1
|
Malueg M, Moo KG, Arnett A, Edwards TH, Ruskin SL, Lambert K, Subramanyam A, Dufort MJ, Gersuk VH, Partridge R, Buckner JH, Khor B. Defining a novel DYRK1A-gp130/IL-6R-pSTAT axis that regulates Th17 differentiation. Immunohorizons 2025; 9:vlae005. [PMID: 39846842 PMCID: PMC11841973 DOI: 10.1093/immhor/vlae005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 11/05/2024] [Indexed: 01/24/2025] Open
Abstract
Dysregulated differentiation of naïve CD4+ T cells into T helper 17 (Th17) cells is likely a key factor predisposing to many autoimmune diseases. Therefore, better understanding how Th17 differentiation is regulated is essential to identify novel therapeutic targets and strategies to identify individuals at high risk of developing autoimmunity. Here, we extend our prior work using chemical inhibitors to provide mechanistic insight into a novel regulator of Th17 differentiation, the kinase dual-specificity tyrosine phosphorylation-regulated kinase 1A (DYRK1A). We generated a conditional knockout mouse model to validate DYRK1A as a regulator of Th17 differentiation that acts in a dose-dependent fashion at least in part by modulating interleukin (IL)-6 signaling through multiple mechanisms. We identified a new role for DYRK1A in regulating surface expression of IL-6 receptor subunits in naïve CD4+ T cells, consistent with DYRK1A's impact on Th17 differentiation. Physiologic relevance is supported by findings in people with Down syndrome, in which increased expression of DYRK1A, encoded on chromosome 21, is linked to increased IL-6 responsiveness. Our findings highlight DYRK1A as a druggable target of broad therapeutic and prognostic interest in autoimmunity and immune function.
Collapse
Affiliation(s)
- Matthew Malueg
- Center for Translational Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA, United States
| | - Keagan G Moo
- Center for Translational Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA, United States
| | - Azlann Arnett
- Center for Translational Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA, United States
| | - Thomas H Edwards
- Center for Systems Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA, United States
| | - Susan L Ruskin
- Center for Translational Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA, United States
| | - Katharina Lambert
- Center for Translational Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA, United States
| | - Aditi Subramanyam
- Center for Translational Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA, United States
| | - Matthew J Dufort
- Center for Systems Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA, United States
| | - Vivian H Gersuk
- Center for Systems Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA, United States
| | - Rebecca Partridge
- Department of Pediatrics, Virginia Mason Medical Center, Issaquah, WA, United States
| | - Jane H Buckner
- Center for Translational Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA, United States
| | - Bernard Khor
- Center for Translational Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA, United States
| |
Collapse
|
2
|
Su S, Katopodi XL, Pita-Juarez YH, Maverakis E, Vlachos IS, Adamopoulos IE. Serine and arginine rich splicing factor 1 deficiency alters pathways involved in IL-17A expression and is implicated in human psoriasis. Clin Immunol 2022; 240:109041. [PMID: 35613697 PMCID: PMC10797199 DOI: 10.1016/j.clim.2022.109041] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/08/2022] [Accepted: 05/09/2022] [Indexed: 12/25/2022]
Abstract
Serine and Arginine Rich Splicing Factor 1 (SRSF1) is a splicing factor that binds to exonic enhancers and stimulates splicing and is previously implicated with autoimmunity. Herein, we investigate the role of SRSF1 in regulating innate immune functions that are pertinent in the pathogenesis of auto-inflammatory diseases. Specifically, we show that conditional deletion of SRSF1 in mature lymphocytes resulted in higher expression of il-17a and il-17 f and an expansion of IL17A+ CD8 T cells. Mechanistically, the aberrant expression of IL-17A in SRSF1 cKO mice could not be attributed to alternative splicing of il-17a or il-17 f genes but possibly to defective CD11B+LY6C+ myeloid derived suppressor function in the spleen. Finally, meta-analysis of RNA-Seq collected from psoriasis patients demonstrate a clear correlation between SRSF1 and psoriasis that suggests a putative role of SRSF1 in IL-17A-induced psoriasis.
Collapse
Affiliation(s)
- Shi Su
- Department of Rheumatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Xanthi-Lida Katopodi
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Yered H Pita-Juarez
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Emanual Maverakis
- Department of Dermatology, University of California, Davis, Sacramento, CA, USA
| | - Ioannis S Vlachos
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Harvard Medical School Initiative for RNA Medicine, Boston, MA, USA; Cancer Research Institute, Beth Israel Deaconess Medical Center, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Iannis E Adamopoulos
- Department of Rheumatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|