Gorges University, Yichang, China
| |
Collapse
|
6
|
Song M, Li J, Sun J, Yang X, Zhang X, Lv K, Xu Y, Shi J. DNMT1-mediated DNA methylation in toll-like receptor 4 (TLR4) inactivates NF-κB signal pathway-triggered pyroptotic cell death and cellular inflammation to ameliorate lipopolysaccharides (LPS)-induced osteomyelitis. Mol Cell Probes 2023; 71:101922. [PMID: 37459905 DOI: 10.1016/j.mcp.2023.101922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 07/13/2023] [Accepted: 07/15/2023] [Indexed: 08/04/2023]
Abstract
Toll-like receptor 4 (TLR4) plays a critical role in various human diseases, and was associated with pyroptotic cell death and inflammatory responses. DNA methylation, which has stable and reversible properties, has been reported to alter the expression of target genes, including TLR4. However, the role of methylated TLR4 in osteomyelitis (OM) and the underlying molecular mechanisms remain unclear. RNA sequencing was used to identify differentially expressed genes and associated signaling pathways. RT-qPCR, Western blot, emzyme-linked immunosorbent assay (ELISA), cell counting kit-8 (CCK-8) and LDH assay kit were used to detect mRNA and protein expression of relevant genes, cell viability and the LDH activity, respectively. TLR4 methylation was detected by methylation-specific PCR (MSP) and verified by Chromatin immunoprecipitation (ChIP). Here, we found that DNA methyltransferase-1 (DNMT1)-mediated TLR4 demethylation significantly suppressed lipopolysaccharides (LPS)-induced pyroptosis and inflammatory response by inhibiting the TLR4/nuclear transcription factor-kappa B (NF-κB) axis. First, we confirmed TLR4 as the study target by mRNA transcriptome sequencing analysis, and TLR4 was observably high-expressed in both OM patients and LPS-treated osteoblastic MC3T3-E1. Then, we found that downregulation of DNMT1 blocked TLR4 promoter methylation modification, resulting in upregulation of TLR4. Simultaneously, functional experiments indicated that suppression of TLR4 or overexpression of DNMT1 promoted cell proliferation and inhibited cell pyroptosis and inflammation in LPS-induced MC3T3-E1, while upregulation of TLR4 restored the effects of DNMT1 silencing on OM progression. In addition, TLR4 elevated phosphorylation of IκB-α and NF-κB p65 in the NF-κB signal pathway, and inhibition of TLR4 or the NF-κB inhibitor PDTC reversed the influence of inhibition of DNMT1. In conclusion, our study demonstrated that DNMT1-mediated TLR4 DNA methylation alleviated LPS-induced OM by inhibiting the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Muguo Song
- Kunming Medical University Graduate School, Kunming, 650500, China; Department of Orthopaedics, 920 Hospital of the Joint Logistics Support Force of the PLA, Kunming, 650032, China.
| | - Junyi Li
- Kunming Medical University Graduate School, Kunming, 650500, China; Department of Orthopaedics, 920 Hospital of the Joint Logistics Support Force of the PLA, Kunming, 650032, China.
| | - Jian Sun
- Kunming Medical University Graduate School, Kunming, 650500, China; Department of Orthopaedics, 920 Hospital of the Joint Logistics Support Force of the PLA, Kunming, 650032, China.
| | - Xiaoyong Yang
- Department of Orthopaedics, 920 Hospital of the Joint Logistics Support Force of the PLA, Kunming, 650032, China.
| | - Xijiao Zhang
- Kunming Medical University Graduate School, Kunming, 650500, China; Department of Orthopaedics, 920 Hospital of the Joint Logistics Support Force of the PLA, Kunming, 650032, China.
| | - Kehan Lv
- Kunming Medical University Graduate School, Kunming, 650500, China; Department of Orthopaedics, 920 Hospital of the Joint Logistics Support Force of the PLA, Kunming, 650032, China.
| | - Yongqing Xu
- Department of Orthopaedics, 920 Hospital of the Joint Logistics Support Force of the PLA, Kunming, 650032, China.
| | - Jian Shi
- Department of Orthopaedics, 920 Hospital of the Joint Logistics Support Force of the PLA, Kunming, 650032, China.
| |
Collapse
|
7
|
Ota N, Tanaka N, Sato A, Shen Y, Yalikun Y, Tanaka Y. Microenvironmental Analysis and Control for Local Cells under Confluent Conditions via a Capillary-Based Microfluidic Device. Anal Chem 2022; 94:16299-16307. [DOI: 10.1021/acs.analchem.2c02815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Nobutoshi Ota
- Center for Biosystems Dynamics Research (BDR), RIKEN, 1-3 Yamadaoka, Suita, Osaka565-0871, Japan
| | - Nobuyuki Tanaka
- Center for Biosystems Dynamics Research (BDR), RIKEN, 1-3 Yamadaoka, Suita, Osaka565-0871, Japan
| | - Asako Sato
- Center for Biosystems Dynamics Research (BDR), RIKEN, 1-3 Yamadaoka, Suita, Osaka565-0871, Japan
| | - Yigang Shen
- Center for Biosystems Dynamics Research (BDR), RIKEN, 1-3 Yamadaoka, Suita, Osaka565-0871, Japan
| | - Yaxiaer Yalikun
- Center for Biosystems Dynamics Research (BDR), RIKEN, 1-3 Yamadaoka, Suita, Osaka565-0871, Japan
- Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara630-0192, Japan
| | - Yo Tanaka
- Center for Biosystems Dynamics Research (BDR), RIKEN, 1-3 Yamadaoka, Suita, Osaka565-0871, Japan
| |
Collapse
|