1
|
Wang J, Pajulas A, Fu Y, Adom D, Zhang W, Nelson AS, Spandau DF, Kaplan MH. γδ T Cell‒Mediated Wound Healing Is Diminished by Allergic Skin Inflammation. J Invest Dermatol 2022; 142:2805-2816.e4. [PMID: 35378112 PMCID: PMC9509419 DOI: 10.1016/j.jid.2022.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 03/01/2022] [Accepted: 03/17/2022] [Indexed: 11/24/2022]
Abstract
Atopic dermatitis results in profound changes in the function of the skin that include diminished barrier function and altered production of antimicrobial peptides. Our previous work in a model of allergic skin inflammation identified a defect in the wound healing process that was dependent on IL-4. In this report, we show that allergic skin inflammation results in a dramatic decrease in the presence of the Vγ3+ dendritic epidermal T-cell (DETC) population of γδ T cells in the skin. In mice that express an active signal transducer and activator of transcription 6 in T cells, DETCs are lost early in life. The loss of DETCs is entirely dependent on IL-4 and is recovered with a genetic deficiency of IL-4. Moreover, injection of IL-4 into wild-type mice results in acute loss of the DETC population. A similar loss of DETCs was observed in mice treated topically with MC903. Wounding of skin from Stat6VT-transgenic or MC903-treated mice resulted in decreased production of DETC-dependent cytokines in the skin, coincident with diminished wound closure. Importantly, intradermal injection of the DETC-produced cytokine fibroblast GF 7 rescued the rate of wound closure in mice with allergic skin inflammation. Together, these results suggest that the atopic environment diminishes prohealing T-cell populations in the skin, resulting in attenuated wound healing responses.
Collapse
Affiliation(s)
- Jocelyn Wang
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA; Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Abigail Pajulas
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Yongyao Fu
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Djamilatou Adom
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Wenwu Zhang
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Andrew S Nelson
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA; Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Dan F Spandau
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA; Department of Dermatology, Indiana University School of Medicine, Indianapolis, IN
| | - Mark H Kaplan
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA; Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA.
| |
Collapse
|
2
|
Vizuet-de-Rueda JC, Montero-Vargas JM, Galván-Morales MÁ, Porras-Gutiérrez-de-Velasco R, Teran LM. Current Insights on the Impact of Proteomics in Respiratory Allergies. Int J Mol Sci 2022; 23:ijms23105703. [PMID: 35628512 PMCID: PMC9144092 DOI: 10.3390/ijms23105703] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 05/13/2022] [Accepted: 05/17/2022] [Indexed: 12/11/2022] Open
Abstract
Respiratory allergies affect humans worldwide, causing extensive morbidity and mortality. They include allergic rhinitis (AR), asthma, pollen food allergy syndrome (PFAS), aspirin-exacerbated respiratory disease (AERD), and nasal polyps (NPs). The study of respiratory allergic diseases requires new technologies for early and accurate diagnosis and treatment. Omics technologies provide the tools required to investigate DNA, RNA, proteins, and other molecular determinants. These technologies include genomics, transcriptomics, proteomics, and metabolomics. However, proteomics is one of the main approaches to studying allergic disorders' pathophysiology. Proteins are used to indicate normal biological processes, pathogenic processes, or pharmacologic responses to a therapeutic intervention. In this field, the principal goal of proteomics has been to discover new proteins and use them in precision medicine. Multiple technologies have been applied to proteomics, but that most used for identifying, quantifying, and profiling proteins is mass spectrometry (MS). Over the last few years, proteomics has enabled the establishment of several proteins for diagnosing and treating respiratory allergic diseases.
Collapse
|