1
|
Zhang Y, Xiao B, Liu Y, Wu S, Xiang Q, Xiao Y, Zhao J, Yuan R, Xie K, Li L. Roles of PPAR activation in cancer therapeutic resistance: Implications for combination therapy and drug development. Eur J Pharmacol 2024; 964:176304. [PMID: 38142851 DOI: 10.1016/j.ejphar.2023.176304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 12/09/2023] [Accepted: 12/21/2023] [Indexed: 12/26/2023]
Abstract
Therapeutic resistance is a major obstacle to successful treatment or effective containment of cancer. Peroxisome proliferator-activated receptors (PPARs) play an essential role in regulating energy homeostasis and determining cell fate. Despite of the pleiotropic roles of PPARs in cancer, numerous studies have suggested their intricate relationship with therapeutic resistance in cancer. In this review, we provided an overview of the roles of excessively activated PPARs in promoting resistance to modern anti-cancer treatments, including chemotherapy, radiotherapy, targeted therapy, and immunotherapy. The mechanisms through which activated PPARs contribute to therapeutic resistance in most cases include metabolic reprogramming, anti-oxidant defense, anti-apoptosis signaling, proliferation-promoting pathways, and induction of an immunosuppressive tumor microenvironment. In addition, we discussed the mechanisms through which activated PPARs lead to multidrug resistance in cancer, including drug efflux, epithelial-to-mesenchymal transition, and acquisition and maintenance of the cancer stem cell phenotype. Preliminary studies investigating the effect of combination therapies with PPAR antagonists have suggested the potential of these antagonists in reversing resistance and facilitating sustained cancer management. These findings will provide a valuable reference for further research on and clinical translation of PPAR-targeting treatment strategies.
Collapse
Affiliation(s)
- Yanxia Zhang
- School of Medicine, The South China University of Technology, Guangzhou, 510006, China; Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, China
| | - Bin Xiao
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, China
| | - Yunduo Liu
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, China
| | - Shunhong Wu
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, China
| | - Qin Xiang
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, China
| | - Yuhan Xiao
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, China
| | - Junxiu Zhao
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, China
| | - Ruanfei Yuan
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, China
| | - Keping Xie
- School of Medicine, The South China University of Technology, Guangzhou, 510006, China.
| | - Linhai Li
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, China.
| |
Collapse
|
2
|
Blander JM, Yee Mon KJ, Jha A, Roycroft D. The show and tell of cross-presentation. Adv Immunol 2023; 159:33-114. [PMID: 37996207 DOI: 10.1016/bs.ai.2023.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
Cross-presentation is the culmination of complex subcellular processes that allow the processing of exogenous proteins and the presentation of resultant peptides on major histocompatibility class I (MHC-I) molecules to CD8 T cells. Dendritic cells (DCs) are a cell type that uniquely specializes in cross-presentation, mainly in the context of viral or non-viral infection and cancer. DCs have an extensive network of endovesicular pathways that orchestrate the biogenesis of an ideal cross-presentation compartment where processed antigen, MHC-I molecules, and the MHC-I peptide loading machinery all meet. As a central conveyor of information to CD8 T cells, cross-presentation allows cross-priming of T cells which carry out robust adaptive immune responses for tumor and viral clearance. Cross-presentation can be canonical or noncanonical depending on the functional status of the transporter associated with antigen processing (TAP), which in turn influences the vesicular route of MHC-I delivery to internalized antigen and the cross-presented repertoire of peptides. Because TAP is a central node in MHC-I presentation, it is targeted by immune evasive viruses and cancers. Thus, understanding the differences between canonical and noncanonical cross-presentation may inform new therapeutic avenues against cancer and infectious disease. Defects in cross-presentation on a cellular and genetic level lead to immune-related disease progression, recurrent infection, and cancer progression. In this chapter, we review the process of cross-presentation beginning with the DC subsets that conduct cross-presentation, the signals that regulate cross-presentation, the vesicular trafficking pathways that orchestrate cross-presentation, the modes of cross-presentation, and ending with disease contexts where cross-presentation plays a role.
Collapse
Affiliation(s)
- J Magarian Blander
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, United States; Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, United States; Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY, United States; Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, Cornell University, New York, NY, United States; Immunology and Microbial Pathogenesis Programs, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, Cornell University, New York, NY, United States.
| | - Kristel Joy Yee Mon
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, United States; Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, United States
| | - Atimukta Jha
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, United States; Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, United States
| | - Dylan Roycroft
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, United States; Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, United States
| |
Collapse
|
3
|
An XN, Wei ZN, Xie YY, Xu J, Shen Y, Ni LY, Shi H, Shen PY, Zhang W, Chen YX. CD206+CD68+ mono-macrophages and serum soluble CD206 level are increased in antineutrophil cytoplasmic antibodies associated glomerulonephritis. BMC Immunol 2022; 23:55. [PMID: 36376784 PMCID: PMC9664714 DOI: 10.1186/s12865-022-00529-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 10/29/2022] [Indexed: 11/16/2022] Open
Abstract
Background Antineutrophil Cytoplasmic Antibodies (ANCA) associated glomerulonephritis (AGN) is a group of autoimmune diseases and mono-macrophages are involved in its glomerular injuries. In this study, we aim to investigate the role of CD206+ mono-macrophages in AGN. Methods 27 AGN patients (14 active AGN, 13 remissive AGN) together with healthy controls (n = 9), disease controls (n = 6) and kidney function adjusted controls (n = 9) from Department of Nephrology, Ruijin hospital were recruited. Flow cytometry was used to study proportion of CD206+ cells in peripheral blood. Immunohistochemistry for CD206 staining was performed and CD206 expression was scored in different kidney regions. Serum soluble CD206 (sCD206) was measured by enzyme-linked immunosorbent assay (ELISA). We also generated murine myeloperoxidase (MPO) (muMPO) ANCA by immunizing Mpo−/− mice. Mouse bone marrow-derived macrophages (BMDMs) from wild C57BL/6 mice and peripheral blood mononuclear cell (PBMC) derived macrophages from healthy donors were treated with MPO ANCA with or without its inhibitor AZD5904 to investigate the effects of MPO-ANCA on CD206 expression. Results The proportion of peripheral CD206+CD68+ cells in active AGN patients were significantly higher than that in remissive patients (p < 0.001), healthy controls (p < 0.001) and kidney function adjusted controls (p < 0.001). Serum sCD206 level in active AGN patients was higher than that in healthy controls (p < 0.05) and remissive patients (p < 0.01). Immunohistochemistry showed CD206 was highly expressed in different kidney regions including fibrinoid necrosis or crescent formation, glomeruli, periglomerular and tubulointerstitial compartment in active AGN patients in comparison with disease controls. Further studies showed MPO ANCA could induce CD206 expression in BMDMs and PBMC derived macrophages and such effects could be reversed by its inhibitor AZD5904. Conclusion ANCA could induce CD206 expression on mono-macrophages and CD206+ mono-macrophages are activated in AGN. CD206 might be involved in the pathogenesis of AAV and may be a potential target for the disease. Supplementary Information The online version contains supplementary material available at 10.1186/s12865-022-00529-w.
Collapse
|
4
|
van der Zande HJP, Nitsche D, Schlautmann L, Guigas B, Burgdorf S. The Mannose Receptor: From Endocytic Receptor and Biomarker to Regulator of (Meta)Inflammation. Front Immunol 2021; 12:765034. [PMID: 34721436 PMCID: PMC8551360 DOI: 10.3389/fimmu.2021.765034] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 09/27/2021] [Indexed: 01/27/2023] Open
Abstract
The mannose receptor is a member of the C-type lectin (CLEC) family, which can bind and internalize a variety of endogenous and pathogen-associated ligands. Because of these properties, its role in endocytosis as well as antigen processing and presentation has been studied intensively. Recently, it became clear that the mannose receptor can directly influence the activation of various immune cells. Cell-bound mannose receptor expressed by antigen-presenting cells was indeed shown to drive activated T cells towards a tolerogenic phenotype. On the other hand, serum concentrations of a soluble form of the mannose receptor have been reported to be increased in patients suffering from a variety of inflammatory diseases and to correlate with severity of disease. Interestingly, we recently demonstrated that the soluble mannose receptor directly promotes macrophage proinflammatory activation and trigger metaflammation. In this review, we highlight the role of the mannose receptor and other CLECs in regulating the activation of immune cells and in shaping inflammatory responses.
Collapse
Affiliation(s)
| | - Dominik Nitsche
- Cellular Immunology, Life and Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Laura Schlautmann
- Cellular Immunology, Life and Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Bruno Guigas
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
| | - Sven Burgdorf
- Cellular Immunology, Life and Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| |
Collapse
|
5
|
Patel J, Maddukuri S, Li Y, Bax C, Werth VP. Highly Multiplexed Mass Cytometry Identifies the Immunophenotype in the Skin of Dermatomyositis. J Invest Dermatol 2021; 141:2151-2160. [PMID: 33766508 PMCID: PMC8384654 DOI: 10.1016/j.jid.2021.02.748] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 01/31/2021] [Accepted: 02/17/2021] [Indexed: 01/06/2023]
Abstract
Dermatomyositis (DM) is a rare, systemic autoimmune disease that most frequently affects the skin, muscles, and lungs. The inflammatory infiltrate in the skin has not been fully characterized, and, in this study, we took a single-cell, unbiased approach using imaging mass cytometry. Substantial monocyte‒macrophage diversity was observed, with the CD14+ population correlating positively with Cutaneous Dermatomyositis Disease Area and Severity Index scores (P = 0.031). The T-cell compartment revealed CD4+ T, CD8+ T, and FOXP3+ T cells. Activated (CD69+) circulating memory T cells correlated positively with Cutaneous Dermatomyositis Disease Area and Severity Index scores (P = 0.0268). IFN-β protein was highly upregulated in the T-cell, macrophage, dendritic cell, and endothelial cell populations of DM skin. Myeloid dendritic cells expressed phosphorylated peroxisome proliferator‒activated receptor γ, phosphorylated IRF3, IL-4, and IL-31, and their quantity correlated with itch as measured in Skindex-29. Plasmacytoid dendritic cells colocalized with IFN-γ in addition to the known colocalization with IFN-β. Nuclear phosphorylated peroxisome proliferator‒activated receptor γ expression was found in the DM endothelium. Imaging mass cytometry allows us to characterize single cells in the immune cell population and identify upregulated cytokines and inflammatory pathways in DM. These findings have important implications for the development of future targeted therapies for DM.
Collapse
Affiliation(s)
- Jay Patel
- Corporal Michael J. Crescenz VAMC, Philadelphia, Pennsylvania, USA; Department of Dermatology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Spandana Maddukuri
- Corporal Michael J. Crescenz VAMC, Philadelphia, Pennsylvania, USA; Department of Dermatology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Yubin Li
- Corporal Michael J. Crescenz VAMC, Philadelphia, Pennsylvania, USA; Department of Dermatology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Christina Bax
- Corporal Michael J. Crescenz VAMC, Philadelphia, Pennsylvania, USA; Department of Dermatology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Victoria P Werth
- Corporal Michael J. Crescenz VAMC, Philadelphia, Pennsylvania, USA; Department of Dermatology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
6
|
Soluble mannose receptor induces proinflammatory macrophage activation and metaflammation. Proc Natl Acad Sci U S A 2021; 118:2103304118. [PMID: 34326259 DOI: 10.1073/pnas.2103304118] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Proinflammatory activation of macrophages in metabolic tissues is critically important in the induction of obesity-induced metaflammation. Here, we demonstrate that the soluble mannose receptor (sMR) plays a direct functional role in both macrophage activation and metaflammation. We show that sMR binds CD45 on macrophages and inhibits its phosphatase activity, leading to an Src/Akt/NF-κB-mediated cellular reprogramming toward an inflammatory phenotype both in vitro and in vivo. Remarkably, increased serum sMR levels were observed in obese mice and humans and directly correlated with body weight. Importantly, enhanced sMR levels increase serum proinflammatory cytokines, activate tissue macrophages, and promote insulin resistance. Altogether, our results reveal sMR as regulator of proinflammatory macrophage activation, which could constitute a therapeutic target for metaflammation and other hyperinflammatory diseases.
Collapse
|
7
|
Schulte R, Wohlleber D, Unrau L, Geers B, Metzger C, Erhardt A, Tiegs G, van Rooijen N, Heukamp LC, Klotz L, Knolle PA, Diehl L. Pioglitazone-Mediated Peroxisome Proliferator-Activated Receptor γ Activation Aggravates Murine Immune-Mediated Hepatitis. Int J Mol Sci 2020; 21:ijms21072523. [PMID: 32260486 PMCID: PMC7177299 DOI: 10.3390/ijms21072523] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/02/2020] [Accepted: 04/03/2020] [Indexed: 12/20/2022] Open
Abstract
The nuclear receptor peroxisome proliferator-activated receptor gamma (PPARγ) regulates target gene expression upon ligand binding. Apart from its effects on metabolism, PPARγ activity can inhibit the production of pro-inflammatory cytokines by several immune cells, including dendritic cells and macrophages. In chronic inflammatory disease models, PPARγ activation delays the onset and ameliorates disease severity. Here, we investigated the effect of PPARγ activation by the agonist Pioglitazone on the function of hepatic immune cells and its effect in a murine model of immune-mediated hepatitis. Cytokine production by both liver sinusoidal endothelial cells (IL-6) and in T cells ex vivo (IFNγ) was decreased in cells from Pioglitazone-treated mice. However, PPARγ activation did not decrease pro-inflammatory tumor necrosis factor alpha TNFα production by Kupffer cells after Toll-like receptor (TLR) stimulation ex vivo. Most interestingly, although PPARγ activation was shown to ameliorate chronic inflammatory diseases, it did not improve hepatic injury in a model of immune-mediated hepatitis. In contrast, Pioglitazone-induced PPARγ activation exacerbated D-galactosamine (GalN)/lipopolysaccharide (LPS) hepatitis associated with an increased production of TNFα by Kupffer cells and increased sensitivity of hepatocytes towards TNFα after in vivo Pioglitazone administration. These results unravel liver-specific effects of Pioglitazone that fail to attenuate liver inflammation but rather exacerbate liver injury in an experimental hepatitis model.
Collapse
Affiliation(s)
- Rike Schulte
- Institute for Molecular Medicine and Experimental Immunology, University Hospital Bonn, Bonn, Germany; (R.S.); (D.W.); (C.M.); (L.K.); (P.A.K.)
| | - Dirk Wohlleber
- Institute for Molecular Medicine and Experimental Immunology, University Hospital Bonn, Bonn, Germany; (R.S.); (D.W.); (C.M.); (L.K.); (P.A.K.)
- Institute of Molecular Immunology and Experimental Oncology, Technical University Munich, 81675, Munich, Germany
| | - Ludmilla Unrau
- Institute of Experimental Immunology and Hepatology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (L.U.); (B.G); (A.E.); (G.T.)
| | - Bernd Geers
- Institute of Experimental Immunology and Hepatology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (L.U.); (B.G); (A.E.); (G.T.)
| | - Christina Metzger
- Institute for Molecular Medicine and Experimental Immunology, University Hospital Bonn, Bonn, Germany; (R.S.); (D.W.); (C.M.); (L.K.); (P.A.K.)
| | - Annette Erhardt
- Institute of Experimental Immunology and Hepatology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (L.U.); (B.G); (A.E.); (G.T.)
| | - Gisa Tiegs
- Institute of Experimental Immunology and Hepatology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (L.U.); (B.G); (A.E.); (G.T.)
| | - Nico van Rooijen
- Department of Molecular Cell Biology, VU University Medical Center, 1081 HV Amsterdam, The Netherlands;
| | | | - Luisa Klotz
- Institute for Molecular Medicine and Experimental Immunology, University Hospital Bonn, Bonn, Germany; (R.S.); (D.W.); (C.M.); (L.K.); (P.A.K.)
- Department of Neurology, University Hospital Münster, 48149 Münster, Germany
| | - Percy A. Knolle
- Institute for Molecular Medicine and Experimental Immunology, University Hospital Bonn, Bonn, Germany; (R.S.); (D.W.); (C.M.); (L.K.); (P.A.K.)
- Institute of Molecular Immunology and Experimental Oncology, Technical University Munich, 81675, Munich, Germany
| | - Linda Diehl
- Institute for Molecular Medicine and Experimental Immunology, University Hospital Bonn, Bonn, Germany; (R.S.); (D.W.); (C.M.); (L.K.); (P.A.K.)
- Institute of Experimental Immunology and Hepatology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (L.U.); (B.G); (A.E.); (G.T.)
- Correspondence:
| |
Collapse
|
8
|
Popovic ZV, Embgenbroich M, Chessa F, Nordström V, Bonrouhi M, Hielscher T, Gretz N, Wang S, Mathow D, Quast T, Schloetel JG, Kolanus W, Burgdorf S, Gröne HJ. Hyperosmolarity impedes the cross-priming competence of dendritic cells in a TRIF-dependent manner. Sci Rep 2017; 7:311. [PMID: 28331179 PMCID: PMC5428499 DOI: 10.1038/s41598-017-00434-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 02/21/2017] [Indexed: 12/19/2022] Open
Abstract
Tissue osmolarity varies among different organs and can be considerably increased under pathologic conditions. Hyperosmolarity has been associated with altered stimulatory properties of immune cells, especially macrophages and dendritic cells. We have recently reported that dendritic cells upon exposure to hypertonic stimuli shift their profile towards a macrophage-M2-like phenotype, resulting in attenuated local alloreactivity during acute kidney graft rejection. Here, we examined how hyperosmotic microenvironment affects the cross-priming capacity of dendritic cells. Using ovalbumin as model antigen, we showed that exposure of dendritic cells to hyperosmolarity strongly inhibits activation of antigen-specific T cells despite enhancement of antigen uptake, processing and presentation. We identified TRIF as key mediator of this phenomenon. Moreover, we detected a hyperosmolarity-triggered, TRIF-dependent clustering of MHCI loaded with the ovalbumin-derived epitope, but not of overall MHCI molecules, providing a possible explanation for a reduced T cell activation. Our findings identify dendritic cells as important players in hyperosmolarity-mediated immune imbalance and provide evidence for a novel pathway of inhibition of antigen specific CD8+ T cell response in a hypertonic micromilieu.
Collapse
Affiliation(s)
- Zoran V Popovic
- Department of Cellular and Molecular Pathology, German Cancer Research Center, Heidelberg, Germany. .,Institute of Pathology, University Hospital Mannheim, University of Heidelberg, Mannheim, Germany.
| | - Maria Embgenbroich
- Department of Cellular Immunology, LIMES Institute, University of Bonn, Bonn, Germany
| | - Federica Chessa
- Department of Cellular and Molecular Pathology, German Cancer Research Center, Heidelberg, Germany
| | - Viola Nordström
- Department of Cellular and Molecular Pathology, German Cancer Research Center, Heidelberg, Germany
| | - Mahnaz Bonrouhi
- Department of Cellular and Molecular Pathology, German Cancer Research Center, Heidelberg, Germany
| | - Thomas Hielscher
- Department of Biostatistics, German Cancer Research Center, Heidelberg, Germany
| | - Norbert Gretz
- Medical Research Center, University Hospital Mannheim, University of Heidelberg, Mannheim, Germany
| | - Shijun Wang
- Department of Cellular and Molecular Pathology, German Cancer Research Center, Heidelberg, Germany
| | - Daniel Mathow
- Department of Cellular and Molecular Pathology, German Cancer Research Center, Heidelberg, Germany
| | - Thomas Quast
- Department of Molecular Immunology and Cell Biology, LIMES Institute, University of Bonn, Bonn, Germany
| | - Jan-Gero Schloetel
- Department of Membrane Biochemistry, LIMES Institute, University of Bonn, Bonn, Germany
| | - Waldemar Kolanus
- Department of Molecular Immunology and Cell Biology, LIMES Institute, University of Bonn, Bonn, Germany
| | - Sven Burgdorf
- Department of Cellular Immunology, LIMES Institute, University of Bonn, Bonn, Germany
| | - Hermann-Josef Gröne
- Department of Cellular and Molecular Pathology, German Cancer Research Center, Heidelberg, Germany. h.-
| |
Collapse
|
9
|
PPAR-γ agonist pioglitazone regulates dendritic cells immunogenicity mediated by DC-SIGN via the MAPK and NF-κB pathways. Int Immunopharmacol 2016; 41:24-34. [PMID: 27792919 DOI: 10.1016/j.intimp.2016.09.028] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Revised: 09/07/2016] [Accepted: 09/27/2016] [Indexed: 12/20/2022]
Abstract
Dendritic cell-specific ICAM-3 grabbing non-integrin (DC-SIGN) is a dendritic cell-specific lectin which participates in dendritic cell (DC) trafficking, antigen uptake and DC-T cell interactions at the initiation of immune responses. This study investigated whether peroxisome proliferator-activated receptor-gamma (PPAR-γ) activation in human DCs regulates the immunogenicity of DCs mediated by DC-SIGN and exploited the possible molecular mechanisms, especially focused on the signaling pathways of mitogen-activated protein kinases (MAPK) and nuclear factor-κB (NF-κB). Here, we show that the PPAR-γ agonist pioglitazone decreased DC adhesion and transmigration, and DC stimulation of T cell proliferation mediated by DC-SIGN dependent on activation of PPAR-γ, although it increased DC endocytosis independent of PPAR-γ activation. Furthermore, PPAR-γ activation by pioglitazone in DCs down-regulated the expression of DC-SIGN, which was mediated by modulating the balance of the signaling pathways of extracellular signal-regulated kinase, c-Jun N-terminal kinase and NF-κB, but not p38 MAPK. Therefore, we conclude that PPAR-γ activation in human DCs regulates the immunogenicity of DCs mediated by DC-SIGN via the pathways of MAPK and NF-κB. These findings may support the important role of these mediators in the regulation of DC-mediated inflammatory and immunologic processes.
Collapse
|
10
|
B7-H1 shapes T-cell-mediated brain endothelial cell dysfunction and regional encephalitogenicity in spontaneous CNS autoimmunity. Proc Natl Acad Sci U S A 2016; 113:E6182-E6191. [PMID: 27671636 DOI: 10.1073/pnas.1601350113] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Molecular mechanisms that determine lesion localization or phenotype variation in multiple sclerosis are mostly unidentified. Although transmigration of activated encephalitogenic T cells across the blood-brain barrier (BBB) is a crucial step in the disease pathogenesis of CNS autoimmunity, the consequences on brain endothelial barrier integrity upon interaction with such T cells and subsequent lesion formation and distribution are largely unknown. We made use of a transgenic spontaneous mouse model of CNS autoimmunity characterized by inflammatory demyelinating lesions confined to optic nerves and spinal cord (OSE mice). Genetic ablation of a single immune-regulatory molecule in this model [i.e., B7-homolog 1 (B7-H1, PD-L1)] not only significantly increased incidence of spontaneous CNS autoimmunity and aggravated disease course, especially in the later stages of disease, but also importantly resulted in encephalitogenic T-cell infiltration and lesion formation in normally unaffected brain regions, such as the cerebrum and cerebellum. Interestingly, B7-H1 ablation on myelin oligodendrocyte glycoprotein-specific CD4+ T cells, but not on antigen-presenting cells, amplified T-cell effector functions, such as IFN-γ and granzyme B production. Therefore, these T cells were rendered more capable of eliciting cell contact-dependent brain endothelial cell dysfunction and increased barrier permeability in an in vitro model of the BBB. Our findings suggest that a single immune-regulatory molecule on T cells can be ultimately responsible for localized BBB breakdown, and thus substantial changes in lesion topography in the context of CNS autoimmunity.
Collapse
|
11
|
Loss of Peripheral Tolerance in Emphysema. Phenotypes, Exacerbations, and Disease Progression. Ann Am Thorac Soc 2016; 12 Suppl 2:S164-8. [PMID: 26595734 DOI: 10.1513/annalsats.201503-115aw] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Heterogeneity in the development and progression of cigarette smoke-induced lung diseases strongly argues for a need to improve the clinical and phenotypic characterization of patients with chronic obstructive lung disease and emphysema. Smokers with emphysema are at a much higher risk for accelerated loss of lung function, increased cardiovascular morbidity, and development of lung cancer. Recent evidence in human translational studies and animal models suggests that emphysema is associated with activation of specialized antigen-presenting cells and that cigarette smoke can disrupt the induction of immune tolerance in the lungs. Quantitative assessment of cytokines expressed by autoreactive T lymphocytes in response to human lung elastin fragments has shown a strong positive correlation between T helper Type 1 (Th1) and Th17 cells' immune responses and emphysema. In search of factors that could reduce the threshold for induction of autoimmune inflammation, we have discovered that cleavage of complement protein 3 (C3) generates bioactive molecules (e.g., C3a) and activates lung antigen-presenting cells. The autocrine and paracrine function of C3a and its receptor are required in T cell-mediated inflammatory responses to cigarette smoke in both human and preclinical models of emphysema. Targeting upstream molecules that reduce the potential for generation of autoreactive T cells could lead to the development of novel therapeutics to prevent progression of emphysema in smokers.
Collapse
|
12
|
Maganti AV, Tersey SA, Syed F, Nelson JB, Colvin SC, Maier B, Mirmira RG. Peroxisome Proliferator-activated Receptor-γ Activation Augments the β-Cell Unfolded Protein Response and Rescues Early Glycemic Deterioration and β Cell Death in Non-obese Diabetic Mice. J Biol Chem 2016; 291:22524-22533. [PMID: 27613867 DOI: 10.1074/jbc.m116.741694] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 09/05/2016] [Indexed: 12/11/2022] Open
Abstract
Type 1 diabetes is an autoimmune disorder that is characterized by a failure of the unfolded protein response in islet β cells with subsequent endoplasmic reticulum stress and cellular death. Thiazolidinediones are insulin sensitizers that activate the nuclear receptor PPAR-γ and have been shown to partially ameliorate autoimmune type 1 diabetes in humans and non-obese diabetic (NOD) mice. We hypothesized that thiazolidinediones reduce β cell stress and death independently of insulin sensitivity. To test this hypothesis, female NOD mice were administered pioglitazone during the pre-diabetic phase and assessed for insulin sensitivity and β cell function relative to controls. Pioglitazone-treated mice showed identical weight gain, body fat distribution, and insulin sensitivity compared with controls. However, treated mice showed significantly improved glucose tolerance with enhanced serum insulin levels, reduced β cell death, and increased β cell mass. The effect of pioglitazone was independent of actions on T cells, as pancreatic lymph node T cell populations were unaltered and T cell proliferation was unaffected by pioglitazone. Isolated islets of treated mice showed a more robust unfolded protein response, with increases in Bip and ATF4 and reductions in spliced Xbp1 mRNA. The effect of pioglitazone appears to be a direct action on β cells, as islets from mice treated with pioglitazone showed reductions in PPAR-γ (Ser-273) phosphorylation. Our results demonstrate that PPAR-γ activation directly improves β cell function and survival in NOD mice by enhancing the unfolded protein response and suggest that blockade of PPAR-γ (Ser-273) phosphorylation may prevent type 1 diabetes.
Collapse
Affiliation(s)
- Aarthi V Maganti
- From the Department of Cellular and Integrative Physiology.,Center for Diabetes and Metabolic Diseases
| | - Sarah A Tersey
- Center for Diabetes and Metabolic Diseases.,Department of Pediatrics and the Herman B Wells Center
| | - Farooq Syed
- Department of Pediatrics and the Herman B Wells Center
| | | | - Stephanie C Colvin
- Center for Diabetes and Metabolic Diseases.,Department of Pediatrics and the Herman B Wells Center
| | - Bernhard Maier
- Center for Diabetes and Metabolic Diseases.,Department of Pediatrics and the Herman B Wells Center
| | - Raghavendra G Mirmira
- From the Department of Cellular and Integrative Physiology, .,Center for Diabetes and Metabolic Diseases.,Department of Pediatrics and the Herman B Wells Center.,Department of Medicine, and.,Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202 and.,Indiana Biosciences Research Institute, Indianapolis, Indiana 46202
| |
Collapse
|
13
|
Hucke S, Herold M, Liebmann M, Freise N, Lindner M, Fleck AK, Zenker S, Thiebes S, Fernandez-Orth J, Buck D, Luessi F, Meuth SG, Zipp F, Hemmer B, Engel DR, Roth J, Kuhlmann T, Wiendl H, Klotz L. The farnesoid-X-receptor in myeloid cells controls CNS autoimmunity in an IL-10-dependent fashion. Acta Neuropathol 2016; 132:413-31. [PMID: 27383204 DOI: 10.1007/s00401-016-1593-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 06/09/2016] [Accepted: 06/26/2016] [Indexed: 12/24/2022]
Abstract
Innate immune responses by myeloid cells decisively contribute to perpetuation of central nervous system (CNS) autoimmunity and their pharmacologic modulation represents a promising strategy to prevent disease progression in Multiple Sclerosis (MS). Based on our observation that peripheral immune cells from relapsing-remitting and primary progressive MS patients exhibited strongly decreased levels of the bile acid receptor FXR (farnesoid-X-receptor, NR1H4), we evaluated its potential relevance as therapeutic target for control of established CNS autoimmunity. Pharmacological FXR activation promoted generation of anti-inflammatory macrophages characterized by arginase-1, increased IL-10 production, and suppression of T cell responses. In mice, FXR activation ameliorated CNS autoimmunity in an IL-10-dependent fashion and even suppressed advanced clinical disease upon therapeutic administration. In analogy to rodents, pharmacological FXR activation in human monocytes from healthy controls and MS patients induced an anti-inflammatory phenotype with suppressive properties including control of effector T cell proliferation. We therefore, propose an important role of FXR in control of T cell-mediated autoimmunity by promoting anti-inflammatory macrophage responses.
Collapse
Affiliation(s)
- Stephanie Hucke
- Department of Neurology, University of Muenster, Albert-Schweitzer-Campus 1, Building A1, 48149, Muenster, Germany
| | - Martin Herold
- Department of Neurology, University of Muenster, Albert-Schweitzer-Campus 1, Building A1, 48149, Muenster, Germany
| | - Marie Liebmann
- Institute of Immunology, University of Muenster, Muenster, Germany
| | - Nicole Freise
- Institute of Immunology, University of Muenster, Muenster, Germany
| | - Maren Lindner
- Department of Neurology, University of Muenster, Albert-Schweitzer-Campus 1, Building A1, 48149, Muenster, Germany
| | - Ann-Katrin Fleck
- Department of Neurology, University of Muenster, Albert-Schweitzer-Campus 1, Building A1, 48149, Muenster, Germany
| | - Stefanie Zenker
- Institute of Immunology, University of Muenster, Muenster, Germany
| | - Stephanie Thiebes
- Institute of Experimental Immunology and Imaging, University Duisburg-Essen, Essen, Germany
| | - Juncal Fernandez-Orth
- Department of Neurology, University of Muenster, Albert-Schweitzer-Campus 1, Building A1, 48149, Muenster, Germany
| | - Dorothea Buck
- Department of Neurology, Technische Universität München, Munich, Germany
| | - Felix Luessi
- Department of Neurology, University of Mainz, Mainz, Germany
| | - Sven G Meuth
- Department of Neurology, University of Muenster, Albert-Schweitzer-Campus 1, Building A1, 48149, Muenster, Germany
- Cluster of Excellence Cells in Motion, University of Muenster, Muenster, Germany
| | - Frauke Zipp
- Department of Neurology, University of Mainz, Mainz, Germany
| | - Bernhard Hemmer
- Department of Neurology, Technische Universität München, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Daniel Robert Engel
- Institute of Experimental Immunology and Imaging, University Duisburg-Essen, Essen, Germany
| | - Johannes Roth
- Institute of Immunology, University of Muenster, Muenster, Germany
| | - Tanja Kuhlmann
- Institute of Neuropathology, University of Muenster, Muenster, Germany
| | - Heinz Wiendl
- Department of Neurology, University of Muenster, Albert-Schweitzer-Campus 1, Building A1, 48149, Muenster, Germany
- Cluster of Excellence Cells in Motion, University of Muenster, Muenster, Germany
| | - Luisa Klotz
- Department of Neurology, University of Muenster, Albert-Schweitzer-Campus 1, Building A1, 48149, Muenster, Germany.
| |
Collapse
|
14
|
Targeting and insertion of peroxisomal membrane proteins: ER trafficking versus direct delivery to peroxisomes. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1863:870-80. [PMID: 26392202 DOI: 10.1016/j.bbamcr.2015.09.021] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Revised: 09/11/2015] [Accepted: 09/16/2015] [Indexed: 12/11/2022]
Abstract
The importance of peroxisomes is highlighted by severe inherited human disorders linked to impaired peroxisomal biogenesis. Besides the simple architecture of these ubiquitous and dynamic organelles, their biogenesis is surprisingly complex and involves specialized proteins, termed peroxins, which mediate targeting and insertion of peroxisomal membrane proteins (PMPs) into the peroxisomal bilayer, and the import of soluble proteins into the protein-dense matrix of the organelle. The long-standing paradigm that all peroxisomal proteins are imported directly into preexisting peroxisomes has been challenged by the detection of PMPs inside the endoplasmic reticulum (ER). New models propose that the ER originates peroxisomal biogenesis by mediating PMP trafficking to the peroxisomes via budding vesicles. However, the relative contribution of this ER-derived pathway to the total peroxisome population in vivo, and the detailed mechanisms of ER entry and exit of PMPs are controversially discussed. This review aims to summarize present knowledge about how PMPs are targeted to the ER, instead of being inserted directly into preexisting peroxisomes. Moreover, molecular mechanisms that facilitate bilayer insertion of PMPs among different species are discussed.
Collapse
|
15
|
Wang F, Wang YY, Li J, You X, Qiu XH, Wang YN, Gao FG. Increased antigen presentation but impaired T cells priming after upregulation of interferon-beta induced by lipopolysaccharides is mediated by upregulation of B7H1 and GITRL. PLoS One 2014; 9:e105636. [PMID: 25144375 PMCID: PMC4140801 DOI: 10.1371/journal.pone.0105636] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 07/25/2014] [Indexed: 01/09/2023] Open
Abstract
Dendritic cells are able to present Ag-derived peptides on MHC class I and II molecules and induce T cells priming. Lipopolysaccharides (LPS), an activator of Toll-like 4 receptor (TLR4) signaling, has been demonstrated to facilitate Ag-presentation, up-regulate surface molecules expression but impair T cells priming. In this study, we investigated the effect of LPS on nicotine-enhanced DCs-dependent T cells priming and the mechanisms of LPS orchestrating the immunosuppressive program. We could demonstrate that the treatment with LPS resulted in increased surface molecules expression, enhanced Ag-presentation, up-regulated release of TGF-beta, TNF-alpha, IL-6, and IFN-beta. Concomititantly, the upregulation of IFN-beta in DCs induces the up-regulation of coinhibitory molecules B7H1 and GITRL, which cause an impaired activation of naïve Ag-specific T cells and the induction of T cell tolerance by enhancing B7H1-PD-1 interactions and promoting GITRL-GITL facilitated Treg generation, respectively. These data provide a mechanistic basis for the immunomodulatory action of IFN-beta which might open new possibilities in the development of therapeutic approaches aimed at the control of excessive immune response and persistent infection.
Collapse
Affiliation(s)
- Fang Wang
- Department of Immunology, Medical College, Xiamen University, Xiamen, China
- Department of Basic Medicine Science, NanYang Medical College, Nanyang, China
| | - Yan Yan Wang
- Department of Immunology, Medical College, Xiamen University, Xiamen, China
| | - Juan Li
- Department of Immunology, Medical College, Xiamen University, Xiamen, China
| | - Xiang You
- Department of Immunology, Medical College, Xiamen University, Xiamen, China
| | - Xin Hui Qiu
- Department of Immunology, Medical College, Xiamen University, Xiamen, China
| | - Yi Nan Wang
- Department of Immunology, Medical College, Xiamen University, Xiamen, China
| | - Feng Guang Gao
- Department of Immunology, Medical College, Xiamen University, Xiamen, China
- * E-mail:
| |
Collapse
|
16
|
Lefterova MI, Haakonsson AK, Lazar MA, Mandrup S. PPARγ and the global map of adipogenesis and beyond. Trends Endocrinol Metab 2014; 25:293-302. [PMID: 24793638 PMCID: PMC4104504 DOI: 10.1016/j.tem.2014.04.001] [Citation(s) in RCA: 460] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 04/08/2014] [Accepted: 04/09/2014] [Indexed: 10/25/2022]
Abstract
Peroxisome proliferator-activated receptor γ (PPARγ) is a member of the nuclear receptor (NR) superfamily of ligand-dependent transcription factors (TFs) and function as a master regulator of adipocyte differentiation and metabolism. We review recent breakthroughs in the understanding of PPARγ gene regulation and function in the chromatin context. It is now clear that multiple TFs team up to induce PPARγ during adipogenesis, and that other TFs cooperate with PPARγ to ensure adipocyte-specific genomic binding and function. We discuss how this differs in other PPARγ-expressing cells such as macrophages and how these genome-wide mechanisms are preserved across species despite modest conservation of specific binding sites. These emerging considerations inform our understanding of PPARγ function as well as of adipocyte development and physiology.
Collapse
Affiliation(s)
- Martina I Lefterova
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA; Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, and Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Anders K Haakonsson
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense, Denmark
| | - Mitchell A Lazar
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, and Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Susanne Mandrup
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense, Denmark.
| |
Collapse
|
17
|
Farnesi-de-Assunção TS, Carregaro V, da Silva CAT, Pinho Jr AJD, Napimoga MH. The Modulatory Effect of 15d-PGJ2 in Dendritic Cells. NUCLEAR RECEPTOR RESEARCH 2014. [DOI: 10.11131/2014/101083] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
| | - Vanessa Carregaro
- Institute of Genetics and Biochemestry, Laboratory of Nanobiotecnology, Federal University of Uberlândia, Uberlândia/MG, Brazil
| | | | - Antonio José de Pinho Jr
- Laboratory of Immunology and Molecular Biology, São Leopoldo Mandic Institute and Research Center, Campinas/SP, Brazil
| | - Marcelo Henrique Napimoga
- Laboratory of Immunology and Molecular Biology, São Leopoldo Mandic Institute and Research Center, Campinas/SP, Brazil
| |
Collapse
|
18
|
Shan M, You R, Yuan X, Frazier MV, Porter P, Seryshev A, Hong JS, Song LZ, Zhang Y, Hilsenbeck S, Whitehead L, Zarinkamar N, Perusich S, Corry DB, Kheradmand F. Agonistic induction of PPARγ reverses cigarette smoke-induced emphysema. J Clin Invest 2014; 124:1371-81. [PMID: 24569375 DOI: 10.1172/jci70587] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Accepted: 11/21/2013] [Indexed: 01/12/2023] Open
Abstract
The development of emphysema in humans and mice exposed to cigarette smoke is promoted by activation of an adaptive immune response. Lung myeloid dendritic cells (mDCs) derived from cigarette smokers activate autoreactive Th1 and Th17 cells. mDC-dependent activation of T cell subsets requires expression of the SPP1 gene, which encodes osteopontin (OPN), a pleiotropic cytokine implicated in autoimmune responses. The upstream molecular events that promote SPP1 expression and activate mDCs in response to smoke remain unknown. Here, we show that peroxisome proliferator-activated receptor γ (PPARG/Pparg) expression was downregulated in mDCs of smokers with emphysema and mice exposed to chronic smoke. Conditional knockout of PPARγ in APCs using Cd11c-Cre Pparg(flox/flox) mice led to spontaneous lung inflammation and emphysema that resembled the phenotype of smoke-exposed mice. The inflammatory phenotype of Cd11c-Cre Pparg(flox/flox) mice required OPN, suggesting an antiinflammatory mechanism in which PPARγ negatively regulates Spp1 expression in the lung. A 2-month treatment with a PPARγ agonist reversed emphysema in WT mice despite continual smoke exposure. Furthermore, endogenous PPARγ agonists were reduced in the plasma of smokers with emphysema. These findings reveal a proinflammatory pathway, in which reduced PPARγ activity promotes emphysema, and suggest that targeting this pathway in smokers could prevent and reverse emphysema.
Collapse
|
19
|
Kiss M, Czimmerer Z, Nagy L. The role of lipid-activated nuclear receptors in shaping macrophage and dendritic cell function: From physiology to pathology. J Allergy Clin Immunol 2013; 132:264-86. [PMID: 23905916 DOI: 10.1016/j.jaci.2013.05.044] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 05/16/2013] [Accepted: 05/30/2013] [Indexed: 02/06/2023]
Abstract
Nuclear receptors are ligand-activated transcription factors linking lipid signaling to the expression of the genome. There is increasing appreciation of the involvement of this receptor network in the metabolic programming of macrophages and dendritic cells (DCs), essential members of the innate immune system. In this review we focus on the role of retinoid X receptor, retinoic acid receptor, peroxisome proliferator-associated receptor γ, liver X receptor, and vitamin D receptor in shaping the immune and metabolic functions of macrophages and DCs. We also provide an overview of the contribution of macrophage- and DC-expressed nuclear receptors to various immunopathologic conditions, such as rheumatoid arthritis, inflammatory bowel disease, systemic lupus erythematosus, asthma, and some others. We suggest that systematic analyses of the roles of these receptors and their activating lipid ligands in immunopathologies combined with complementary and focused translational and clinical research will be crucial for the development of new therapies using the many molecules available to target nuclear receptors.
Collapse
Affiliation(s)
- Mate Kiss
- Department of Biochemistry and Molecular Biology, Research Center for Molecular Medicine, University of Debrecen, Medical and Health Science Center, Debrecen, Hungary
| | | | | |
Collapse
|
20
|
Abstract
The MR is a highly effective endocytic receptor with a broad binding specificity encompassing ligands of microbial and endogenous origin and a poorly characterized ability to modulate cellular activation. This review provides an update of the latest developments in the field. It discusses how MR biology might be affected by glycosylation and proteolytic processing, MR involvement in antigen delivery, and the potential contribution of MR to T cell differentiation and cellular activation. Further understanding of these areas will, no doubt, inform the design of novel, therapeutic tools for improved vaccination, control of inflammation, and tumor chemotherapy, which will benefit from exploiting MR-efficient internalization properties and unique pattern of expression.
Collapse
Affiliation(s)
- Luisa Martinez-Pomares
- Faculty of Medicine and Health Sciences, University of Nottingham, Queen’s Medical Centre, Nottingham, United Kingdom.
| |
Collapse
|
21
|
Nagy L, Szanto A, Szatmari I, Széles L. Nuclear hormone receptors enable macrophages and dendritic cells to sense their lipid environment and shape their immune response. Physiol Rev 2012; 92:739-89. [PMID: 22535896 DOI: 10.1152/physrev.00004.2011] [Citation(s) in RCA: 169] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
A key issue in the immune system is to generate specific cell types, often with opposing activities. The mechanisms of differentiation and subtype specification of immune cells such as macrophages and dendritic cells are critical to understand the regulatory principles and logic of the immune system. In addition to cytokines and pathogens, it is increasingly appreciated that lipid signaling also has a key role in differentiation and subtype specification. In this review we explore how intracellular lipid signaling via a set of transcription factors regulates cellular differentiation, subtype specification, and immune as well as metabolic homeostasis. We introduce macrophages and dendritic cells and then we focus on a group of transcription factors, nuclear receptors, which regulate gene expression upon receiving lipid signals. The receptors we cover are the ones with a recognized physiological function in these cell types and ones which heterodimerize with the retinoid X receptor. These are as follows: the receptor for a metabolite of vitamin A, retinoic acid: retinoic acid receptor (RAR), the vitamin D receptor (VDR), the fatty acid receptor: peroxisome proliferator-activated receptor γ (PPARγ), the oxysterol receptor liver X receptor (LXR), and their obligate heterodimeric partner, the retinoid X receptor (RXR). We discuss how they can get activated and how ligand is generated and eliminated in these cell types. We also explore how activation of a particular target gene contributes to biological functions and how the regulation of individual target genes adds up to the coordination of gene networks. It appears that RXR heterodimeric nuclear receptors provide these cells with a coordinated and interrelated network of transcriptional regulators for interpreting the lipid milieu and the metabolic changes to bring about gene expression changes leading to subtype and functional specification. We also show that these networks are implicated in various immune diseases and are amenable to therapeutic exploitation.
Collapse
Affiliation(s)
- Laszlo Nagy
- Department of Biochemistry and Molecular Biology, University of Debrecen, Medical and Health Science Center, Egyetem tér 1, Debrecen, Hungary.
| | | | | | | |
Collapse
|
22
|
Yanagita M, Kobayashi R, Kojima Y, Mori K, Murakami S. Nicotine modulates the immunological function of dendritic cells through peroxisome proliferator-activated receptor-γ upregulation. Cell Immunol 2012; 274:26-33. [PMID: 22425227 DOI: 10.1016/j.cellimm.2012.02.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2011] [Revised: 01/27/2012] [Accepted: 02/20/2012] [Indexed: 12/29/2022]
Abstract
We examined the effects of nicotine on differentiation and function of monocyte-derived human dendritic cells (DCs). NiDCs, which were the DCs differentiated in the presence of nicotine, showed lower levels of CD1a. Secretion of IL-12 and TNF-α by lipopolysaccharide (LPS)-stimulated NiDCs was significantly suppressed compared to monocyte-derived DCs grown without nicotine. NiDCs displayed a diminished capacity to induce allogeneic T cell proliferation with a reduced production of IFN-γ, and maintained/enhanced LPS-mediated expression of coinhibitory molecules. Interestingly, NiDCs enhanced the expression of nuclear receptor peroxisome proliferator-activated receptors γ (PPAR γ), which has immunomodulatory properties. Expression of PPAR γ and PPAR γ-target genes was significantly inhibited by pretreatment with d-tubocurarine, antagonist of non-selective nicotinic acetylcholine receptors (nAChR). In addition, reduction of Th1 responses was inhibited after blocking nAChR-mediated signal. These data suggest the effect of nicotine on altering DC immunogenicity by impeding Th1 immunity is partially mediated by upregulation of PPAR γ.
Collapse
Affiliation(s)
- Manabu Yanagita
- Department of Periodontology, Division of Oral Biology and Disease Control, Osaka University Graduate School of Dentistry, Yamadaoka 1-8, Suita, Osaka 565-0871, Japan
| | | | | | | | | |
Collapse
|
23
|
Harmon GS, Lam MT, Glass CK. PPARs and lipid ligands in inflammation and metabolism. Chem Rev 2012; 111:6321-40. [PMID: 21988241 DOI: 10.1021/cr2001355] [Citation(s) in RCA: 144] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Gregory S Harmon
- Department of Medicine, Division of Digestive Diseases, University of California-Los Angeles, Los Angeles, California 90095, USA
| | | | | |
Collapse
|
24
|
Popovic ZV, Wang S, Papatriantafyllou M, Kaya Z, Porubsky S, Meisner M, Bonrouhi M, Burgdorf S, Young MF, Schaefer L, Gröne HJ. The proteoglycan biglycan enhances antigen-specific T cell activation potentially via MyD88 and TRIF pathways and triggers autoimmune perimyocarditis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2011; 187:6217-26. [PMID: 22095710 PMCID: PMC3428142 DOI: 10.4049/jimmunol.1003478] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Biglycan is a proteoglycan ubiquitously present in extracellular matrix of a variety of organs, including heart, and it was reported to be overexpressed in myocardial infarction. Myocardial infarction may be complicated by perimyocarditis through unknown mechanisms. Our aim was to investigate the capacity of TLR2/TLR4 ligand biglycan to enhance the presentation of specific Ags released upon cardiomyocyte necrosis. In vitro, OVA-pulsed bone marrow-derived dendritic cells from wild-type (WT; C57BL/6) and TLR2-, TLR4-, MyD88-, or TRIF-deficient mice were cotreated with LPS, biglycan, or vehicle and incubated with OVA-recognizing MHC I- or MHC II-restricted T cells. Biglycan enhanced OVA-specific cross-priming by >80% to MHC I-restricted T cells in both TLR2- and TLR4-pathway-dependent manners. Accordingly, biglycan-induced cross-priming by both MyD88- and TRIF-deficient dendritic cells (DCs) was strongly diminished. OVA-specific activation of MHC II-restricted T cells was predominantly TLR4 dependent. Our first in vivo correlate was a model of experimental autoimmune perimyocarditis triggered by injection of cardiac Ag-pulsed DCs (BALB/c). Biglycan-treated DCs triggered perimyocarditis to a comparable extent and intensity as LPS-treated DCs (mean scores 1.3 ± 0.3 and 1.5 ± 0.4, respectively). Substitution with TLR4-deficient DCs abolished this effect. In a second in vivo approach, WT and biglycan-deficient mice were followed 2 wk after induction of myocardial infarction. WT mice demonstrated significantly greater myocardial T lymphocyte infiltration in comparison with biglycan-deficient animals. We concluded that the TLR2/4 ligand biglycan, a component of the myocardial matrix, may enhance Ag-specific T cell priming, potentially via MyD88 and TRIF, and stimulate autoimmune perimyocarditis.
Collapse
Affiliation(s)
- Zoran V. Popovic
- Department of Cellular and Molecular Pathology, German Cancer Research Center, Heidelberg, Germany
| | - Shijun Wang
- Department of Cellular and Molecular Pathology, German Cancer Research Center, Heidelberg, Germany
| | | | - Ziya Kaya
- Department of Internal Medicine III, University Hospital Heidelberg, Ruprecht-Karls University of Heidelberg, Heidelberg, Germany
| | - Stefan Porubsky
- Department of Cellular and Molecular Pathology, German Cancer Research Center, Heidelberg, Germany
| | - Maria Meisner
- Department of Cellular and Molecular Pathology, German Cancer Research Center, Heidelberg, Germany
| | - Mahnaz Bonrouhi
- Department of Cellular and Molecular Pathology, German Cancer Research Center, Heidelberg, Germany
| | - Sven Burgdorf
- Institutes of Molecular Medicine and Experimental Immunology, University Hospital Bonn, Bonn, Germany
| | - Marian F. Young
- Craniofacial and Skeletal Diseases Branch, National Institute of Dental and Craniofacial Research, NIH, Bethesda, Maryland, USA
| | - Liliana Schaefer
- Department of Pharmacology and Toxicology, Goethe University Clinic, Frankfurt am Main, Germany
| | - Hermann-Josef Gröne
- Department of Cellular and Molecular Pathology, German Cancer Research Center, Heidelberg, Germany
| |
Collapse
|
25
|
Shirali AC, Look M, Du W, Kassis E, Stout-Delgado HW, Fahmy TM, Goldstein DR. Nanoparticle delivery of mycophenolic acid upregulates PD-L1 on dendritic cells to prolong murine allograft survival. Am J Transplant 2011; 11:2582-92. [PMID: 21883921 DOI: 10.1111/j.1600-6143.2011.03725.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Conventional immunosuppressive drug delivery requires high systemic drug levels to provide therapeutic benefit, but frequently results in toxic side effects. Novel drug delivery methods, such as FDA-approved poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs), are promising drug delivery platforms to reduce drug doses and minimize toxicity. Using murine models of skin transplantation, we investigated whether PLGA NPs would effectively deliver mycophenolic acid (MPA), a common clinical immunosuppressant, and avoid the toxicity of conventional drug delivery. We found that intermittent treatment with NPs encapsulated with MPA (NP-MPA) resulted in a significant extension of allograft survival than intermittent conventional MPA treatment even though the concentration of MPA within NP-MPA was a 1000-fold lower than conventional drug. Importantly, recipients who were administered NP-MPA intermittently avoided drug toxicity, whereas those treated with daily conventional drug manifested cytopenias. Dendritic cells (DCs) endocytosed NP-MPA to upregulate programmed death ligand-1 (PD-L1) and displayed a decreased ability to prime alloreactive T cells. Importantly, the ability of NP-MPA to promote allograft survival was partly PD-L1 dependent. Collectively, this study indicates that NPs are potent drug delivery tools that extend allograft survival without drug toxicity.
Collapse
Affiliation(s)
- A C Shirali
- Department of Internal Medicine and Immunobiology, Yale University, New Haven, CT, USA
| | | | | | | | | | | | | |
Collapse
|
26
|
Mohan RR, Tovey JCK, Sharma A, Tandon A. Gene therapy in the cornea: 2005--present. Prog Retin Eye Res 2011; 31:43-64. [PMID: 21967960 DOI: 10.1016/j.preteyeres.2011.09.001] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Revised: 08/31/2011] [Accepted: 09/01/2011] [Indexed: 12/13/2022]
Abstract
Successful restoration of vision in human patients with gene therapy affirmed its promise to cure ocular diseases and disorders. The efficacy of gene therapy is contingent upon vector and mode of therapeutic DNA introduction into targeted cells/tissues. The cornea is an ideal tissue for gene therapy due to its ease of access and relative immune-privilege. Considerable progress has been made in the field of corneal gene therapy in last 5 years. Several new gene transfer vectors, techniques and approaches have evolved. Although corneal gene therapy is still in its early stages of development, the potential of gene-based interventions to treat corneal abnormalities has begun to surface. Identification of next generation viral and nanoparticle vectors, characterization of delivered gene levels, localization, and duration in the cornea, and significant success in controlling corneal disorders, particularly fibrosis and angiogenesis, in experimental animal disease models, with no major side effects have propelled gene therapy a step closer toward establishing gene-based therapies for corneal blindness. Recently, researchers have assessed the delivery of therapeutic genes for corneal diseases and disorders due to trauma, infections, chemical, mechanical, and surgical injury, and/or abnormal wound healing. This review provides an update on the developments in gene therapy for corneal diseases and discusses the barriers that hinder its utilization for delivering genes in the cornea.
Collapse
Affiliation(s)
- Rajiv R Mohan
- Harry S. Truman Memorial Veterans' Hospital, 800 Hospital Drive, Columbia, MO 65201, USA.
| | | | | | | |
Collapse
|
27
|
Bassaganya-Riera J, Song R, Roberts PC, Hontecillas R. PPAR-gamma activation as an anti-inflammatory therapy for respiratory virus infections. Viral Immunol 2011; 23:343-52. [PMID: 20712478 DOI: 10.1089/vim.2010.0016] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Newly emerged influenza viruses have attracted extensive attention due to their high infectivity, proinflammatory actions, and potential to induce worldwide pandemics. Frequent mutations and gene reassortments between viruses complicate the development of protective vaccines and antiviral therapeutics. In contrast, targeting the host response for the development of novel cost-effective, broad-based prophylactic or therapeutic agents holds greater promise. Since inflammation often parallels the development of productive immune responses, virus-induced pulmonary inflammation and injury represents an additional challenge to the development of broad-based immunotherapeutics. Excessive inflammatory responses to respiratory viruses, also known as "cytokine storm," are largely due to immune dysregulation that manifests as proinflammatory cytokine secretion. In addition to modulating lipid and glucose metabolism, peroxisome proliferator-activated receptors (PPAR) play important roles in antagonizing core inflammatory pathways such as NF-kappaB, AP1, and STAT. Their role in regulating inflammatory responses caused by pulmonary pathogens is receiving increasing attention, setting the stage for the discovery of novel applications for anti-diabetic and lipid-lowering drugs. This review focuses on the potential use of PPAR-gamma agonists to downregulate the inflammatory responses to respiratory virus-related pulmonary inflammation.
Collapse
Affiliation(s)
- Josep Bassaganya-Riera
- Nutritional Immunology and Molecular Medicine Laboratory, Virginia Bioinformatics Institute, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, USA
| | | | | | | |
Collapse
|
28
|
Fibroblast-specific protein 1 identifies an inflammatory subpopulation of macrophages in the liver. Proc Natl Acad Sci U S A 2010; 108:308-13. [PMID: 21173249 DOI: 10.1073/pnas.1017547108] [Citation(s) in RCA: 307] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cirrhosis is the end result of chronic liver disease. Hepatic stellate cells (HSC) are believed to be the major source of collagen-producing myofibroblasts in cirrhotic livers. Portal fibroblasts, bone marrow-derived cells, and epithelial to mesenchymal transition (EMT) might also contribute to the myofibroblast population in damaged livers. Fibroblast-specific protein 1 (FSP1, also called S100A4) is considered a marker of fibroblasts in different organs undergoing tissue remodeling and is used to identify fibroblasts derived from EMT in several organs including the liver. The aim of this study was to characterize FSP1-positive cells in human and experimental liver disease. FSP1-positive cells were increased in human and mouse experimental liver injury including liver cancer. However, FSP1 was not expressed by HSC or type I collagen-producing fibroblasts. Likewise, FSP1-positive cells did not express classical myofibroblast markers, including αSMA and desmin, and were not myofibroblast precursors in injured livers as evaluated by genetic lineage tracing experiments. Surprisingly, FSP1-positive cells expressed F4/80 and other markers of the myeloid-monocytic lineage as evaluated by double immunofluorescence staining, cell fate tracking, flow cytometry, and transcriptional profiling. Similar results were obtained for bone marrow-derived and peritoneal macrophages. FSP1-positive cells were characterized by increased expression of COX2, osteopontin, inflammatory cytokines, and chemokines but reduced expression of MMP3 and TIMP3 compared with Kupffer cells/macrophages. These findings suggest that FSP1 is a marker of a specific subset of inflammatory macrophages in liver injury, fibrosis, and cancer.
Collapse
|
29
|
Kiss E, Popovic ZV, Bedke J, Adams J, Bonrouhi M, Babelova A, Schmidt C, Edenhofer F, Zschiedrich I, Domhan S, Abdollahi A, Schäfer L, Gretz N, Porubsky S, Gröne HJ. Peroxisome proliferator-activated receptor (PPAR)gamma can inhibit chronic renal allograft damage. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 176:2150-62. [PMID: 20363918 PMCID: PMC2861081 DOI: 10.2353/ajpath.2010.090370] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/06/2010] [Indexed: 12/19/2022]
Abstract
Chronic inflammation and fibrosis are the leading causes of chronic allograft failure. The nuclear receptor peroxisome proliferator-activated receptor (PPAR)gamma is a transcription factor known to have antidiabetogenic and immune effects, and PPARgamma forms obligate heterodimers with the retinoid X receptor (RXR). We have reported that a retinoic acid (RAR)/RXR-agonist can potently influence the course of renal chronic allograft dysfunction. In this study, in a Fischer to Lewis rat renal transplantation model, administration of the PPARgamma-agonist, rosiglitazone, independent of dose (3 or 30 mg/kgBW/day), lowered serum creatinine, albuminuria, and chronic allograft damage with a chronic vascular damage score as follows: 35.0 +/- 5.8 (controls) vs. 8.1 +/- 2.4 (low dose-Rosi; P < 0.05); chronic tubulointerstitial damage score: 13.6 +/- 1.8 (controls) vs. 2.6 +/- 0.4 (low dose-Rosi; P < 0.01). The deposition of extracellular matrix proteins (collagen, fibronectin, decorin) was strikingly lower. The expression of transforming growth factor-beta1 was inhibited, whereas that of bone morphogenic protein-7 (BMP-7) was increased. Intragraft mononuclear cells and activated fibroblast numbers were reduced by 50%. In addition, the migratory and proliferative activity of these cells was significantly inhibited in vitro. PPARgamma activation diminished the number of cells expressing the proinflammatory and fibrogenic proteoglycan biglycan. In macrophages its secretion was blocked by rosiglitazone in a predominantly PPARgamma-dependent manner. The combination of PPARgamma- and RAR/RXR-agonists resulted in additive effects in the inhibition of fibrosis. In summary, PPARgamma activation was potently immunosuppressive and antifibrotic in kidney allografts, and these effects were enhanced by a RAR/RXR-agonist.
Collapse
Affiliation(s)
- Eva Kiss
- Department of Cellular and Molecular Pathology, German Cancer Research Center, Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Cell-specific determinants of peroxisome proliferator-activated receptor gamma function in adipocytes and macrophages. Mol Cell Biol 2010; 30:2078-89. [PMID: 20176806 DOI: 10.1128/mcb.01651-09] [Citation(s) in RCA: 176] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The nuclear receptor peroxisome proliferator activator receptor gamma (PPARgamma) is the target of antidiabetic thiazolidinedione drugs, which improve insulin resistance but have side effects that limit widespread use. PPARgamma is required for adipocyte differentiation, but it is also expressed in other cell types, notably macrophages, where it influences atherosclerosis, insulin resistance, and inflammation. A central question is whether PPARgamma binding in macrophages occurs at genomic locations the same as or different from those in adipocytes. Here, utilizing chromatin immunoprecipitation and high-throughput sequencing (ChIP-seq), we demonstrate that PPARgamma cistromes in mouse adipocytes and macrophages are predominantly cell type specific. In thioglycolate-elicited macrophages, PPARgamma colocalizes with the hematopoietic transcription factor PU.1 in areas of open chromatin and histone acetylation, near a distinct set of immune genes in addition to a number of metabolic genes shared with adipocytes. In adipocytes, the macrophage-unique binding regions are marked with repressive histone modifications, typically associated with local chromatin compaction and gene silencing. PPARgamma, when introduced into preadipocytes, bound only to regions depleted of repressive histone modifications, where it increased DNA accessibility, enhanced histone acetylation, and induced gene expression. Thus, the cell specificity of PPARgamma function is regulated by cell-specific transcription factors, chromatin accessibility, and histone marks. Our data support the existence of an epigenomic hierarchy in which PPARgamma binding to cell-specific sites not marked by repressive marks opens chromatin and leads to local activation marks, including histone acetylation.
Collapse
|
31
|
Bozzacco L, Trumpfheller C, Huang Y, Longhi MP, Shimeliovich I, Schauer JD, Park CG, Steinman RM. HIV gag protein is efficiently cross-presented when targeted with an antibody towards the DEC-205 receptor in Flt3 ligand-mobilized murine DC. Eur J Immunol 2010; 40:36-46. [PMID: 19830741 DOI: 10.1002/eji.200939748] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
DC present exogenous proteins to MHC class I-restricted CD8+ T cells. This function does not require endogenous antigen synthesis within DC, providing the potential to elicit CD8+ T-cell responses to immune complexes, inactivated microbes, dying cells, and proteins such as OVA. In mice, the CD8+ or DEC-205+ DC are specialized for cross-presentation, and this subset can be increased 10-fold in numbers following Fms-like tyrosine kinase 3 ligand (Flt3L) treatment in vivo. Therefore, we studied cross-presentation by abundant Flt3L DC using HIV gag protein. When enriched by positive selection with anti-CD11c beads, cells from Flt3L mice are not only more abundant but are also more highly enriched in CD11chigh DC, particularly the DEC-205+ subset. DC cross-present HIV gag to primed CD8+ T cells, but when the antigen is delivered within an antibody to DEC-205 receptor, cross-presentation becomes 100-fold more efficient than non-targeted antigen. This finding requires gag to be engineered into anti-DEC antibody, not just mixed with antibody. Flt3L DC are a valuable tool to study cross-presentation, since their use overcomes the obstacle posed by the low number of cross-presenting DC in the steady state. These findings support future experiments to use Flt3L to enhance presentation of DC-targeted vaccines.
Collapse
Affiliation(s)
- Leonia Bozzacco
- Laboratory of Cellular Physiology and Immunology and Chris Browne Center, The Rockefeller University, New York, NY 10065-6399, USA
| | | | | | | | | | | | | | | |
Collapse
|