1
|
Marei S, Maatouk N, AbouHaidar M, Talhouk R. Developmental Regulation of circRNAs in Normal and Diseased Mammary Gland: A Focus on circRNA-miRNA Networks. J Mammary Gland Biol Neoplasia 2025; 30:8. [PMID: 40314719 PMCID: PMC12048424 DOI: 10.1007/s10911-025-09580-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 02/28/2025] [Indexed: 05/03/2025] Open
Abstract
Circular RNAs (circRNAs) have emerged as critical regulators in various biological processes including diseases. In the mammary gland (MG), which undergoes most of its development postnatally, circRNAs play pivotal roles in both physiological and pathological contexts. This review highlights the involvement of circRNAs during key developmental stages of the MG, with particular emphasis on lactation, where circRNA-miRNA networks significantly influence milk secretion and composition. CircRNAs exhibit stage-, breed- and species-specific expression patterns during lactation, which underscores their complexity. This intricate regulation also plays a significant role in pathological conditions of the MG, where dysregulated circRNA expression contributes to disease progression such as mastitis, early breast cancer (BC) stages, and epithelial-to-mesenchymal transition in BC (EMT). In mastitis, altered circRNA expression disrupts immune responses and compromises epithelial integrity. During early BC progression, circRNAs drive cell proliferation, while in EMT, they facilitate metastatic processes. By focusing on the circRNA-miRNA interactions underlying these processes, this review highlights their potential use as biomarkers for MG development, disease progression, and as therapeutic targets.
Collapse
MESH Headings
- RNA, Circular/genetics
- RNA, Circular/metabolism
- Humans
- Female
- Animals
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Mammary Glands, Human/metabolism
- Mammary Glands, Human/growth & development
- Mammary Glands, Human/pathology
- Breast Neoplasms/genetics
- Breast Neoplasms/pathology
- Epithelial-Mesenchymal Transition/genetics
- Mammary Glands, Animal/growth & development
- Mammary Glands, Animal/metabolism
- Mammary Glands, Animal/pathology
- Gene Expression Regulation, Developmental
- Gene Regulatory Networks
- Gene Expression Regulation, Neoplastic
- Lactation/genetics
Collapse
Affiliation(s)
- Sarah Marei
- Department of Biology, Faculty of Arts and Sciences, American University of Beirut, Beirut, Lebanon
| | - Nour Maatouk
- Department of Biology, Faculty of Arts and Sciences, American University of Beirut, Beirut, Lebanon
| | - Mounir AbouHaidar
- Department of Cell & Systems Biology, Faculty of Arts and Sciences, University of Toronto, Toronto, ON, Canada
| | - Rabih Talhouk
- Department of Biology, Faculty of Arts and Sciences, American University of Beirut, Beirut, Lebanon.
| |
Collapse
|
2
|
Hamdy NM, El-Sisi MG, Ibrahim SM, ElNokoudy H, Hady AA, Abd-Ellatef GEF, Sallam AAM, Barakat BM. In silico analysis and comprehensive review of circular-RNA regulatory roles in breast diseases; a step-toward non-coding RNA precision. Pathol Res Pract 2024; 263:155651. [PMID: 39454476 DOI: 10.1016/j.prp.2024.155651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/10/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024]
Abstract
In the current comprehensive review, we first highlighted circRNAs, which are key ncRNAs. Next, we discussed the relationships among circRNAs and breast cancer subtypes via in silico databases analysis and extensive literature search. CircRNAs, that sponge miRNA axes or act as silencers of oncogenic mRNAs, have been extensively addressed in the context of this review. During BC pathogenesis, the circRNA/microRNA/messenger RNA (mRNA) axis plays a major role in disease growth, progression, and survival/resistance and could be targeted for improved treatment options. This review also aimed to address oncogenic and tumor suppressor mRNAs, which are regulated by various circRNAs in BC. Moreover, we mentioned the relation of different circRNAs with cancer hallmarks, patient survival together with drug resistance. Additionally, we discussed circRNAs as vaccines and biomarkers in BC. Finally, we studied exosomal circRNAs as a hot interesting area in the research. REVIEW SIGNIFICANCE: Via using in silico databases, bioinformatics analysis, and a thorough literature search to first highlight circRNA as a crucial ncRNA and its biogenesis, and then we explored the connection between circRNA and breast illnesses. In the framework of the review, circRNA sponged-miRNAs axis or as silencers to oncogenic mRNAs were extensively discussed. In the pathophysiology of BC, the circular RNA/microRNA/messenger RNA axis is crucial for the propagation of the disease and resistance that may be targeted for more effective treatment options, in order to confront tumor suppressor and oncogenic mRNAs that are presently regulated by circRNAs in BC. For better patient results, we advised further mechanistic research to elucidate additional ncRNA axis that may be targeted for the therapy of BC and for prognosis/ or early diagnosis.
Collapse
Affiliation(s)
- Nadia M Hamdy
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Abassia, Cairo 11566, Egypt.
| | - Mona G El-Sisi
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Abassia, Cairo 11566, Egypt
| | - Sherine M Ibrahim
- Biochemistry Department, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza, Egypt
| | - Heba ElNokoudy
- Medication Management & Pharmacy Affairs, Egypt Healthcare Authority, Cairo, Egypt
| | - Ahmad A Hady
- Clinical Oncology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Gamal Eldein Fathy Abd-Ellatef
- Therapeutic Chemistry Department, Pharmaceutical and Drug Industries Research Division, National Research Centre, 33 El Bohouth St., Dokki, Giza 12622, Egypt
| | - Al-Aliaa M Sallam
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Abassia, Cairo 11566, Egypt; Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Bassant Mohamed Barakat
- Department of Clinical Pharmacy, Faculty of Pharmacy, Al Baha University, Al Baha 1988, Saudi Arabia; Department of Pharmacology and Toxicology, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr City, Cairo 11651, Egypt
| |
Collapse
|
3
|
Zhao Y, Zhang W, Raza SHA, Qu X, Yang Z, Deng J, Ma J, Aloufi BH, Wang J, Zan L. CircSSBP2 acts as a MiR-2400 sponge to promote intramuscular preadipocyte proliferation by regulating NDRG1. Mol Genet Genomics 2024; 299:48. [PMID: 38700639 DOI: 10.1007/s00438-024-02138-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 04/03/2024] [Indexed: 05/24/2024]
Abstract
Intramuscular fat (IMF) is a critical factor in beef quality. IMF is mainly distributed between muscle fibres and its accumulation can affect the marbling and meat quality of beef. IMF formation and deposition is a complex process and in recent years a group of non-coding RNAs (ncRNAs), known as circRNAs, have been discovered to play an important role in regulating intramuscular fat deposition. CircRNAs form a covalent loop structure after reverse splicing of precursor mRNAs. They can act by adsorbing miRNAs, thereby reducing their repressive effects on downstream target genes. Based on high-throughput sequencing of circRNAs in intramuscular fat of Qinchuan and Japanese black cattle, we identified a novel circSSBP2 that is differentially expressed between the two species and associated with adipogenesis. We show that circSSBP2 knockdown promotes bovine intramuscular preadipocyte proliferation, whereas overexpression inhibits bovine intramuscular preadipocyte proliferation. We also show that circSSBP2 can act as a molecular sponge for miR-2400 and that miR-2400 overexpression promotes bovine intramuscular preadipocyte proliferation. Furthermore, N-myc downstream-regulated gene 1 (NDRG1) was identified as a direct target gene of miR-2400, and NDRG1 interference promoted the proliferation of bovine intramuscular preadipocytes. In conclusion, our results suggest that circSSBP2 inhibits the proliferation of bovine intramuscular preadipocytes by regulating the miR-2400/NDRG1 axis.
Collapse
Affiliation(s)
- Yanqing Zhao
- College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling, 712100, Shaanxi, China
| | - Wenzhen Zhang
- College of Animal Science and Technology, Southwest University, Rongchang, Chongqing, 402460, China
| | - Sayed Haidar Abbas Raza
- College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling, 712100, Shaanxi, China
- Guangdong Provincial Key Laboratory of Food Quality and Safety/Nation-Local Joint Engineering Research Center for Machining and Safety of Livestock and Poultry Products, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan, 512005, China
| | - Xiaopeng Qu
- College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling, 712100, Shaanxi, China
| | - Zhimei Yang
- College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling, 712100, Shaanxi, China
| | - Jiahan Deng
- College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling, 712100, Shaanxi, China
| | - Jing Ma
- College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling, 712100, Shaanxi, China
| | - Bandar Hamad Aloufi
- Biology Department, Faculty of Science, University of Ha'il, Ha'il, Saudi Arabia
| | - Juze Wang
- College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling, 712100, Shaanxi, China
| | - Linsen Zan
- College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling, 712100, Shaanxi, China.
- National Beef Cattle Improvement Center, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
4
|
Sahito JZA, Deng S, Qin L, Xiao L, Zhang D, Huang B. CeRNA Network Reveals the Circular RNA Characterization in Goat Ear Fibroblasts Reprogramming into Mammary Epithelial Cells. Genes (Basel) 2023; 14:1831. [PMID: 37895180 PMCID: PMC10606430 DOI: 10.3390/genes14101831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/18/2023] [Accepted: 08/22/2023] [Indexed: 10/29/2023] Open
Abstract
Circular RNAs (circRNAs) are a type of non-coding RNA that play a crucial role in the development and lactation of mammary glands in mammals. A total of 107 differentially expressed circRNAs (DE circRNAs) were found, of which 52 were up-regulated and 55 were down-regulated. We also found that DE circRNA host genes were mainly involved in GO terms related to the development process of mammary epithelial cells and KEGG pathways were mostly related to mammary epithelial cells, lactation, and gland development. Protein network analysis found that DE circRNAs can competitively bind to miRNAs as key circRNAs by constructing a circRNA-miRNA-mRNA network. CircRNAs competitively bind to miRNAs (miR-10b-3p, miR-671-5p, chi-miR-200c, chi-miR-378-3p, and chi-miR-30e-5p) involved in goat mammary gland development, mammary epithelial cells, and lactation, affecting the expression of core genes (CDH2, MAPK1, ITGB1, CAMSAP2, and MAPKAPK5). Here, we generated CiMECs and systematically explored the differences in the transcription profile for the first time using whole-transcriptome sequencing. We also analyzed the interaction among mRNA, miRNA, and cirRNA and predicted that circRNA plays an important role in the maintenance of mammary epithelial cells.
Collapse
Affiliation(s)
- Jam Zaheer Ahmed Sahito
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (J.Z.A.S.); (S.D.); (L.Q.); (L.X.); (D.Z.)
| | - Shan Deng
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (J.Z.A.S.); (S.D.); (L.Q.); (L.X.); (D.Z.)
| | - Liangshan Qin
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (J.Z.A.S.); (S.D.); (L.Q.); (L.X.); (D.Z.)
| | - Lianggui Xiao
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (J.Z.A.S.); (S.D.); (L.Q.); (L.X.); (D.Z.)
| | - Dandan Zhang
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (J.Z.A.S.); (S.D.); (L.Q.); (L.X.); (D.Z.)
- Guangxi Key Laboratory of Eye Health, The People’s Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Sciences, Nanning, 530021, China
| | - Ben Huang
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (J.Z.A.S.); (S.D.); (L.Q.); (L.X.); (D.Z.)
- Guangxi Key Laboratory of Eye Health, The People’s Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Sciences, Nanning, 530021, China
| |
Collapse
|
5
|
Qin S, Wang Y, Ma C, Lv Q. Competitive endogenous network of circRNA, lncRNA, and miRNA in osteosarcoma chemoresistance. Eur J Med Res 2023; 28:354. [PMID: 37717007 PMCID: PMC10504747 DOI: 10.1186/s40001-023-01309-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 08/23/2023] [Indexed: 09/18/2023] Open
Abstract
Osteosarcoma is the most prevalent and fatal type of bone tumor. Despite advancements in the treatment of other cancers, overall survival rates for patients with osteosarcoma have stagnated over the past four decades Multiple-drug resistance-the capacity of cancer cells to become simultaneously resistant to multiple drugs-remains a significant obstacle to effective chemotherapy. The recent studies have shown that noncoding RNAs can regulate the expression of target genes. It has been proposed that "competing endogenous RNA" activity forms a large-scale regulatory network across the transcriptome, playing important roles in pathological conditions such as cancer. Numerous studies have highlighted that circular RNAs (circRNAs) and long noncoding RNAs (lncRNAs) can bind to microRNA (miRNA) sites as competitive endogenous RNAs, thereby affecting and regulating the expression of mRNAs and target genes. These circRNA/lncRNA-associated competitive endogenous RNAs are hypothesized to play significant roles in cancer initiation and progression. Noncoding RNAs (ncRNAs) play an important role in tumor resistance to chemotherapy. However, the molecular mechanisms of the lncRNA/circRNA-miRNA-mRNA competitive endogenous RNA network in drug resistance of osteosarcoma remain unclear. An in-depth study of the molecular mechanisms of drug resistance in osteosarcoma and the elucidation of effective intervention targets are of great significance for improving the overall recovery of patients with osteosarcoma. This review focuses on the molecular mechanisms underlying chemotherapy resistance in osteosarcoma in circRNA-, lncRNA-, and miRNA-mediated competitive endogenous networks.
Collapse
Affiliation(s)
- Shuang Qin
- Department of Medical Imaging, Tongji Hospital, Tongji University School of Medicine, Xincun Road No. 389, Shanghai, 200065, China
| | - Yuting Wang
- Department of Medical Imaging, Tongji Hospital, Tongji University School of Medicine, Xincun Road No. 389, Shanghai, 200065, China
| | - Chunhui Ma
- Department of Orthopedics, Shanghai General Hospital of Shanghai Jiaotong University, Wujin Road No. 85, Shanghai, 200080, China.
| | - Qi Lv
- Department of Medical Imaging, Tongji Hospital, Tongji University School of Medicine, Xincun Road No. 389, Shanghai, 200065, China.
| |
Collapse
|
6
|
Shi Y, Zhao Z, He X, Luo J, Chen T, Xi Q, Zhang Y, Sun J. The Characteristic Function of Blood-Derived Exosomes and Exosomal circRNAs Isolated from Dairy Cattle during the Dry Period and Mid-Lactation. Int J Mol Sci 2023; 24:12166. [PMID: 37569544 PMCID: PMC10419012 DOI: 10.3390/ijms241512166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/21/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
Exosomes are key mediators of intercellular communication. They are secreted by most cells and contain a cargo of protein-coding genes, long noncoding RNAs (lncRNAs), and circular RNAs (circRNAs), which modulate recipient cell behavior. Herein, we collected blood samples from Holstein cows at days 30 (mid-lactation) and 250 (dry period) of pregnancy. Prolactin, follicle-stimulating hormone, luteinizing hormone, estrogen, and progesterone levels showed an obvious increase during D250. We then extracted exosomes from bovine blood samples and found that their sizes generally ranged from 100 to 200 nm. Further, Western blotting validated that they contained CD9, CD63, and TSG101, but not calnexin. Blood-derived exosomes significantly promoted the proliferation of mammary epithelial cells, particularly from D250. This change was accompanied by increased expression levels of proliferation marker proteins PCNA, cyclin D, and cyclin E, as detected by EdU assay, cell counting kit-8 assay, and flow cytometric cell cycle analysis. Moreover, we treated mammary epithelial cells with blood-derived exosomes that were isolated from the D30 and D250 periods. And RNA-seq of two groups of cells led to the identification of 839 differentially expressed genes that were significantly enriched in KEGG signaling pathways associated with apoptosis, cell cycle and proliferation. In bovine blood-derived exosomes, we found 12,747 protein-coding genes, 31,181 lncRNAs, 9374 transcripts of uncertain coding potential (TUCP) candidates, and 460 circRNAs, and 32 protein-coding genes, 806 lncRNAs, 515 TUCP candidates, and 45 circRNAs that were differentially expressed between the D30 and D250 groups. We selected six highly expressed and four differentially expressed circRNAs to verify their head-to-tail splicing using PCR and Sanger sequencing. To summarize, our findings improve our understanding of the key roles of blood-derived exosomes and the characterization of exosomal circRNAs in mammary gland development.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yongliang Zhang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Y.S.); (Z.Z.); (X.H.); (J.L.); (T.C.); (Q.X.)
| | - Jiajie Sun
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Y.S.); (Z.Z.); (X.H.); (J.L.); (T.C.); (Q.X.)
| |
Collapse
|
7
|
Gopikrishnan M, R HC, R G, Ashour HM, Pintus G, Hammad M, Kashyap MK, C GPD, Zayed H. Therapeutic and diagnostic applications of exosomal circRNAs in breast cancer. Funct Integr Genomics 2023; 23:184. [PMID: 37243750 PMCID: PMC10224846 DOI: 10.1007/s10142-023-01083-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 04/29/2023] [Accepted: 05/02/2023] [Indexed: 05/29/2023]
Abstract
Circular RNAs (circRNAs) are regulatory elements that are involved in orchestrating gene expression and protein functions and are implicated in various biological processes including cancer. Notably, breast cancer has a significant mortality rate and is one of the most common malignancies in women. CircRNAs have been demonstrated to contribute to the pathogenesis of breast cancer including its initiation, progression, metastasis, and resistance to drugs. By acting as miRNA sponges, circRNAs can indirectly influence gene expression by disrupting miRNA regulation of their target genes, ultimately altering the course of cancer development and progression. Additionally, circRNAs can interact with proteins and modulate their functions including signaling pathways involved in the initiation and development of cancer. Recently, circRNAs can encode peptides that play a role in the pathophysiology of breast cancer and other diseases and their potential as diagnostic biomarkers and therapeutic targets for various cancers including breast cancer. CircRNAs possess biomarkers that differentiate, such as stability, specificity, and sensitivity, and can be detected in several biological specimens such as blood, saliva, and urine. Moreover, circRNAs play an important role in various cellular processes including cell proliferation, differentiation, and apoptosis, all of which are integral factors in the development and progression of cancer. This review synthesizes the functions of circRNAs in breast cancer, scrutinizing their contributions to the onset and evolution of the disease through their interactions with exosomes and cancer-related intracellular pathways. It also delves into the potential use of circRNA as a biomarker and therapeutic target against breast cancer. It discusses various databases and online tools that offer crucial circRNA information and regulatory networks. Lastly, the challenges and prospects of utilizing circRNAs in clinical settings associated with breast cancer are explored.
Collapse
Affiliation(s)
- Mohanraj Gopikrishnan
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of BioSciences and Technology, Vellore Institute of Technology (VIT), Vellore, 632014, Tamil Nadu, India
| | - Hephzibah Cathryn R
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of BioSciences and Technology, Vellore Institute of Technology (VIT), Vellore, 632014, Tamil Nadu, India
| | - Gnanasambandan R
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of BioSciences and Technology, Vellore Institute of Technology (VIT), Vellore, 632014, Tamil Nadu, India
| | - Hossam M Ashour
- Department of Integrative Biology, College of Arts and Sciences, University of South Florida, St. Petersburg, Florida, 33701, USA
| | - Gianfranco Pintus
- Department of Biomedical Sciences, University of Sassari, 07100, Sassari, Italy
| | - Mohamed Hammad
- Department of Stem Cell Biology and Regenerative Medicine, City of Hope Beckman Research Institute, Duarte, California, USA
| | - Manoj Kumar Kashyap
- Amity Stem Cell Institute, Amity Medical School, Amity University Haryana, Manesar (Gurugram), Panchgaon, Haryana (HR), 122413, India
- Clinical Biosamples & Research Services (CBRS), Noida, Uttar Pradesh, 201301, India
| | - George Priya Doss C
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of BioSciences and Technology, Vellore Institute of Technology (VIT), Vellore, 632014, Tamil Nadu, India.
| | - Hatem Zayed
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, 2713, Doha, Qatar.
| |
Collapse
|
8
|
Xuan R, Wang J, Li Q, Wang Y, Du S, Duan Q, Guo Y, He P, Ji Z, Chao T. Identification and Characterization of circRNAs in Non-Lactating Dairy Goat Mammary Glands Reveal Their Regulatory Role in Mammary Cell Involution and Remodeling. Biomolecules 2023; 13:biom13050860. [PMID: 37238729 DOI: 10.3390/biom13050860] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/28/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
This study conducted transcriptome sequencing of goat-mammary-gland tissue at the late lactation (LL), dry period (DP), and late gestation (LG) stages to reveal the expression characteristics and molecular functions of circRNAs during mammary involution. A total of 11,756 circRNAs were identified in this study, of which 2528 circRNAs were expressed in all three stages. The number of exonic circRNAs was the largest, and the least identified circRNAs were antisense circRNAs. circRNA source gene analysis found that 9282 circRNAs were derived from 3889 genes, and 127 circRNAs' source genes were unknown. Gene Ontology (GO) terms, such as histone modification, regulation of GTPase activity, and establishment or maintenance of cell polarity, were significantly enriched (FDR < 0.05), which indicates the functional diversity of circRNAs' source genes. A total of 218 differentially expressed circRNAs were identified during the non-lactation period. The number of specifically expressed circRNAs was the highest in the DP and the lowest in LL stages. These indicated temporal specificity of circRNA expression in mammary gland tissues at different developmental stages. In addition, this study also constructed circRNA-miRNA-mRNA competitive endogenous RNA (ceRNA) regulatory networks related to mammary development, immunity, substance metabolism, and apoptosis. These findings help understand the regulatory role of circRNAs in mammary cell involution and remodeling.
Collapse
Affiliation(s)
- Rong Xuan
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an 271018, China
| | - Jianmin Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an 271018, China
| | - Qing Li
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an 271018, China
| | - Yanyan Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an 271018, China
| | - Shanfeng Du
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an 271018, China
| | - Qingling Duan
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an 271018, China
| | - Yanfei Guo
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an 271018, China
| | - Peipei He
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an 271018, China
| | - Zhibin Ji
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an 271018, China
| | - Tianle Chao
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an 271018, China
| |
Collapse
|
9
|
Ma H, Bian S, Li Y, Ni A, Zhang R, Ge P, Han P, Wang Y, Zhao J, Zong Y, Yuan J, Sun Y, Chen J. Analyses of circRNAs profiles of the lactating and nonlactating crops in pigeon (Columba livia). Poult Sci 2022; 102:102464. [PMID: 36680859 PMCID: PMC9871334 DOI: 10.1016/j.psj.2022.102464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 12/20/2022] [Accepted: 12/25/2022] [Indexed: 12/31/2022] Open
Abstract
Pigeon has the specific biological ability to produce pigeon milk (also known as crop milk) by its crop. Circular RNAs (circRNAs) are important noncoding RNAs acting as the sponges of miRNAs, but the molecular mechanism of circRNAs regulating crop milk production has not been reported in pigeon. We compared expression profiles of crops during lactating and nonlactating crops, and networks of competing endogenous RNAs (ceRNAs) were constructed. The results showed a total of 8,723 circRNAs were identified, and there were 770 differentially expressed circRNAs (DECs) between these two different periods of crops. The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis revealed that the host genes of DECs were enriched in GnRH, MAPK, Insulin, Wnt, and AMPK signaling pathways. Furthermore, gga_circ_0000300 interacted with miR-92-2-5p, which targeted genes participating in lactation and milk composition synthesis. Gga_circ_0003018, gga_circ_0003019 and gga_circ_0003020 could bind with let-7c-5p regulating SOCS3 in crop milk production. These findings provide the circRNAs expression profiles and facilitate the analysis of molecular mechanism of crop milk production in pigeon.
Collapse
Affiliation(s)
- Hui Ma
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Shixiong Bian
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yunlei Li
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Aixin Ni
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Ran Zhang
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Pingzhuang Ge
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Pengmin Han
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030800, China
| | - Yuanmei Wang
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jinmeng Zhao
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yunhe Zong
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jingwei Yuan
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yanyan Sun
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jilan Chen
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
10
|
Chen W, Gu X, Lv X, Cao X, Yuan Z, Wang S, Sun W. Non-coding transcriptomic profiles in the sheep mammary gland during different lactation periods. Front Vet Sci 2022; 9:983562. [PMID: 36425117 PMCID: PMC9679157 DOI: 10.3389/fvets.2022.983562] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 09/14/2022] [Indexed: 11/10/2022] Open
Abstract
Sheep milk production is a dynamic and multifactorial trait regulated by diverse biological mechanisms. To improve the quality and production of sheep milk, it is necessary to understand the underlying non-coding transcriptomic mechanisms. In this study, ribonucleic acid-sequencing (RNA-seq) was used to profile the expression of microRNAs (miRNAs) and circular RNAs (circRNAs) in the sheep mammary gland at three key lactation time points (perinatal period, PP; early lactation, EL; and peak lactation, PL). A total of 2,369 novel circRNAs and 272 miRNAs were profiled, of which 348, 373, and 36 differentially expressed (DE) circRNAs and 30, 34, and 7 DE miRNAs were detected in the comparison of EL vs. PP, PL vs. PP, and PL vs. EL, respectively. A series of bioinformatics analyses including functional enrichment, machine learning prediction, and competing endogenous RNA (ceRNA) network analyses were conducted to identify subsets of the potential candidate miRNAs (e.g., oar_miR_148a, oar_miR_362, and oar_miR_432) and circRNAs (e.g., novel_circ_0011066, novel_circ_0010460, and novel_circ_0006589) involved in sheep mammary gland development. Taken together, this study offers a window into the dynamics of non-coding transcriptomes that occur during sheep lactation and may provide further insights into miRNA and circRNA that influence sheep mammary gland development.
Collapse
Affiliation(s)
- Weihao Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Xinyu Gu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Xiaoyang Lv
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Xiukai Cao
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Zehu Yuan
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Shanhe Wang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Wei Sun
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou University, Yangzhou, China
| |
Collapse
|
11
|
Jiao P, Zhang M, Wang Z, Liang G, Xie X, Zhang Y, Chen Z, Jiang Q, Loor JJ. Circ003429 Regulates Unsaturated Fatty Acid Synthesis in the Dairy Goat Mammary Gland by Interacting with miR-199a-3p, Targeting the YAP1 Gene. Int J Mol Sci 2022; 23:ijms23074068. [PMID: 35409428 PMCID: PMC8999533 DOI: 10.3390/ijms23074068] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/31/2022] [Accepted: 04/05/2022] [Indexed: 02/01/2023] Open
Abstract
Fatty acid composition is a key factor affecting the flavor and quality of goat milk. CircRNAs are now recognized as important regulators of transcription, and they play an important role in the control of fatty acid synthesis. Thus, understanding the regulatory mechanisms controlling this process in ruminant mammary glands is of great significance. In the present study, mammary tissue from dairy goats during early lactation and the dry period (nonlactating) were collected and used for high-throughput sequencing. Compared to levels during the dry period, the expression level of circ003429 during early lactation was lower (12.68-fold downregulated). In isolated goat mammary epithelial cells, circ003429 inhibited the synthesis of triglycerides (TAG) and decreased the content of unsaturated fatty acids (C16:1, C18:1, and C18:2), indicating that this circRNA plays an important role in regulating lipid synthesis. A binding site for miR-199a-3p in the circ003429 sequence was detected, and a dual-luciferase reporter system revealed that circ003429 targets miR-199a-3p. Overexpression of circ003429 (pcDNA-circ003429) downregulated the abundance of miR-199a-3p. In contrast, overexpression of miR-199a-3p increased TAG content and decreased mRNA abundance of Yes-associated protein 1 (YAP1) (a target gene of miR-199a-3p), and TAG content was decreased and mRNA abundance was increased in response to overexpression of circ003429. These results indicate that circ003429 alleviates the inhibitory effect of miR-199a-3p on the mRNA abundance of YAP1 by binding miR-199a-3p, resulting in subsequent regulation of the synthesis of TAG and unsaturated fatty acids.
Collapse
Affiliation(s)
- Peixin Jiao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (P.J.); (M.Z.); (Z.W.); (G.L.); (X.X.); (Y.Z.)
| | - Meimei Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (P.J.); (M.Z.); (Z.W.); (G.L.); (X.X.); (Y.Z.)
| | - Ziwei Wang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (P.J.); (M.Z.); (Z.W.); (G.L.); (X.X.); (Y.Z.)
| | - Gege Liang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (P.J.); (M.Z.); (Z.W.); (G.L.); (X.X.); (Y.Z.)
| | - Xiaolai Xie
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (P.J.); (M.Z.); (Z.W.); (G.L.); (X.X.); (Y.Z.)
| | - Yonggen Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (P.J.); (M.Z.); (Z.W.); (G.L.); (X.X.); (Y.Z.)
| | - Zhi Chen
- Jiangsu Key Laboratory of Animal Genetic Breeding and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Correspondence: (Z.C.); (J.J.L.)
| | - Qianming Jiang
- Mammalian Nutrition Physiology Genomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana, IL 61801, USA;
| | - Juan J. Loor
- Mammalian Nutrition Physiology Genomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana, IL 61801, USA;
- Correspondence: (Z.C.); (J.J.L.)
| |
Collapse
|
12
|
Ahmad SM, Bhat B, Manzoor Z, Dar MA, Taban Q, Ibeagha-Awemu EM, Shabir N, Hussain MI, Shah RA, Ganai NA. Genome wide expression analysis of circular RNAs in mammary epithelial cells of cattle revealed difference in milk synthesis. PeerJ 2022; 10:e13029. [PMID: 35251787 PMCID: PMC8896013 DOI: 10.7717/peerj.13029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 02/08/2022] [Indexed: 01/11/2023] Open
Abstract
Milk is an excellent source of nutrients for humans. Therefore, in order to enhance the quality and production of milk in cattle, it is interesting to examine the underlying mechanisms. A number of new investigations and research have found that, circRNA; a specific class of non-coding RNAs, is linked with the development of mammary gland and lactation. In the present study, genome wide identification and expression of the circRNAs in mammary epithelial cells of two distinct cattle breeds viz Jersey and Kashmiri at peak lactation was conducted. We reported 1554 and 1286 circRNA in Jersey and Kashmiri cattle, respectively, with 21 circRNAs being differentially expressed in the two breeds. The developmental genes of the established differentially expressed circRNAs were found to be largely enriched in antioxidant activity, progesterone, estradiol, lipid, growth hormone, and drug response. Certain pathways like MAPK, IP3K and immune response pathways were found significantly enriched in KEGG analysis. These results add to our understanding of the controlling mechanisms connected with the lactation process, as well as the function of circRNAs in bovine milk synthesis. Additionally, the comparative analysis of differentially expressed circRNAs showed significant conservation across different species.
Collapse
Affiliation(s)
- Syed Mudasir Ahmad
- Division of Animal Biotechnology, Faculty of Veterinary Sciences, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, India, Srinagar, Jammu and Kashmir, India
| | - Basharat Bhat
- Division of Animal Biotechnology, Faculty of Veterinary Sciences, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, India, Srinagar, Jammu and Kashmir, India
| | - Zainab Manzoor
- Department of Clinical Biochemistry, University of Kashmir, Srinagar, Jammu and Kashmir, India
| | - Mashooq Ahmad Dar
- Division of Animal Biotechnology, Faculty of Veterinary Sciences, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, India, Srinagar, Jammu and Kashmir, India,Department of Clinical Biochemistry, University of Kashmir, Srinagar, Jammu and Kashmir, India
| | - Qamar Taban
- Division of Animal Biotechnology, Faculty of Veterinary Sciences, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, India, Srinagar, Jammu and Kashmir, India
| | - Eveline M. Ibeagha-Awemu
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, Sherbrooke, Canada
| | - Nadeem Shabir
- Division of Animal Biotechnology, Faculty of Veterinary Sciences, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, India, Srinagar, Jammu and Kashmir, India
| | - Mohd Isfaqul Hussain
- Division of Veterinary Microbiology, SKUAST-Kashmir, Srinagar, Jammu and Kashmir, India
| | - Riaz A. Shah
- Division of Animal Biotechnology, Faculty of Veterinary Sciences, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, India, Srinagar, Jammu and Kashmir, India
| | - Nazir A. Ganai
- Division of Animal Biotechnology, Faculty of Veterinary Sciences, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, India, Srinagar, Jammu and Kashmir, India
| |
Collapse
|
13
|
Shi H, Zhou Y, Jia E, Liu Z, Pan M, Bai Y, Zhao X, Ge Q. Comparative analysis of circular RNA enrichment methods. RNA Biol 2021; 19:55-67. [PMID: 34895057 PMCID: PMC8786342 DOI: 10.1080/15476286.2021.2012632] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 09/22/2021] [Accepted: 11/27/2021] [Indexed: 11/12/2022] Open
Abstract
The circRNAs sequencing results vary due to the different enrichment methods and their performance is needed to systematic comparison. This study investigated the effects of different circRNA enrichment methods on sequencing results, including abundance and species of circRNAs, as well as the sensitivity and precision. This experiment was carried out by following four common circRNA enrichment methods: including ribosomal RNA depletion (rRNA-), polyadenylation and poly (A+) RNA depletion followed by RNase R treatment (polyA+RNase R), rRNA-+polyA+RNase R and polyA+RNase R+ rRNA-. The results showed that polyA+RNase R+ rRNA - enrichment method obtained more circRNA number, higher sensitivity and abundance among them; polyA+RNase R method obtained higher precision. The linear RNAs can be thoroughly removed in all enrichment methods except rRNA depletion method. Overall, our results helps researchers to quickly selection a circRNA enrichment of suitable for own study among many enrichment methods, and it provides a benchmark framework for future improvements circRNA enrichment methods.[Figure: see text].
Collapse
Affiliation(s)
- Huajuan Shi
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Ying Zhou
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Erteng Jia
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Zhiyu Liu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Min Pan
- School of Medicine, Southeast University, Nanjing, China
| | - Yunfei Bai
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Xiangwei Zhao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Qinyu Ge
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| |
Collapse
|
14
|
He X, Xu T, Hu W, Tan Y, Wang D, Wang Y, Zhao C, Yi Y, Xiong M, Lv W, Wu M, Li X, Wu Y, Zhang Q. Circular RNAs: Their Role in the Pathogenesis and Orchestration of Breast Cancer. Front Cell Dev Biol 2021; 9:647736. [PMID: 33777954 PMCID: PMC7991790 DOI: 10.3389/fcell.2021.647736] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 02/11/2021] [Indexed: 12/12/2022] Open
Abstract
As one of the most frequently occurring malignancies in women, breast cancer (BC) is still an enormous threat to women all over the world. The high mortality rates in BC patients are associated with BC recurrence, metastatic progression to distant organs, and therapeutic resistance. Circular RNAs (circRNAs), belonging to the non-coding RNAs (ncRNAs), are connected end to end to form covalently closed single-chain circular molecules. CircRNAs are widely found in different species and a variety of human cells, with the features of diversity, evolutionary conservation, stability, and specificity. CircRNAs are emerging important participators in multiple diseases, including cardiovascular disease, inflammation, and cancer. Recent studies have shown that circRNAs are involved in BC progress by regulating gene expression at the transcriptional or post-transcriptional level via binding to miRNAs then inhibiting their function, suggesting that circRNAs may be potential targets for early diagnosis, treatment, and prognosis of BC. Herein, in this article, we have reviewed and summarized the current studies about the biogenesis, features, and functions of circRNAs. More importantly, we emphatically elucidate the pivotal functions and mechanisms of circRNAs in BC growth, metastasis, diagnosis, and drug resistance. Deciphering the complex networks, especially the circRNA-miRNA target gene axis, will endow huge potentials in developing therapeutic strategies for combating BC.
Collapse
Affiliation(s)
- Xiao He
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tao Xu
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weijie Hu
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yufang Tan
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dawei Wang
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yichen Wang
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chongru Zhao
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi Yi
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mingchen Xiong
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenchang Lv
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Min Wu
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xingrui Li
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yiping Wu
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qi Zhang
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
15
|
Ivanova E, Le Guillou S, Hue-Beauvais C, Le Provost F. Epigenetics: New Insights into Mammary Gland Biology. Genes (Basel) 2021; 12:genes12020231. [PMID: 33562534 PMCID: PMC7914701 DOI: 10.3390/genes12020231] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 01/23/2021] [Accepted: 01/28/2021] [Indexed: 12/14/2022] Open
Abstract
The mammary gland undergoes important anatomical and physiological changes from embryogenesis through puberty, pregnancy, lactation and involution. These steps are under the control of a complex network of molecular factors, in which epigenetic mechanisms play a role that is increasingly well described. Recently, studies investigating epigenetic modifications and their impacts on gene expression in the mammary gland have been performed at different physiological stages and in different mammary cell types. This has led to the establishment of a role for epigenetic marks in milk component biosynthesis. This review aims to summarize the available knowledge regarding the involvement of the four main molecular mechanisms in epigenetics: DNA methylation, histone modifications, polycomb protein activity and non-coding RNA functions.
Collapse
|
16
|
Zhang C, Ding R, Sun Y, Huo ST, He A, Wen C, Chen H, Du WW, Lai W, Wang H. Circular RNA in tumor metastasis. MOLECULAR THERAPY-NUCLEIC ACIDS 2021; 23:1243-1257. [PMID: 33717646 PMCID: PMC7907675 DOI: 10.1016/j.omtn.2021.01.032] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Circular RNAs (circRNAs) are a type of endogenous non-coding RNA that were discovered to regulate gene expression through multiple pathways. Metastasis remains one of the biggest obstacles in cancer treatment. In this review, we focus on circRNAs involved in cancer tumorigenesis and metastasis. We present recently identified tumor-related circRNAs and discuss their functioning in tumor progression and metastasis. These circRNAs are categorized into different functional mechanisms, including microRNA (miRNA) sponging, protein binding, regulation of host genes, translation of circRNAs, and exosomal circRNAs. Additionally, the indirect functions of circRNAs that regulate epithelial-mesenchymal transition and autophagy are also discussed.
Collapse
Affiliation(s)
- Chao Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Southern Medical University and Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Guangzhou 510000, Guangdong Province, China.,Department of Laboratory Medicine, Nanhai Hospital, Southern Medical University, Foshan 510000, Guangdong Province, China.,Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada
| | - RongFang Ding
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou 510000, Guangdong Province, China
| | - YiCheng Sun
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Southern Medical University and Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Guangzhou 510000, Guangdong Province, China.,Department of Laboratory Medicine, Nanhai Hospital, Southern Medical University, Foshan 510000, Guangdong Province, China
| | - Si Tong Huo
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada.,School of Medicine, Tsinghua University, Beijing 100084, China
| | - Alina He
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Chang Wen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Southern Medical University and Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Guangzhou 510000, Guangdong Province, China.,Department of Laboratory Medicine, Nanhai Hospital, Southern Medical University, Foshan 510000, Guangdong Province, China
| | - HongHao Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Southern Medical University and Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Guangzhou 510000, Guangdong Province, China.,Department of Laboratory Medicine, Nanhai Hospital, Southern Medical University, Foshan 510000, Guangdong Province, China
| | - William W Du
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - WeiNan Lai
- Department of Rheumatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, China 510515
| | - Huijun Wang
- Department of Laboratory Medicine, Nanhai Hospital, Southern Medical University, Foshan 510000, Guangdong Province, China
| |
Collapse
|
17
|
Wang J, Zhou H, Hickford JGH, Hao Z, Gong H, Hu J, Liu X, Li S, Shen J, Ke N, Song Y, Qiao L, Luo Y. Identification and characterization of circular RNAs in mammary gland tissue from sheep at peak lactation and during the nonlactating period. J Dairy Sci 2020; 104:2396-2409. [PMID: 33246614 DOI: 10.3168/jds.2020-18911] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 09/07/2020] [Indexed: 12/30/2022]
Abstract
Circular RNAs are a class of noncoding RNA with a widespread occurrence in eukaryote tissues, and with some having been demonstrated to have clear biological function. In sheep, little is known about the role of circular RNAs in mammary gland tissue, and therefore an RNA sequencing approach was used to compare mammary gland tissue expression of circular RNAs in 9 Small Tail Han sheep at peak lactation, and subsequently when they were not lactating. These 9 sheep had their RNA pooled for analysis into 3 libraries from peak lactation and 3 from the nonlactating period. A total of 3,278 and 1,756 circular RNAs were identified in the peak lactation and nonlactating mammary gland tissues, respectively, and the expression and identity of 9 of them was confirmed using reverse transcriptase-polymerase chain reaction analysis and DNA sequencing. The type, chromosomal location and length of the circular RNAs identified were ascertained. Forty upregulated and one downregulated circular RNAs were characterized in the mammary gland tissue at peak lactation compared with the nonlactating mammary gland tissue. Gene ontology enrichment analysis revealed that the parental genes of these differentially expressed circular RNAs were related to molecular function, binding, protein binding, ATP binding, and ion binding. Five differentially expression circular RNAs were selected for further analysis to predict their target microRNAs, and some microRNAs reportedly associated with the development of the mammary gland were found in the constructed circular RNA-microRNA network. This study reveals the expression profiles and characterization of circular RNAs at 2 key stages of mammary gland activity, thereby providing an improved understanding of the roles of circular RNAs in the mammary gland of sheep.
Collapse
Affiliation(s)
- Jiqing Wang
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China.
| | - Huitong Zhou
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; Gene-Marker Laboratory, Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln 7647, New Zealand
| | - Jon G H Hickford
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; Gene-Marker Laboratory, Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln 7647, New Zealand
| | - Zhiyun Hao
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Hua Gong
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; Gene-Marker Laboratory, Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln 7647, New Zealand
| | - Jiang Hu
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Xiu Liu
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Shaobin Li
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Jiyuan Shen
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Na Ke
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Yize Song
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Lirong Qiao
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Yuzhu Luo
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China.
| |
Collapse
|
18
|
Identification of circRNA-Associated-ceRNA Networks Involved in Milk Fat Metabolism under Heat Stress. Int J Mol Sci 2020; 21:ijms21114162. [PMID: 32545169 PMCID: PMC7312917 DOI: 10.3390/ijms21114162] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/04/2020] [Accepted: 06/09/2020] [Indexed: 12/20/2022] Open
Abstract
Summer temperatures are generally high in Southern China, and cows are likely to suffer a heat stress reaction. Heat stress will have a negative impact on the performance of dairy cows; however, the mechanism by which high temperature affects lactation is not clear. CircRNA is a type of non-coding RNA discovered in recent years, which performs a crucial function in many biological activities. However, the effects of circRNA on lactation function of dairy cows under heat stress is unknown. The present study aimed to explore the expression levels of circRNA in the mammary gland tissue of cows under heat stress. Firstly, we collected blood and milk samples of summer and winter cows and evaluated lactation performance using serum indicators, milk production, and milk composition. Incorporating the calculation of the temperature and humidity index, we conformed the heat stress status of cows in summer. Heat stress increased the concentration of HSP70 and decreased the concentration of SOD and PRL. Heat stress not only reduced milk yield but also affected milk quality, with milk lactose and milk protein decreasing with increased temperature. The analysis of the fatty acid composition in summer milk found significantly reduced concentrations of unsaturated fatty acids, especially long-chain unsaturated fatty acids. Sequencing of the cow's mammary gland transcriptome revealed that compared to the appropriate temperature (ST) group, the heat stress (HS) group had a total of 2204 upregulated and 3501 downregulated transcripts. GO enrichment and KEGG pathway analysis showed that these genes were mainly related to milk fat metabolism. In addition, 19 upregulated and 19 downregulated circRNA candidates were found in response to heat stress. We used Pearson's test to establish the correlation of circRNA-mRNA and identified four pairs of circRNA-miRNA networks between four circRNAs, six miRNAs, and the CD36 gene. In this study, we revealed the possible role of circRNAs in lactation of dairy cows and identified that circRNA-miRNA-mRNA networks might exist in the cow's mammary glands, providing valuable experience for dairy lactation and milk quality.
Collapse
|
19
|
Hao Z, Zhou H, Hickford JG, Gong H, Wang J, Hu J, Liu X, Li S, Zhao M, Luo Y. Identification and characterization of circular RNA in lactating mammary glands from two breeds of sheep with different milk production profiles using RNA-Seq. Genomics 2020; 112:2186-2193. [DOI: 10.1016/j.ygeno.2019.12.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 12/17/2019] [Accepted: 12/18/2019] [Indexed: 12/31/2022]
|
20
|
Xu YJ, Yu H, Liu GX. Hsa_circ_0031288/hsa-miR-139-3p/Bcl-6 regulatory feedback circuit influences the invasion and migration of cervical cancer HeLa cells. J Cell Biochem 2020; 121:4251-4260. [PMID: 32277518 DOI: 10.1002/jcb.29650] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 12/11/2019] [Indexed: 01/01/2023]
Abstract
Circular RNA (circRNA) molecules contain microRNA (miRNA) response elements that are able to competitively bind miRNAs as well as function as miRNA sponges within cells, which can reduce miRNA inhibition of target genes, thereby increasing their expression. TargetScan and miRanda bioinformatic tools were used to analyze the binding sites between genes. The relative levels of gene expression in tissues and cells were verified using quantitative reverse transcription-polymerase chain reaction. Inhibition of cell proliferation was detected using a WST-8 method. Cell invasion ability and migration ability were assessed using a Transwell migration assay and a scratch assay, respectively. The binding of miRNA and circRNA was detected using an RNA pull-down assay. Bifluorescence reporter gene vectors were constructed to verify the binding of miRNA to messenger RNA. A tumor model of cervical cancer cell transplantation in mice was constructed to observe the effect of the genes on tumor growth. hsa_circ_0031288 and B-cell CLL/lymphoma 6 (Bcl-6) exhibited high expression in cervical cancer cells and tissue, while hsa-miR-139-3p exhibited low expression. Reducing hsa_circ_0031288 and Bcl-6 expression or increasing hsa-miR-139-3p expression significantly inhibited the migration, invasion, proliferation, and growth of xenograft and HeLa cells. hsa_circ_0031288 had a regulatory effect on hsa-miR-139-3p, and hsa-miR-139-3p targeted the 3' untranslated region of Bcl-6. Reducing hsa_circ_0031288 expression promoted hsa-miR-139-3p expression, while overexpressing miR-139-3p inhibited the transcription of Bcl-6. In the cervical cancer HeLa cell line, the hsa_circ_0031288/hsa-miR-139-3p/Bcl-6 regulatory axis affects cell migration and proliferation, and its mechanism may involve hsa_circ_0031288 acting as a sponge for hsa-miR-139-3p, thereby relieving the transcriptional inhibition of Bcl-6. This suggests an approach for elucidating the pathogenesis of cervical cancer while offering new intervention targets for cervical cancer treatment.
Collapse
Affiliation(s)
- Ya Jie Xu
- Department of Gynecology, Zhoukou Central Hospital, Zhoukou, Henan, China
| | - He Yu
- Department of Gynecology, Zhoukou Central Hospital, Zhoukou, Henan, China
| | - Guang Xin Liu
- Department of Gynecology, Zhoukou Central Hospital, Zhoukou, Henan, China
| |
Collapse
|
21
|
Jiang R, Li H, Yang J, Shen X, Song C, Yang Z, Wang X, Huang Y, Lan X, Lei C, Chen H. circRNA Profiling Reveals an Abundant circFUT10 that Promotes Adipocyte Proliferation and Inhibits Adipocyte Differentiation via Sponging let-7. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 20:491-501. [PMID: 32305019 PMCID: PMC7163053 DOI: 10.1016/j.omtn.2020.03.011] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 03/17/2020] [Accepted: 03/24/2020] [Indexed: 02/07/2023]
Abstract
Adipose development is regulated by a series of complex processes, and non-coding RNAs (ncRNAs), including circular RNAs (circRNAs), play important roles in regulating proliferation and differentiation of adipocytes. In this study, we profiled circRNA expression in cattle fat tissue during calf and adult developmental stages and detected 14,274 circRNA candidates. Some circRNAs are differentially expressed between two developmental stages. We characterized circFUT10, named for its host gene FUT10, a highly expressed and abundant circRNA. Luciferase screening, an RNA-binding protein immunoprecipitation (RIP) assay, quantitative real-time PCR, and western blotting assays indicated that circFUT10 directly binds let-7c/let-e, and PPARGC1B (peroxisome proliferator-activated receptor γ coactivator 1-β) is identified as a target of let-7c. Flow cytometry, EdU (5-ethynyl-2′-deoxyuridine) incorporation, a CCK-8 (cell counting kit-8) assay, oil red O staining, and western blotting assays demonstrated that circFUT10 promotes adipocyte proliferation and inhibits cell differentiation by sponging let-7c. The results demonstrate that circFUT10 binding of let-7c promotes cell proliferation and inhibits cell differentiation by targeting PPARGC1B in cattle adipocytes.
Collapse
Affiliation(s)
- Rui Jiang
- Shaanxi Key Laboratory of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Hui Li
- Shaanxi Key Laboratory of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China; State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Jiameng Yang
- Shaanxi Key Laboratory of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xuemei Shen
- Shaanxi Key Laboratory of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Chengchuang Song
- Shaanxi Key Laboratory of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Zhaoxin Yang
- Shaanxi Key Laboratory of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xiaogang Wang
- Shaanxi Key Laboratory of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yongzhen Huang
- Shaanxi Key Laboratory of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xianyong Lan
- Shaanxi Key Laboratory of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Chuzhao Lei
- Shaanxi Key Laboratory of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Hong Chen
- Shaanxi Key Laboratory of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
22
|
Prolactin-Responsive Circular RNA circHIPK3 Promotes Proliferation of Mammary Epithelial Cells from Dairy Cow. Genes (Basel) 2020; 11:genes11030336. [PMID: 32245109 PMCID: PMC7141114 DOI: 10.3390/genes11030336] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 03/18/2020] [Accepted: 03/18/2020] [Indexed: 12/15/2022] Open
Abstract
The highly expressed circHIPK3 is a circular RNA that has been previously reported to regulate the growth of human cells. In this study, we found an increased expression of circHIPK3 in bovine mammary epithelial cells treated with prolactin (PRL) in high-throughput sequencing data. Thus, we further investigated the effect of circHIPK3 on the proliferation and differentiation of mammary epithelial cells. We used qRT-PCR/Cell Counting Kit-8 (CCK-8) and a Western blotting analysis to evaluate the effects on cell proliferation. We found that circHIPK3 promotes the proliferation of mammary epithelial cells. The STAT5 signaling pathway was previously associated with the prolactin response and when the STAT5 was suppressed, the expression of circHIPK3 decreased. The results suggest that the response to prolactin and the associated STAT5 signaling pathway affect the expression of circHIPK3, which subsequently affects the proliferation of mammary epithelial cells in dairy cows.
Collapse
|
23
|
Yuan P, Lei L, Dong S, Liu D. Circular RNA hsa_circ_0068033 Acts as a Diagnostic Biomarker and Suppresses the Progression of Breast Cancer Through Sponging miR-659. Onco Targets Ther 2020; 13:1921-1929. [PMID: 32184627 PMCID: PMC7061413 DOI: 10.2147/ott.s223542] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 01/30/2020] [Indexed: 12/18/2022] Open
Abstract
Purpose Recently, dysregulated circular RNAs (circRNAs) have been associated with the progression of numerous malignant tumors. However, the mechanism through which circRNAs participate in breast cancer (BC) remains unclear. This study was designed to illustrate the role of hsa_circ_0068033 in BC. Methods We detected the expression levels of hsa_circ_0068033 in BC tissues using quantitative real-time PCR (qRT-PCR) and in situ hybridization (ISH). A series of functional experiments were conducted to assess the function of hsa_circ_0068033 in BC development and the underlying mechanisms. Results The results suggested that the expression of hsa_circ_0068033 was downregulated in BC tissues, and its expression was markedly correlated with tumor size (P=0.021), and the Tumor, Node, and Metastasis stage (P=0.023). Receiver operating characteristic analysis showed that hsa_circ_0068033 testing yielded an area under the curve value of 0.8480 in discriminating BC from non-tumor controls. Functionally, in-vitro experiments demonstrated that overexpression of hsa_circ_0068033 could inhibit the growths, clone formation, invasion and migration of MCF-7 and MDA-MB-231 cells while activating the intrinsic apoptotic pathway to induce apoptosis. The xenograft experiment revealed that exogenous hsa_circ_0068033 is able to evidently reduce the tumorigenic ability of MDA-MB-231 cells in nude mice. Rescue assays further proved that hsa_circ_0068033 exerts biological functions by sponging miR-659. Conclusion Collectively, this study revealed for the first time that hsa_circ_0068033 acts as a tumor suppressor gene in BC, and the hsa_circ_0068033/miR-659 axis participates in the progression of BC.
Collapse
Affiliation(s)
- Pengfei Yuan
- Department of Gastrointestinal Surgery (Breast Surgery), The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, People's Republic of China
| | - Liangliang Lei
- Department of Gastrointestinal Surgery (Breast Surgery), The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, People's Republic of China
| | - Shuaijun Dong
- Department of Gastrointestinal Surgery (Breast Surgery), The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, People's Republic of China
| | - Dechun Liu
- Department of Gastrointestinal Surgery (Breast Surgery), The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, People's Republic of China
| |
Collapse
|
24
|
He JH, Han ZP, Luo JG, Jiang JW, Zhou JB, Chen WM, Lv YB, He ML, Zheng L, Li YG, Zuo JD. Hsa_Circ_0007843 Acts as a mIR-518c-5p Sponge to Regulate the Migration and Invasion of Colon Cancer SW480 Cells. Front Genet 2020; 11:9. [PMID: 32158464 PMCID: PMC7052121 DOI: 10.3389/fgene.2020.00009] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 01/06/2020] [Indexed: 12/20/2022] Open
Abstract
Circular RNA (circRNA), a type of RNA that is widely expressed in mammalian cells, is considered to be essential in tumorigenesis. CircRNA can regulate target gene expression by interacting with the corresponding microRNA (miRNA). Our preliminary results showed that the expression levels of 1,817 circRNAs were significantly different in colon cancer tissue compared with paracancerous tissue, of which 1,236 were upregulated and 581 were downregulated. By using RT-PCR, we confirmed that the expression of hsa_circ_0007843, hsa_circ_0010575, hsa_circ_0007331, and hsa_circ_0001615 was significantly higher in colon cancer tissue than in normal colonic tissue; however, the expression levels of hsa_circ_0014879 and hsa_circRNA_401801 were not significantly different between normal and neoplastic colonic tissue. Among the circRNAs that were confirmed to be upregulated in colon cancer tissue, hsa_circ_0007843 was also found to be highly expressed in colon cancer SW480 cells. Overexpression of hsa_circ_0007843 promoted the invasion and migration of SW480 cells, whereas its downregulation suppressed their invasion and migration. Overexpression of hsa_circ_0007843 promoted tumor growth, whereas its downregulation inhibited tumor growth. We found that hsa_circ_0007843 interacted with miR-518c-5p and suppressed its expression, and miR-518c-5p interacted with matrix metallopeptidase 2 (MMP2) and promoted its expression and translation. Taken together, this study demonstrated that hsa_circ_0007843 acted as an miRNA sponge to regulate MMP2 expression by removing the inhibitory effect of miR-518c-5p on MMP2 gene translation, which further affected the invasive capability of SW480 cells.
Collapse
Affiliation(s)
- Jin Hua He
- Department of Laboratory Medicine, Central Hospital of Panyu District, Guangzhou, China
| | - Ze Ping Han
- Department of Laboratory Medicine, Central Hospital of Panyu District, Guangzhou, China
| | - Jin Gen Luo
- Digesting Center, Central Hospital of Panyu District, Guangzhou, China
| | - Jian Wei Jiang
- Department of Biochemistry, Medical College, Jinan University, Guangzhou, China
| | - Jia Bin Zhou
- Department of Laboratory Medicine, Central Hospital of Panyu District, Guangzhou, China
| | - Wei Ming Chen
- Department of Laboratory Medicine, Central Hospital of Panyu District, Guangzhou, China
| | - Yu Bing Lv
- Department of Laboratory Medicine, Central Hospital of Panyu District, Guangzhou, China
| | - Meng Ling He
- Department of Laboratory Medicine, Central Hospital of Panyu District, Guangzhou, China
| | - Lei Zheng
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yu Guang Li
- Department of Laboratory Medicine, Central Hospital of Panyu District, Guangzhou, China
| | - Ji Dong Zuo
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
25
|
Sun J, Zhang H, Hu B, Xie Y, Wang D, Zhang J, Chen T, Luo J, Wang S, Jiang Q, Xi Q, Chen Z, Zhang Y. Emerging Roles of Heat-Induced circRNAs Related to Lactogenesis in Lactating Sows. Front Genet 2020; 10:1347. [PMID: 32117411 PMCID: PMC7027193 DOI: 10.3389/fgene.2019.01347] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 12/10/2019] [Indexed: 11/13/2022] Open
Abstract
Heat stress negatively influences milk production and disrupts normal physiological activity of lactating sows, but the precious mechanisms by which hyperthermia adversely affects milk synthesis in sows still remain for further study. Circular RNAs are a novel class of non-coding RNAs with regulatory functions in various physiological and pathological processes. The expression profiles and functions of circRNAs of sows in lactogenesis remain largely unknown. In the present study, long-term heat stress (HS) resulted in a greater concentration of serum HSP70, LDH, and IgG, as well as decreased levels of COR, SOD, and PRL. HS reduced the total solids, fat, and lactose of sow milk, and HS significantly depressed CSNαs1, CSNαs2, and CSNκ biosynthesis. Transcriptome sequencing of lactating porcine mammary glands identified 42 upregulated and 25 downregulated transcripts in HS vs. control. Functional annotation of these differentially-expressed transcripts revealed four heat-induced genes involved in lactation. Moreover, 29 upregulated and 21 downregulated circRNA candidates were found in response to HS. Forty-two positively correlated circRNA-mRNA expression patterns were constructed between the four lactogenic genes and differentially expressed circRNAs. Five circRNA-miRNA-mRNA post-transcriptional networks were identified involving genes in the HS response of lactating sows. In this study we establish a valuable resource for circRNA biology in sow lactation. Analysis of a circRNA-miRNA-mRNA network further uncovered a novel layer of post-transcriptional regulation that could be used to improve sow milk production.
Collapse
Affiliation(s)
- Jiajie Sun
- College of Animal Science, Guangdong Provincial Key Laboratory of Animal Nutrition Control, Guangdong Engineering & Research Center for Woody Fodder Plants, National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| | - Haojie Zhang
- College of Animal Science, Guangdong Provincial Key Laboratory of Animal Nutrition Control, Guangdong Engineering & Research Center for Woody Fodder Plants, National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| | - Baoyu Hu
- College of Animal Science, Guangdong Provincial Key Laboratory of Animal Nutrition Control, Guangdong Engineering & Research Center for Woody Fodder Plants, National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| | - Yueqin Xie
- College of Animal Science, Guangdong Provincial Key Laboratory of Animal Nutrition Control, Guangdong Engineering & Research Center for Woody Fodder Plants, National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| | - Dongyang Wang
- College of Animal Science, Guangdong Provincial Key Laboratory of Animal Nutrition Control, Guangdong Engineering & Research Center for Woody Fodder Plants, National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| | - Jinzhi Zhang
- College of Animal Science, Zhejiang University, Hangzhou, China
| | - Ting Chen
- College of Animal Science, Guangdong Provincial Key Laboratory of Animal Nutrition Control, Guangdong Engineering & Research Center for Woody Fodder Plants, National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| | - Junyi Luo
- College of Animal Science, Guangdong Provincial Key Laboratory of Animal Nutrition Control, Guangdong Engineering & Research Center for Woody Fodder Plants, National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| | - Songbo Wang
- College of Animal Science, Guangdong Provincial Key Laboratory of Animal Nutrition Control, Guangdong Engineering & Research Center for Woody Fodder Plants, National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| | - Qinyan Jiang
- College of Animal Science, Guangdong Provincial Key Laboratory of Animal Nutrition Control, Guangdong Engineering & Research Center for Woody Fodder Plants, National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| | - Qianyun Xi
- College of Animal Science, Guangdong Provincial Key Laboratory of Animal Nutrition Control, Guangdong Engineering & Research Center for Woody Fodder Plants, National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| | - Zujing Chen
- College of Animal Science, Guangdong Provincial Key Laboratory of Animal Nutrition Control, Guangdong Engineering & Research Center for Woody Fodder Plants, National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| | - Yongliang Zhang
- College of Animal Science, Guangdong Provincial Key Laboratory of Animal Nutrition Control, Guangdong Engineering & Research Center for Woody Fodder Plants, National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| |
Collapse
|
26
|
Jahani S, Nazeri E, Majidzadeh-A K, Jahani M, Esmaeili R. Circular RNA; a new biomarker for breast cancer: A systematic review. J Cell Physiol 2020; 235:5501-5510. [PMID: 31985056 DOI: 10.1002/jcp.29558] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 01/10/2020] [Indexed: 12/22/2022]
Abstract
Circular RNAs (circRNAs) were recently discovered as a looped subset of competing endogenous RNAs, with an ability to regulate gene expression by microRNA sponging. There are several studies on their potential roles in cancer development, such as colorectal cancer and basal cell carcinoma. However, there is still a significant gap in the knowledge about circRNA functions in breast cancer (BC) progression. The current study systematically reviewed circRNA biogenesis and their potential roles as a novel biomarker in BC on published studies of the MEDLINE®/PubMed, Cochrane®, and Scopus® databases. The obtained results showed a general dysregulation of circRNAs expression in BC cells with a cell-type and stage-specific manner. The potential connection between circRNAs and BC cell proliferation, apoptosis, metastasis, and chemotherapy sensitivity and resistance were discussed.
Collapse
Affiliation(s)
- Shima Jahani
- Genetics Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran.,Students Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Elahe Nazeri
- Genetics Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Keivan Majidzadeh-A
- Genetics Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Mona Jahani
- Department of Crop Protection, Laboratory of Agrozoology, Ghent University, Ghent, Belgium
| | - Rezvan Esmaeili
- Genetics Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| |
Collapse
|
27
|
Zhang H, Hu B, Xiong J, Chen T, Xi Q, Luo J, Jiang Q, Sun J, Zhang Y. Genomewide analysis of circular RNA in pituitaries of normal and heat-stressed sows. BMC Genomics 2019; 20:1013. [PMID: 31870281 PMCID: PMC6929353 DOI: 10.1186/s12864-019-6377-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 12/08/2019] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND As a newly characterized type of noncoding RNA, circular RNA (circRNA) has been shown to have functions in diverse biological processes of animals. It has been reported that several noncoding RNAs may regulate animals' response to heat stress which can be easily induced by hyperthermia in summer. However, the expression and functions of circRNAs in the pituitary of sows and whether they participate in heat stress adaption are still unclear. RESULTS In this study, we found that high temperature over the thermoneutral zone of sows during the summer increased the serum heat shock protein 70 (HSP70) level, decreased the superoxide dismutase (SOD) vitality and prolactin (PRL) concentration, and induced heat stress in sows. Then, we explored circRNA in the pituitary of heat-stressed and normal sows using RNA sequencing and bioinformatics analysis. In total, 12,035 circRNAs were detected, with 59 circRNAs differentially expressed, including 42 up-regulated and 17 down-regulated circRNAs in pituitaries of the heat-stressed sows. Six randomly selected circRNAs were identified through reverse transcription PCR followed by DNA sequencing and other 7 randomly selected differentially expressed circRNAs were verified by quantitative real-time PCR analysis. The predicted target genes regulated by circRNAs through sponging microRNAs (miRNAs) were enriched in metabolic pathway. Furthermore, the predicted circRNA-miRNA-mRNA interactions showed that some circRNAs might sponge miRNAs to regulate pituitary-specific genes and heat shock protein family members, indicating circRNA's roles in pituitary hormone secretion and heat stress response. CONCLUSIONS Our results provided a meaningful reference to understand the functions of circRNA in the porcine pituitary and the mechanisms by which circRNA may participate in animals' response to heat stress.
Collapse
Affiliation(s)
- Haojie Zhang
- Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Wushan Road, Tianhe District, Guangzhou, Guangdong, 510642, People's Republic of China
| | - Baoyu Hu
- Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Wushan Road, Tianhe District, Guangzhou, Guangdong, 510642, People's Republic of China
| | - Jiali Xiong
- Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Wushan Road, Tianhe District, Guangzhou, Guangdong, 510642, People's Republic of China
| | - Ting Chen
- Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Wushan Road, Tianhe District, Guangzhou, Guangdong, 510642, People's Republic of China
| | - Qianyun Xi
- Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Wushan Road, Tianhe District, Guangzhou, Guangdong, 510642, People's Republic of China
| | - Junyi Luo
- Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Wushan Road, Tianhe District, Guangzhou, Guangdong, 510642, People's Republic of China
| | - Qingyan Jiang
- Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Wushan Road, Tianhe District, Guangzhou, Guangdong, 510642, People's Republic of China
| | - Jiajie Sun
- Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Wushan Road, Tianhe District, Guangzhou, Guangdong, 510642, People's Republic of China.
| | - Yongliang Zhang
- Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Wushan Road, Tianhe District, Guangzhou, Guangdong, 510642, People's Republic of China.
| |
Collapse
|
28
|
Ding Y, Fang A, Yan J, Duan J, Wang N, Yi Y, Shen C. Selective downregulation of distinct circRNAs in the tissues and plasma of patients with primary hepatic carcinoma. Oncol Lett 2019; 18:5255-5268. [PMID: 31612035 PMCID: PMC6781726 DOI: 10.3892/ol.2019.10908] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Accepted: 09/06/2019] [Indexed: 02/07/2023] Open
Abstract
Multiple studies have indicated that circular RNAs (circRNAs) are closely associated with malignant tumor development and metastasis. However, the significance of circRNAs in primary hepatic carcinoma (PHC), particularly in the plasma, remains largely undetermined. In the current study, circRNA expression profiles in three pairs of tumor and adjacent normal samples from patients with PHC, were examined using circRNA chip screening. A total of 80 circRNAs were upregulated, while 75 circRNAs were downregulated in PHC tissues, relative to para-tumor tissues (fold change, ≥1.5). A total of two upregulated circRNAs and three downregulated circRNAs were selected as candidates for further validation of their differential expression. This was performed using reverse transcription-quantitative PCR with 11 pairs of PHC tissues and para-tumor tissues. The results indicated that hsa_circ_0003056 exhibited reduced expression in PHC tissues. Moreover, hsa_circ_0003056 and hsa_circ_0067127 were quantified in the plasma samples of 35 PHC patients and 32 healthy donors. The results revealed that hsa_circ_0067127 was significantly downregulated in the patients' plasma. Finally, a competing endogenous RNA network was constructed, which consisted of one circRNA (hsa_circ_0003056 or has_circ_0067127), five miRNAs and miRNA-targeted genes (mRNAs). Kyoto Encyclopedia of Genes and Genomes pathway analysis indicated that differentially expressed (DE) genes were significantly enriched in the pathway associated with ‘regulation of the pluripotency of stem cells’ for hsa_circ_0003056, and ‘ubiquitin-mediated proteolysis’ and ‘prostate cancer’ for hsa_circ_0067127. Gene ontology analysis revealed that DE genes were primarily associated with the ‘modulation of kinase activity’ and ‘intracellular and transmembrane-ephrin receptor activity’ for hsa_circ_0003056, ‘artery morphogenesis activity’, ‘HOPS complex and transferase activity’ and in ‘transferring acyl groups’ for hsa_circ_0067127. This approach indicated that hsa_circ_0003056 in PHC tissue, and hsa_circ_0067127 in PHC plasma, are downregulated and may be implicated in the tumorigenesis of PHC.
Collapse
Affiliation(s)
- Yan Ding
- Department of Hepatobiliary Surgery, The Second Hospital of Nanjing, Nanjing, Jiangsu 210003, P.R. China.,Department of Microbiology and Immunology, Medical School, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Anning Fang
- Department of Basic Medicine, Anhui Medical College, Hefei, Anhui 230601, P.R. China
| | - Jialai Yan
- Department of Medical Technology, Anhui Medical College, Hefei, Anhui 230601, P.R. China
| | - Jie Duan
- Department of Hepatobiliary Surgery, The Second Hospital of Nanjing, Nanjing, Jiangsu 210003, P.R. China
| | - Nianyue Wang
- Department of Clinical Laboratory, The Second Hospital of Nanjing, Nanjing, Jiangsu 210003, P.R. China
| | - Yongxiang Yi
- Department of Hepatobiliary Surgery, The Second Hospital of Nanjing, Nanjing, Jiangsu 210003, P.R. China
| | - Chuanlai Shen
- Department of Microbiology and Immunology, Medical School, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| |
Collapse
|
29
|
Circular RNAs in gynecological disease: promising biomarkers and diagnostic targets. Biosci Rep 2019; 39:BSR20181641. [PMID: 30996117 PMCID: PMC6522738 DOI: 10.1042/bsr20181641] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Revised: 03/28/2019] [Accepted: 04/14/2019] [Indexed: 12/15/2022] Open
Abstract
Circular RNAs (circRNAs) are a category of RNA molecules with covalently closed circles lacking both a 5′ cap and a 3′ tail. In recent years, circRNAs have attracted much attention and become a research hotspot of the RNA field following miRNAs and lncRNAs. CircRNAs exhibit tissue specificity, structural stability, and evolutionary conservation. Although the biological effects of circRNAs are still underestimated, many studies have shown that circRNAs have functions including regulation of transcription, translation into proteins and miRNA sponges. In this review, we briefly described the biogenesis and function of circRNAs and present circular transcripts in gynecological disease.
Collapse
|
30
|
Hou JC, Xu Z, Zhong SL, Zhang HD, Jiang LH, Chen X, Zhu LP, Li J, Zhou SY, Yang SJ, He YJ, Wang DD, Deng F, Zhang Q, Wang JY, Hu JH, Zhang W, Wu Y, Ding L, Zhao JH, Tang JH. Circular RNA circASS1 is downregulated in breast cancer cells MDA-MB-231 and suppressed invasion and migration. Epigenomics 2019; 11:199-213. [PMID: 30657346 DOI: 10.2217/epi-2017-0167] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Aim: The study aimed to investigate the role of circular RNA circASS1 in breast cancer cells. Materials & methods: Circular RNAs microarray expression profile were analyzed in MCF-7, MDA-MB-231, and qRT-PCR and western blotting were used to quantify expression of circASS1 and its parental gene ASS1. Wound healing, migration and invasion assay were performed. Luciferase assay system was used to detect harbored miRNA. Results: CircASS1 in MDA-MB-231 is downregulated comparing to MCF-7, and overexpression of circASS1 could suppress invasion and migration. While silence, it could promote invasion and migration. MiR-4443 functioning as a tumor promoter gene could be captured by circASS1. ASS1 is upregulated in loss-of-function experiments, while downregulated in gain-of-function experiments. Conclusion: CircASS1 suppresses invasion and migration capacity of breast cancer cells and harbored miR-4443.
Collapse
Affiliation(s)
- Jun-chen Hou
- Department of General Surgery, the First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China
- Graduate School, The First Clinical School of Nanjing Medical University, Nanjing 210029, China
| | - Zhi Xu
- Department of General Surgery, the First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China
- Graduate School, The First Clinical School of Nanjing Medical University, Nanjing 210029, China
| | - Shan-liang Zhong
- Center of Clinical Laboratory Science, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & Nanjing Medical University Affiliated Cancer Hospital, Nanjing 210009, China
| | - He-da Zhang
- Department of General Surgery, Zhong Da Hospital Southeast University, Nanjing 210029, China
| | - Lin-hong Jiang
- Graduate School, Xuzhou Medical University, Xuzhou 221000, China
| | - Xiu Chen
- Department of General Surgery, the First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China
| | - Ling-ping Zhu
- Department of General Surgery, the First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China
- Graduate School, The First Clinical School of Nanjing Medical University, Nanjing 210029, China
| | - Jian Li
- Department of General Surgery, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & Nanjing Medical University Affiliated Cancer Hospital, Nanjing 210009, China
| | - Si-ying Zhou
- Graduate School, Nanjing University of Chinese Medicine, Xianlin Campus, Nanjing 210029, China
| | - Su-jin Yang
- Department of General Surgery, the First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China
- Graduate School, The First Clinical School of Nanjing Medical University, Nanjing 210029, China
| | - Yun-jie He
- Department of General Surgery, the First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China
- Graduate School, The First Clinical School of Nanjing Medical University, Nanjing 210029, China
| | - Dan-dan Wang
- Department of General Surgery, the First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China
| | - Fei Deng
- Department of General Surgery, the First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China
- Graduate School, The First Clinical School of Nanjing Medical University, Nanjing 210029, China
| | - Qian Zhang
- Department of General Surgery, the First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China
- Graduate School, The First Clinical School of Nanjing Medical University, Nanjing 210029, China
| | - Jin-yan Wang
- Department of General Surgery, the First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China
- Graduate School, The First Clinical School of Nanjing Medical University, Nanjing 210029, China
| | - Jia-hua Hu
- Center of Clinical Laboratory Science, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & Nanjing Medical University Affiliated Cancer Hospital, Nanjing 210009, China
| | - Wei Zhang
- Office of Science and Technology Administration, Jiangsu Province Hospital, Nanjing 210029, China
| | - Yang Wu
- Research Center of Clinical Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, 210029, China
| | - Li Ding
- Office of Science and Technology Administration, Jiangsu Province Hospital, Nanjing 210029, China
| | - Jian-hua Zhao
- Center of Clinical Laboratory Science, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & Nanjing Medical University Affiliated Cancer Hospital, Nanjing 210009, China
| | - Jin-hai Tang
- Department of General Surgery, the First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China
- Graduate School, The First Clinical School of Nanjing Medical University, Nanjing 210029, China
| |
Collapse
|
31
|
|
32
|
Wang X, Fang L. Advances in circular RNAs and their roles in breast Cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:206. [PMID: 30157902 PMCID: PMC6116371 DOI: 10.1186/s13046-018-0870-8] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Accepted: 04/08/2018] [Indexed: 12/21/2022]
Abstract
Circular RNAs (circRNAs) are a type of noncoding RNAs with a closed loop structure. With the development of high-throughput sequencing, massive circRNAs have been discovered in tumorous tissues. Emerging evidence suggests that the biological functions of circRNAs including serving as ceRNAs or miRNA sponges, interacting with proteins, regulating gene transcription and translation, suggesting that circRNAs will be novel biomarkers and targets for the diagnosis and prognosis of diseases. Breast cancer is the most frequently occurring cancer and the leading cause of cancer-related death among women worldwide. It is vital to understand the molecular pathways involved in the pathogenesis of proliferation and progression. In this review, we summarize the current knowledge on human circRNAs and their potential clinical implications on breast cancer.
Collapse
Affiliation(s)
- Xuehui Wang
- Nanjing Medical University, Nanjing, 211166, China.,Department of Thyroid and Breast Surgery, Shanghai Tenth People's Hospital, Shanghai, 200070, China
| | - Lin Fang
- Department of Thyroid and Breast Surgery, Shanghai Tenth People's Hospital, Shanghai, 200070, China.
| |
Collapse
|
33
|
Wang D, Yang S, Wang H, Wang J, Zhang Q, Zhou S, He Y, Zhang H, Deng F, Xu H, Zhong S, Fu L, Tang J. The progress of circular RNAs in various tumors. Am J Transl Res 2018; 10:1571-1582. [PMID: 30018701 PMCID: PMC6038087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Accepted: 04/06/2018] [Indexed: 06/08/2023]
Abstract
Circular RNAs (circRNAs), a novel type of non-coding RNAs, presented as covalently closed continuous loops. Recent researches had found that circRNAs could function as microRNA sponges, regulators of gene transcription and encoding proteins. They were relatively stable and expressed widely in cytoplasm, which played important roles in carcinogenesis of cancers, such as esophageal cancer, gastric cancer, colorectal cancer, hepatocarcinoma, bladder cancer, glioma, breast cancer, osteosarcoma and so on. Furthermore, they were involved in many biological functions, like cell proliferation, drug resistance, cell cycle, invasion and metastasis. Therefore, the further studies were meaningful on the mechanism of cancers and circRNAs. In the review, we will summarize the current biogenesis of circRNAs and the roles of them in various cancers, which might be a novel biomarker and therapeutic avenue.
Collapse
Affiliation(s)
- Dandan Wang
- Department of General Surgery, The First Affiliated Hospital with Nanjing Medical UniversityNanjing 210029, China
| | - Sujin Yang
- Department of General Surgery, The First Affiliated Hospital with Nanjing Medical UniversityNanjing 210029, China
| | - Hui Wang
- Jiangsu Jiankang Vocational CollegeNanjing 210000, China
| | - Jinyan Wang
- Department of General Surgery, The First Affiliated Hospital with Nanjing Medical UniversityNanjing 210029, China
| | - Qian Zhang
- Department of General Surgery, The First Affiliated Hospital with Nanjing Medical UniversityNanjing 210029, China
| | - Siying Zhou
- The First Clinical Medical College, Nanjing University of Traditional Chinese MedicineNanjing 210023, China
| | - Yunjie He
- Department of General Surgery, The First Affiliated Hospital with Nanjing Medical UniversityNanjing 210029, China
| | - Heda Zhang
- Department of General Surgery, Southeast University Medical SchoolNanjing 210009, China
| | - Fei Deng
- Department of General Surgery, The First Affiliated Hospital with Nanjing Medical UniversityNanjing 210029, China
| | - Hanzi Xu
- Department of Radiation Oncology, Jiangsu Cancer Hospital Affiliated to Nanjing Medical UniversityNanjing 210009, China
| | - Shanliang Zhong
- Center of Clinical Laboratory Science, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research and The Affiliated Cancer Hospital of Nanjing Medical UniversityNanjing 210009, China
| | - Li Fu
- Department of Breast Cancer Pathology and Research Laboratory, Key Laboratory of Breast Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and HospitalTianjin, China
| | - Jinhai Tang
- Department of General Surgery, The First Affiliated Hospital with Nanjing Medical UniversityNanjing 210029, China
| |
Collapse
|
34
|
|
35
|
Xu Z, Yan Y, Zeng S, Dai S, Chen X, Wei J, Gong Z. Circular RNAs: clinical relevance in cancer. Oncotarget 2018; 9:1444-1460. [PMID: 29416705 PMCID: PMC5787450 DOI: 10.18632/oncotarget.22846] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Accepted: 11/20/2017] [Indexed: 02/05/2023] Open
Abstract
Circular RNAs, as recently discovered new endogenous non-coding RNAs, are important gene modulators with critical roles in tumor initiation and malignant progression. With the development of RNA sequencing and microarray technologies, numerous of functional circRNAs have been identified in cancerous tissues and cell lines. Mechanistically, circRNAs function as miRNA sponges, miRNA reservoirs or parental gene expression regulators. In this review, we discuss the properties and functions of circRNAs and their clinical implication as promising biomarkers for cancer research. Moreover, some emerging fields, such as exosome-loaded and immune response-associated circRNAs, are also discussed, suggesting novel insights into the carcinogenesis and therapy associated with these molecules.
Collapse
Affiliation(s)
- Zhijie Xu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha 410008, China
- Department of Pathology, School of Basic Medicine, Central South University, Changsha 410008, China
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, China
- Institute of Hospital Pharmacy, Central South University, Changsha 410008, China
| | - Yuanliang Yan
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, China
- Institute of Hospital Pharmacy, Central South University, Changsha 410008, China
| | - Shuangshuang Zeng
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, China
- Institute of Hospital Pharmacy, Central South University, Changsha 410008, China
| | - Shuang Dai
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, China
- Institute of Hospital Pharmacy, Central South University, Changsha 410008, China
| | - Xi Chen
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, China
- Institute of Hospital Pharmacy, Central South University, Changsha 410008, China
| | - Jie Wei
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, China
- Institute of Hospital Pharmacy, Central South University, Changsha 410008, China
| | - Zhicheng Gong
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, China
- Institute of Hospital Pharmacy, Central South University, Changsha 410008, China
| |
Collapse
|
36
|
Pei X, Ye S, Jin G, Yu Y. Overexpression of circRNA-001175 promotes proliferation and angiogenesis and inhibits apoptosis of the human umbilical vein endothelial cells (HUVECs) induced by high glucose. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2018; 11:359-366. [PMID: 31938119 PMCID: PMC6957940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 11/13/2017] [Indexed: 06/10/2023]
Abstract
BACKGROUND Circular RNA is a novel type of RNAs and may regulate gene expression in cells. It is also involved in various biological processes. The high glucose stress is one of the major risk factors for cardiovascular diseases. It can induce vascular endothelial cell apoptosis. However, the role and biological function of circRNA is still unclear under high glucose. The purpose of this study is to investigate the role of circRNAs in human umbilical vein endothelial cells (HUVECs) induced by high glucose. METHOD AND RESULTS We investigated the expression pattern of circRNA-001175 and the cell proliferation, tubule formation and apoptosis of human umbilical vein endothelial cells (HUVECs) induced by high glucose. The real-time PCR results showed that the glucose treatments gradually decreased the expressions of circRNA-001175 in a concentration dependent manner. The CCK-8 assay showed that high glucose treatment significantly decreased the cell viability, while the decrease was reversed by the up-regulation of circRNA-001175. Also, the circRNA-001175 transfection showed protective effect on the proliferation decrease induced by high glucose treatment. The Hoechst staining and flow cytometry analysis showed that the Up-regulation of circRNA-001175 inhibits the HUVECs apoptosis induced by high glucose treatment. Furthermore, up-regulation of circRNA-001175 was observed to increases the tubule formation ability of HUVECs under high glucose. CONCLUSIONS CircRNA-001175 may play a key role of protection on HUVECs from high glucose stress. CircRNA-001175 has great potential to become diagnostic or predictive biomarkers for high glucose disease and provide new insights into the treatment of diseases.
Collapse
Affiliation(s)
- Xiaoyan Pei
- School of Medicine, Shandong UniversityWenhuaxi Road 44, Lixia District, Jinan 250012, Shandong, China
- Department of Endocrinology, First Affiliated Hospital of Bengbu Medical CollegeChanghuai Road 287, Bengbu 233000, Anhui, China
| | - Shangdong Ye
- Department of Endocrinology, Anhui Provincial HospitalLujiang Road 17, Yaohai District, Hefei 230001, Anhui, China
| | - Guoxi Jin
- Department of Endocrinology, First Affiliated Hospital of Bengbu Medical CollegeChanghuai Road 287, Bengbu 233000, Anhui, China
| | - Yang Yu
- Environmental Monitor StationShengli East Road 1166, Bengbu 233000, Anhui, China
| |
Collapse
|
37
|
Liu L, Wang J, Khanabdali R, Kalionis B, Tai X, Xia S. Circular RNAs: Isolation, characterization and their potential role in diseases. RNA Biol 2017; 14:1715-1721. [PMID: 28820337 PMCID: PMC5731806 DOI: 10.1080/15476286.2017.1367886] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 08/11/2017] [Accepted: 08/11/2017] [Indexed: 02/06/2023] Open
Abstract
Circular RNA (circRNA) generated by alternative splicing represents a special class of non-coding RNA molecule. CircRNAs are abundant in the eukaryotic cell cytoplasm and have a characteristic organization, timing of action and disease specificity. In contrast to linear RNA, circRNAs are resistant to RNA exonuclease. Consequently, circRNA escapes normal RNA turnover and this improves circRNA stability. CircRNAs can be degraded by microRNA (miRNA) and this results in linearization of the circRNA, which can then act as competitor to endogenous RNA. Through interactions with disease-related miRNA, circRNA can play an important regulatory role in specific diseases. Furthermore, circRNAs have significant potential to become new clinical diagnostic markers.
Collapse
Affiliation(s)
- Lumei Liu
- Department of Geriatrics, Shanghai Institute of Geriatrics, Huadong Hospital, Fudan University, Shanghai, China
- Department of Integrated Traditional Chinese Medicine and Western Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Jian Wang
- Department of Respiration, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ramin Khanabdali
- Department of Maternal-Fetal Medicine Pregnancy Research Centre and University of Melbourne Department of Obstetrics and Gynaecology, Royal Women's Hospital, Parkville, Australia
| | - Bill Kalionis
- Department of Maternal-Fetal Medicine Pregnancy Research Centre and University of Melbourne Department of Obstetrics and Gynaecology, Royal Women's Hospital, Parkville, Australia
| | - Xiantao Tai
- Department of Clinical Massage, School of Acupuncture, Massage and Rehabilitation, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Shijin Xia
- Department of Geriatrics, Shanghai Institute of Geriatrics, Huadong Hospital, Fudan University, Shanghai, China
| |
Collapse
|
38
|
Ji Q, Zhang C, Sun X, Li Q. Circular RNAs function as competing endogenous RNAs in multiple types of cancer. Oncol Lett 2017; 15:23-30. [PMID: 29387208 PMCID: PMC5768103 DOI: 10.3892/ol.2017.7348] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Accepted: 08/03/2017] [Indexed: 12/14/2022] Open
Abstract
Circular (circ)RNAs, naturally formed endogenous non-coding RNAs, have received extensive attention in recent years due to their special loop structures and specific function. circRNAs are formed with covalently closed continuous loops and are mainly generated by back-splicing processes or lariat introns from exons and/or introns. Usually, circRNAs are stable, abundant, and evolutionarily conserved in the cytoplasm. circRNAs often exhibit abnormal expression in different diseases, notably in human cancers, and the presence of abundant circRNAs in serum, saliva and exosomes renders them potential diagnostic or predictive biomarkers for diseases, including multiple types of cancer. Presently, certain circRNAs have been reported to function as microRNA sponges and RNA-binding protein sponges to regulate downstream gene transcription, which suggests a potential for circRNAs in cancer diagnosis, prognosis and clinical therapy. The present study assessed the latest advances in the study of circRNAs in cancer, summarized the functions of circRNAs in different types of cancer, highlighted the competing endogenous RNA function of circRNAs in the occurrence and development of human malignancies, and provided evidence for the future application of circRNAs in the diagnosis, prognosis and treatment of multiple types of cancer.
Collapse
Affiliation(s)
- Qing Ji
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Chengcheng Zhang
- Department of Medical Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, P.R. China
| | - Xiaoting Sun
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Qi Li
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| |
Collapse
|
39
|
Yang Z, Xie L, Han L, Qu X, Yang Y, Zhang Y, He Z, Wang Y, Li J. Circular RNAs: Regulators of Cancer-Related Signaling Pathways and Potential Diagnostic Biomarkers for Human Cancers. Theranostics 2017; 7:3106-3117. [PMID: 28839467 PMCID: PMC5566109 DOI: 10.7150/thno.19016] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Accepted: 05/07/2017] [Indexed: 12/14/2022] Open
Abstract
Circular RNAs (circRNAs) are newly discovered endogenous non-coding RNAs featuring structural stability, high abundance, and tissue-specific expression. CircRNAs are prevalent and conserved in mammalian cells. They are involved in cellular processes and regulate gene expression at the transcriptional or post-transcriptional level by interacting with microRNAs (miRNAs) and other molecules. Recent studies have shown that circRNAs play an important role in the progression of various human diseases including atherosclerosis, nervous system disorders, diabetes, and cancer. In this review, we summarize the advances on endogenous circRNAs in eukaryotic cells and elucidate their diagnostic and prognostic significance in human cancers. Especially, we highlight the involvement of circRNAs in signal transduction pathways as well as their clinical potential to serve as biomarkers.
Collapse
|
40
|
Strand-specific RNA sequencing in pig testes identifies developmentally regulated genes and circular RNAs. Genes Genomics 2017. [DOI: 10.1007/s13258-017-0576-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
41
|
Circular RNAs: A novel type of biomarker and genetic tools in cancer. Oncotarget 2017; 8:64551-64563. [PMID: 28969093 PMCID: PMC5610025 DOI: 10.18632/oncotarget.18350] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 05/23/2017] [Indexed: 12/13/2022] Open
Abstract
Circular RNAs (circRNAs) are a novel type of universal and diverse endogenous noncoding RNAs (ncRNAs) and they form a covalently closed continuous loop without 5′ or 3′ tails unlike linear RNAs. Most circRNAs are presented with characteristics of abundance, stability, conservatism, and often exhibiting tissue/developmental-stage-specific expression. CircRNAs are generated either from exons or introns by back splicing or lariat introns. CircRNAs play important roles as miRNA sponges, gene transcription and expression regulators, RNA-binding protein (RBP) sponges and protein/peptide translators. Emerging evidence revealed the function of circRNAs in cancer and may potentially serve as a required novel biomarker and therapeutic target for cancer treatment. In this review, we discuss about the origins, characteristics and functions of circRNA and how they work as miRNA sponges, gene transcription and expression regulators, RBP sponges in cancer as well as current research methods of circRNAs, providing evidence for the significance of circRNAs in cancer diagnosis and clinical treatment.
Collapse
|
42
|
Wang F, Nazarali AJ, Ji S. Circular RNAs as potential biomarkers for cancer diagnosis and therapy. Am J Cancer Res 2016; 6:1167-1176. [PMID: 27429839 PMCID: PMC4937728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 05/10/2016] [Indexed: 06/06/2023] Open
Abstract
Circular RNAs (circRNAs) are a naturally occurring type of universal and diverse endogenous noncoding RNAs which unlike linear RNAs, have covalently linked ends. They are usually stable, abundant, conserved RNA molecules and often exhibit tissue/developmental-stage specific expression. Functional circRNAs have been identified to act as microRNA sponges and RNA-binding protein (RBP) sequestering agents as well as transcriptional regulators. These multiple functional roles elicit a great potential for circRNAs in biological applications. Emerging evidence shows that circRNAs play important roles in several diseases, particularly in cancer where they act through regulating protein expression of the pivotal genes that are critical for carcinogenesis. The presence of abundant circRNAs in saliva, exosomes and clinical standard blood samples will make them potential diagnostic or predictive biomarkers for diseases, particularly for cancer development, progression and prognosis. Here, we review the current literature and provide evidence for the impact of circRNAs in cancers and their potential significance in cancer prognosis and clinical treatment.
Collapse
Affiliation(s)
- Fengling Wang
- Department of Biochemistry and Molecular Biology, Medical School, Henan UniversityChina
| | - Adil J Nazarali
- College of Pharmacy and Nutrition and Neuroscience Research Cluster, University of SaskatchewanCanada
| | - Shaoping Ji
- Department of Biochemistry and Molecular Biology, Medical School, Henan UniversityChina
- College of Pharmacy and Nutrition and Neuroscience Research Cluster, University of SaskatchewanCanada
| |
Collapse
|