1
|
Ottens K, Schneider J, Satterthwaite AB. B-1a Cells, but Not Marginal Zone B Cells, Are Implicated in the Accumulation of Autoreactive Plasma Cells in Lyn-/- Mice. Immunohorizons 2024; 8:47-56. [PMID: 38189742 PMCID: PMC10835670 DOI: 10.4049/immunohorizons.2300089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 12/22/2023] [Indexed: 01/09/2024] Open
Abstract
Mice deficient in Lyn, a tyrosine kinase that limits B cell activation, develop a lupus-like autoimmune disease characterized by the accumulation of splenic plasma cells and the production of autoantibodies. Lyn-/- mice have reduced numbers of marginal zone (MZ) B cells, a B cell subset that is enriched in autoreactivity and prone to plasma cell differentiation. We hypothesized that this is due to unchecked terminal differentiation of this potentially pathogenic B cell subpopulation. However, impairing MZ B cell development in Lyn-/- mice did not reduce plasma cell accumulation or autoantibodies, and preventing plasma cell differentiation did not restore MZ B cell numbers. Instead, Lyn-/- mice accumulated B-1a cells when plasma cell differentiation was impaired. Similar to MZ B cells, B-1a cells tend to be polyreactive or weakly autoreactive and are primed for terminal differentiation. Our results implicate B-1a cells, but not MZ B cells, as contributors to the autoreactive plasma cell pool in Lyn-/- mice.
Collapse
Affiliation(s)
- Kristina Ottens
- Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX
| | - Jalyn Schneider
- Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX
| | - Anne B. Satterthwaite
- Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX
- Department of Immunology, UT Southwestern Medical Center, Dallas, TX
| |
Collapse
|
2
|
Polmear J, Hailes L, Olshansky M, Rischmueller M, L'Estrange‐Stranieri E, Fletcher AL, Hibbs ML, Bryant VL, Good‐Jacobson KL. Targeting BMI-1 to deplete antibody-secreting cells in autoimmunity. Clin Transl Immunology 2023; 12:e1470. [PMID: 37799772 PMCID: PMC10550498 DOI: 10.1002/cti2.1470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/13/2023] [Accepted: 09/22/2023] [Indexed: 10/07/2023] Open
Abstract
Objectives B cells drive the production of autoreactive antibody-secreting cells (ASCs) in autoimmune diseases such as Systemic Lupus Erythematosus (SLE) and Sjögren's syndrome, causing long-term organ damage. Current treatments for antibody-mediated autoimmune diseases target B cells or broadly suppress the immune system. However, pre-existing long-lived ASCs are often refractory to treatment, leaving a reservoir of autoreactive cells that continue to produce antibodies. Therefore, the development of novel treatment methods targeting ASCs is vital to improve patient outcomes. Our objective was to test whether targeting the epigenetic regulator BMI-1 could deplete ASCs in autoimmune conditions in vivo and in vitro. Methods Use of a BMI-1 inhibitor in both mouse and human autoimmune settings was investigated. Lyn -/- mice, a model of SLE, were treated with the BMI-1 small molecule inhibitor PTC-028, before assessment of ASCs, serum antibody and immune complexes. To examine human ASC survival, a novel human fibroblast-based assay was established, and the impact of PTC-028 on ASCs derived from Sjögren's syndrome patients was evaluated. Results BMI-1 inhibition significantly decreased splenic and bone marrow ASCs in Lyn -/- mice. The decline in ASCs was linked to aberrant cell cycle gene expression and led to a significant decrease in serum IgG3, immune complexes and anti-DNA IgG. PTC-028 was also efficacious in reducing ex vivo plasma cell survival from both Sjögren's syndrome patients and age-matched healthy donors. Conclusion These data provide evidence that inhibiting BMI-1 can deplete ASC in a variety of contexts and thus BMI-1 is a viable therapeutic target for antibody-mediated autoimmune diseases.
Collapse
Affiliation(s)
- Jack Polmear
- Department of Biochemistry and Molecular BiologyMonash UniversityClaytonVICAustralia
- Immunity Program, Biomedicine Discovery InstituteMonash UniversityClaytonVICAustralia
| | - Lauren Hailes
- Department of Biochemistry and Molecular BiologyMonash UniversityClaytonVICAustralia
- Immunity Program, Biomedicine Discovery InstituteMonash UniversityClaytonVICAustralia
| | - Moshe Olshansky
- Department of Biochemistry and Molecular BiologyMonash UniversityClaytonVICAustralia
- Immunity Program, Biomedicine Discovery InstituteMonash UniversityClaytonVICAustralia
| | - Maureen Rischmueller
- The Queen Elizabeth Hospital and Basil Hetzel InstituteWoodville SouthSAAustralia
- Adelaide Medical SchoolUniversity of AdelaideAdelaideSAAustralia
| | | | - Anne L Fletcher
- Department of Biochemistry and Molecular BiologyMonash UniversityClaytonVICAustralia
- Immunity Program, Biomedicine Discovery InstituteMonash UniversityClaytonVICAustralia
| | - Margaret L Hibbs
- Department of Immunology, Alfred Research AllianceMonash UniversityMelbourneVICAustralia
| | - Vanessa L Bryant
- Immunology DivisionWalter & Eliza Hall InstituteParkvilleVICAustralia
- Department of Medical BiologyUniversity of MelbourneParkvilleVICAustralia
- Department of Clinical Immunology & AllergyThe Royal Melbourne HospitalParkvilleVICAustralia
| | - Kim L Good‐Jacobson
- Department of Biochemistry and Molecular BiologyMonash UniversityClaytonVICAustralia
- Immunity Program, Biomedicine Discovery InstituteMonash UniversityClaytonVICAustralia
| |
Collapse
|
3
|
Chu E, Mychasiuk R, Tsantikos E, Raftery AL, L’Estrange-Stranieri E, Dill LK, Semple BD, Hibbs ML. Regulation of Microglial Signaling by Lyn and SHIP-1 in the Steady-State Adult Mouse Brain. Cells 2023; 12:2378. [PMID: 37830592 PMCID: PMC10571795 DOI: 10.3390/cells12192378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 09/21/2023] [Accepted: 09/26/2023] [Indexed: 10/14/2023] Open
Abstract
Chronic neuroinflammation and glial activation are associated with the development of many neurodegenerative diseases and neuropsychological disorders. Recent evidence suggests that the protein tyrosine kinase Lyn and the lipid phosphatase SH2 domain-containing inositol 5' phosphatase-1 (SHIP-1) regulate neuroimmunological responses, but their homeostatic roles remain unclear. The current study investigated the roles of Lyn and SHIP-1 in microglial responses in the steady-state adult mouse brain. Young adult Lyn-/- and SHIP-1-/- mice underwent a series of neurobehavior tests and postmortem brain analyses. The microglial phenotype and activation state were examined by immunofluorescence and flow cytometry, and neuroimmune responses were assessed using gene expression analysis. Lyn-/- mice had an unaltered behavioral phenotype, neuroimmune response, and microglial phenotype, while SHIP-1-/- mice demonstrated reduced explorative activity and exhibited microglia with elevated activation markers but reduced granularity. In addition, expression of several neuroinflammatory genes was increased in SHIP-1-/- mice. In response to LPS stimulation ex vivo, the microglia from both Lyn-/- and SHIP-1-/- showed evidence of hyper-activity with augmented TNF-α production. Together, these findings demonstrate that both Lyn and SHIP-1 have the propensity to control microglial responses, but only SHIP-1 regulates neuroinflammation and microglial activation in the steady-state adult brain, while Lyn activity appears dispensable for maintaining brain homeostasis.
Collapse
Affiliation(s)
- Erskine Chu
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
- Department of Immunology, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia; (E.T.); (A.L.R.); (E.L.-S.)
| | - Richelle Mychasiuk
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
- Department of Neurology, Alfred Health, Melbourne, VIC 3004, Australia
| | - Evelyn Tsantikos
- Department of Immunology, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia; (E.T.); (A.L.R.); (E.L.-S.)
| | - April L. Raftery
- Department of Immunology, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia; (E.T.); (A.L.R.); (E.L.-S.)
| | - Elan L’Estrange-Stranieri
- Department of Immunology, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia; (E.T.); (A.L.R.); (E.L.-S.)
| | - Larissa K. Dill
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
| | - Bridgette D. Semple
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
- Department of Neurology, Alfred Health, Melbourne, VIC 3004, Australia
- Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Margaret L. Hibbs
- Department of Immunology, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia; (E.T.); (A.L.R.); (E.L.-S.)
| |
Collapse
|
4
|
Ottens K, Schneider J, Satterthwaite AB. T-bet-expressing B cells contribute to the autoreactive plasma cell pool in Lyn -/- mice. Eur J Immunol 2023; 53:e2250300. [PMID: 37134326 PMCID: PMC10524956 DOI: 10.1002/eji.202250300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 04/20/2023] [Accepted: 05/02/2023] [Indexed: 05/05/2023]
Abstract
Systemic Lupus Erythematosus (SLE) is characterized by pathogenic autoantibodies against nucleic acid-containing antigens. Understanding which B-cell subsets give rise to these autoantibodies may reveal therapeutic approaches for SLE that spare protective responses. Mice lacking the tyrosine kinase Lyn, which limits B and myeloid cell activation, develop lupus-like autoimmune diseases characterized by increased autoreactive plasma cells (PCs). We used a fate-mapping strategy to determine the contribution of T-bet+ B cells, a subset thought to be pathogenic in lupus, to the accumulation of PCs and autoantibodies in Lyn-/- mice. Approximately, 50% of splenic PCs in Lyn-/- mice originated from T-bet+ cells, a significant increase compared to WT mice. In vitro, splenic PCs derived from T-bet+ B cells secreted both IgM and IgG anti-dsDNA antibodies. To determine the role of these cells in autoantibody production in vivo, we prevented T-bet+ B cells from differentiating into PCs or class switching in Lyn-/- mice. This resulted in a partial reduction in splenic PCs and anti-dsDNA IgM and complete abrogation of anti-dsDNA IgG. Thus, T-bet+ B cells make an important contribution to the autoreactive PC pool in Lyn-/- mice.
Collapse
Affiliation(s)
- Kristina Ottens
- Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, 75390
| | - Jalyn Schneider
- Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, 75390
| | - Anne B. Satterthwaite
- Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, 75390
- Department of Immunology, UT Southwestern Medical Center, Dallas, TX, 75390
| |
Collapse
|
5
|
Yu X, Jiang S, Li Y, Zhou H, Wei Y, Li X, Zhang Y, Hu P, Wu H, Wang H, Wu S, Zhang S. Development of a new cellular immunological detection method for tuberculosis based on HupB protein induced IL-6 release test. Front Microbiol 2023; 14:1148503. [PMID: 37077246 PMCID: PMC10106748 DOI: 10.3389/fmicb.2023.1148503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/14/2023] [Indexed: 04/05/2023] Open
Abstract
ObjectiveAs a virulence factor, HupB plays important roles in the survival of MTB after infection and modulates the host immune response. In the current study, we aim to explore a new cellular immunological detection method for tuberculosis infection detection based on HupB protein.MethodsHupB was used to stimulate PBMCs extracted from pulmonary tuberculosis (PTB) patients, and secreted cytokines was examined. Then, we constructed a single center and a multi-center clinical trials to collect PBMCs from PTB patients, nPTB patients, or healthy volunteers to verify our findings.ResultsCytokine’s screening illustrated that IL-6 was the only cytokine released after HupB stimulation. Single-center and multi-center clinical trials showed that HupB stimulation significantly increased the level of IL-6 in the supernatant of PBMCs from PTB patients. Then we compared the specificity and sensitivity of HupB induced IL-6 release assay with ESAT-6 and CFP10 induced interferon γ release assay (IGRA), and found in smear positive PTB patients, the specificity and sensitivity of HupB induced IL-6 release assay was better than IGRA, and in smear negative PTB patients, the sensitivity was better. Combination of both assays provided an improved specificity and sensitivity for tuberculosis diagnosis.ConclusionThis study explored an immunological detection method for tuberculosis infection cells based on HupB protein-induced IL-6 release test, which can be used to enhance the diagnosis diagnostic accuracy of TB.
Collapse
Affiliation(s)
- Xiaoli Yu
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, China
| | - Shengsheng Jiang
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, China
| | - Yang Li
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, China
| | - Huaiheng Zhou
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, China
| | - Yutong Wei
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, China
| | - Xuefang Li
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, China
| | - Ye Zhang
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, China
| | - Peng Hu
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, China
| | - Haoming Wu
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, China
| | - Hualin Wang
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, China
- *Correspondence: Hualin Wang,
| | - Shimin Wu
- Center for Clinical Laboratory, General Hospital of the Yangtze River Shipping, Wuhan Brain Hospital, Wuhan, China
- Shimin Wu,
| | - Shulin Zhang
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, China
- Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shulin Zhang,
| |
Collapse
|
6
|
Ma Y, Wang J, Guo S, Meng Z, Ren Y, Xie Y, Wang M. Cytokine/chemokine levels in the CSF and serum of anti-NMDAR encephalitis: A systematic review and meta-analysis. Front Immunol 2023; 13:1064007. [PMID: 36761173 PMCID: PMC9903132 DOI: 10.3389/fimmu.2022.1064007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 12/23/2022] [Indexed: 01/25/2023] Open
Abstract
Objectives To summarize the cytokine/chemokine levels of anti-N-methyl-Daspartate receptor encephalitis (NMDAR-E) and explore the potential role of these molecules and immune cells in the pathogenic mechanism. Methods The PubMed, Cochrane Library, Embase, and Web of Science databases were searched for various articles that assessed the concentrations of cytokines/chemokines in the unstimulated cerebrospinal fluid (CSF) or serum of patients with NMDAR-E in this systematic review and meta-analysis. The standardized mean difference (SMD) and 95% confidence interval (CI) were calculated by Stata17.0. Results A total of 19 articles were included in the systematic review from 260 candidate papers, and cytokine/chemokine levels reported in the CSF/serum were examined in each article. This meta-analysis included 17 eligible studies comprising 579 patients with NMDAR-E, 367 patients with noninflammatory neurological disorders, and 42 healthy controls from China, Spain, South Korea, Australia, Czechia, and Sweden. The results indicated that the levels of different cytokines interleukin (IL)-6, tumor necrosis factor (TNF)-α, IL-10, IL-13, IL-1β, IL-12, and IL-17 and chemokine C-X-C motif ligand (CXCL)10 in the CSF were significantly higher in NMDAR-E patients with a large effect size. In addition, B cell activating factor (BAFF), CXCL13, and interferon (IFN)-γ levels in the CSF were higher in NMDAR-E patients with a middle effect size. In contrast, levels of IL-2 and IL-4 in the CSF and CXCL13 and BAFF in the serum did not show a significant difference between cases and controls. Conclusions These analyses showed that the central immune response in NMDAR-E is a process that involves multiple immune cell interactions mediated by cytokines/chemokines, and T cells play an important role in the pathogenesis of immunity. Systematic review registration https://www.crd.york.ac.uk/PROSPERO/, identifier (CRD42022342485).
Collapse
Affiliation(s)
- Yushan Ma
- Department of Laboratory Medicine, West China Hospital of Sichuan University, Chengdu, China,Department of Laboratory Medicine, The Third Hospital of Mianyang, Sichuan Mental Health Center, Mianyang, China
| | - Jierui Wang
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, China
| | - Shuo Guo
- Department of Laboratory Medicine, West China Hospital of Sichuan University, Chengdu, China
| | - Zirui Meng
- Department of Laboratory Medicine, West China Hospital of Sichuan University, Chengdu, China
| | - Yan Ren
- Department of Laboratory Medicine, West China Hospital of Sichuan University, Chengdu, China
| | - Yi Xie
- Department of Laboratory Medicine, West China Hospital of Sichuan University, Chengdu, China,*Correspondence: Minjin Wang, ; Yi Xie,
| | - Minjin Wang
- Department of Laboratory Medicine, West China Hospital of Sichuan University, Chengdu, China,Department of Neurology, West China Hospital of Sichuan University, Chengdu, China,*Correspondence: Minjin Wang, ; Yi Xie,
| |
Collapse
|
7
|
Hasnat MA, Cheang I, Dankers W, Lee JPW, Truong LM, Pervin M, Jones SA, Morand EF, Ooi JD, Harris J. Investigating immunoregulatory effects of myeloid cell autophagy in acute and chronic inflammation. Immunol Cell Biol 2022; 100:605-623. [PMID: 35652357 PMCID: PMC9542007 DOI: 10.1111/imcb.12562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 05/08/2022] [Accepted: 05/30/2022] [Indexed: 11/26/2022]
Abstract
Studies have highlighted a critical role for autophagy in the regulation of multiple cytokines. Autophagy inhibits the release of interleukin (IL)‐1 family cytokines, including IL‐1α, IL‐1β and IL‐18, by myeloid cells. This, in turn, impacts the release of other cytokines by myeloid cells, as well as other cells of the immune system, including IL‐22, IL‐23, IL‐17 and interferon‐γ. Here, we assessed the impact of genetic depletion of the autophagy gene Atg7 in myeloid cells on acute and chronic inflammation. In a model of acute lipopolysaccharide‐induced endotoxemia, loss of autophagy in myeloid cells resulted in increased release of proinflammatory cytokines, both locally and systemically. By contrast, loss of Atg7 in myeloid cells in the Lyn−/− model of lupus‐like autoimmunity resulted in reduced systemic release of IL‐6 and IL‐10, with no effects on other cytokines observed. In addition, Lyn−/− mice with autophagy‐deficient myeloid cells showed reduced expression of autoantibodies relevant to systemic lupus erythematosus, including anti‐histone and anti‐Smith protein. In vitro, loss of autophagy, through pharmacological inhibition or small interfering RNA against Becn1, inhibited IL‐10 release by human and mouse myeloid cells. This effect was evident at the level of Il10 messenger RNA expression. Our data highlight potentially important differences in the role of myeloid cell autophagy in acute and chronic inflammation and demonstrate a direct role for autophagy in the production and release of IL‐10 by macrophages.
Collapse
Affiliation(s)
- Md Abul Hasnat
- Centre for Inflammatory Diseases, Department of Medicine School of Clinical Sciences at Monash Health Faculty of Medicine, Nursing and Health Sciences Monash University Clayton VIC Australia
| | - IanIan Cheang
- Centre for Inflammatory Diseases, Department of Medicine School of Clinical Sciences at Monash Health Faculty of Medicine, Nursing and Health Sciences Monash University Clayton VIC Australia
| | - Wendy Dankers
- Centre for Inflammatory Diseases, Department of Medicine School of Clinical Sciences at Monash Health Faculty of Medicine, Nursing and Health Sciences Monash University Clayton VIC Australia
| | - Jacinta PW Lee
- Centre for Inflammatory Diseases, Department of Medicine School of Clinical Sciences at Monash Health Faculty of Medicine, Nursing and Health Sciences Monash University Clayton VIC Australia
| | - Lynda M Truong
- Centre for Inflammatory Diseases, Department of Medicine School of Clinical Sciences at Monash Health Faculty of Medicine, Nursing and Health Sciences Monash University Clayton VIC Australia
| | - Mehnaz Pervin
- Centre for Inflammatory Diseases, Department of Medicine School of Clinical Sciences at Monash Health Faculty of Medicine, Nursing and Health Sciences Monash University Clayton VIC Australia
| | - Sarah A Jones
- Centre for Inflammatory Diseases, Department of Medicine School of Clinical Sciences at Monash Health Faculty of Medicine, Nursing and Health Sciences Monash University Clayton VIC Australia
| | - Eric F Morand
- Centre for Inflammatory Diseases, Department of Medicine School of Clinical Sciences at Monash Health Faculty of Medicine, Nursing and Health Sciences Monash University Clayton VIC Australia
| | - Joshua D Ooi
- Regulatory T Cell Therapies Group, Centre for Inflammatory Diseases Department of Medicine, School of Clinical Sciences at Monash Health Faculty of Medicine, Nursing and Health Sciences Monash University Clayton VIC Australia
| | - James Harris
- Centre for Inflammatory Diseases, Department of Medicine School of Clinical Sciences at Monash Health Faculty of Medicine, Nursing and Health Sciences Monash University Clayton VIC Australia
| |
Collapse
|
8
|
Nataraja C, Flynn J, Dankers W, Northcott M, Zhu W, Sherlock R, Bennett TJ, Russ BE, Miceli I, Pervin M, D'Cruz A, Harris J, Morand EF, Jones SA. GILZ regulates type I interferon release and sequesters STAT1. J Autoimmun 2022; 131:102858. [PMID: 35810690 DOI: 10.1016/j.jaut.2022.102858] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 06/14/2022] [Accepted: 06/15/2022] [Indexed: 11/26/2022]
Abstract
Glucocorticoids remain a mainstay of modern medicine due to their ability to broadly suppress immune activation. However, they cause severe adverse effects that warrant urgent development of a safer alternative. The glucocorticoid-induced leucine zipper (GILZ) gene, TSC22D3, is one of the most highly upregulated genes in response to glucocorticoid treatment, and reduced GILZ mRNA and protein levels are associated with increased severity of inflammation in systemic lupus erythematosus (SLE), Ulcerative Colitis, Psoriasis, and other autoimmune/autoinflammatory diseases. Here, we demonstrate that low GILZ permits expression of a type I interferon (IFN) signature, which is exacerbated in response to TLR7 and TLR9 stimulation. Conversely, overexpression of GILZ prevents IFN-stimulated gene (ISG) up-regulation in response to IFNα. Moreover, GILZ directly binds STAT1 and prevents its nuclear translocation, thereby negatively regulating IFN-induced gene expression and the auto-amplification loop of the IFN response. Thus, GILZ powerfully regulates both the expression and action of type I IFN, suggesting restoration of GILZ as an attractive therapeutic strategy for reducing reliance on glucocorticoids.
Collapse
Affiliation(s)
- Champa Nataraja
- Rheumatology Research Group, Monash University Centre for Inflammatory Disease, School of Clinical Sciences at Monash Health, 246 Clayton Rd, Clayton, 3168, Melbourne, Australia
| | - Jacqueline Flynn
- Rheumatology Research Group, Monash University Centre for Inflammatory Disease, School of Clinical Sciences at Monash Health, 246 Clayton Rd, Clayton, 3168, Melbourne, Australia
| | - Wendy Dankers
- Rheumatology Research Group, Monash University Centre for Inflammatory Disease, School of Clinical Sciences at Monash Health, 246 Clayton Rd, Clayton, 3168, Melbourne, Australia
| | - Melissa Northcott
- Rheumatology Research Group, Monash University Centre for Inflammatory Disease, School of Clinical Sciences at Monash Health, 246 Clayton Rd, Clayton, 3168, Melbourne, Australia
| | - Wendy Zhu
- Rheumatology Research Group, Monash University Centre for Inflammatory Disease, School of Clinical Sciences at Monash Health, 246 Clayton Rd, Clayton, 3168, Melbourne, Australia
| | - Rochelle Sherlock
- Rheumatology Research Group, Monash University Centre for Inflammatory Disease, School of Clinical Sciences at Monash Health, 246 Clayton Rd, Clayton, 3168, Melbourne, Australia
| | - Taylah J Bennett
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Brendan E Russ
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Iolanda Miceli
- Rheumatology Research Group, Monash University Centre for Inflammatory Disease, School of Clinical Sciences at Monash Health, 246 Clayton Rd, Clayton, 3168, Melbourne, Australia
| | - Mehnaz Pervin
- Rheumatology Research Group, Monash University Centre for Inflammatory Disease, School of Clinical Sciences at Monash Health, 246 Clayton Rd, Clayton, 3168, Melbourne, Australia
| | - Akshay D'Cruz
- Rheumatology Research Group, Monash University Centre for Inflammatory Disease, School of Clinical Sciences at Monash Health, 246 Clayton Rd, Clayton, 3168, Melbourne, Australia
| | - James Harris
- Rheumatology Research Group, Monash University Centre for Inflammatory Disease, School of Clinical Sciences at Monash Health, 246 Clayton Rd, Clayton, 3168, Melbourne, Australia
| | - Eric F Morand
- Rheumatology Research Group, Monash University Centre for Inflammatory Disease, School of Clinical Sciences at Monash Health, 246 Clayton Rd, Clayton, 3168, Melbourne, Australia
| | - Sarah A Jones
- Rheumatology Research Group, Monash University Centre for Inflammatory Disease, School of Clinical Sciences at Monash Health, 246 Clayton Rd, Clayton, 3168, Melbourne, Australia.
| |
Collapse
|
9
|
Gottschalk TA, Hall P, Tsantikos E, L’Estrange-Stranieri E, Hickey MJ, Hibbs ML. Loss of CD11b Accelerates Lupus Nephritis in Lyn-Deficient Mice Without Disrupting Glomerular Leukocyte Trafficking. Front Immunol 2022; 13:875359. [PMID: 35634296 PMCID: PMC9134083 DOI: 10.3389/fimmu.2022.875359] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 04/19/2022] [Indexed: 11/26/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a complex, heterogeneous autoimmune disease. A common manifestation, lupus nephritis, arises from immune complex deposition in the kidney microvasculature promoting leukocyte activation and infiltration, which triggers glomerular damage and renal dysfunction. CD11b is a leukocyte integrin mainly expressed on myeloid cells, and aside from its well-ascribed roles in leukocyte trafficking and phagocytosis, it can also suppress cytokine production and autoreactivity. Genome-wide association studies have identified loss-of-function polymorphisms in the CD11b-encoding gene ITGAM that are strongly associated with SLE and lupus nephritis; however, it is not known whether these polymorphisms act alone to induce disease or in concert with other risk alleles. Herein we show using Itgam-/- mice that loss of CD11b led to mild inflammatory traits, which were insufficient to trigger autoimmunity or glomerulonephritis. However, deficiency of CD11b in autoimmune-prone Lyn-deficient mice (Lyn-/-Itgam-/-) accelerated lupus-like disease, driving early-onset immune cell dysregulation, autoantibody production and glomerulonephritis, impacting survival. Migration of leukocytes to the kidney in Lyn-/- mice was unhindered by lack of CD11b. Indeed, kidney inflammatory macrophages were further enriched, neutrophil retention in glomerular capillaries was increased and kidney inflammatory cytokine responses were enhanced in Lyn-/-Itgam-/- mice. These findings indicate that ITGAM is a non-monogenic autoimmune susceptibility gene, with loss of functional CD11b exacerbating disease without impeding glomerular leukocyte trafficking when in conjunction with other pre-disposing genetic mutations. This highlights a primarily protective role for CD11b in restraining inflammation and autoimmune disease and provides a potential therapeutic avenue for lupus treatment.
Collapse
Affiliation(s)
- Timothy A. Gottschalk
- Leukocyte Signalling Laboratory, Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Pamela Hall
- Centre for Inflammatory Diseases, Monash University Department of Medicine, Monash Medical Centre, Clayton, VIC, Australia
| | - Evelyn Tsantikos
- Leukocyte Signalling Laboratory, Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Elan L’Estrange-Stranieri
- Leukocyte Signalling Laboratory, Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Michael J. Hickey
- Centre for Inflammatory Diseases, Monash University Department of Medicine, Monash Medical Centre, Clayton, VIC, Australia
| | - Margaret L. Hibbs
- Leukocyte Signalling Laboratory, Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia
- *Correspondence: Margaret L. Hibbs,
| |
Collapse
|
10
|
Brian BF, Sauer ML, Greene JT, Senevirathne SE, Lindstedt AJ, Funk OL, Ruis BL, Ramirez LA, Auger JL, Swanson WL, Nunez MG, Moriarity BS, Lowell CA, Binstadt BA, Freedman TS. A dominant function of LynB kinase in preventing autoimmunity. SCIENCE ADVANCES 2022; 8:eabj5227. [PMID: 35452291 PMCID: PMC9032976 DOI: 10.1126/sciadv.abj5227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 03/08/2022] [Indexed: 06/14/2023]
Abstract
Here, we report that the LynB splice variant of the Src-family kinase Lyn exerts a dominant immunosuppressive function in vivo, whereas the LynA isoform is uniquely required to restrain autoimmunity in female mice. We used CRISPR-Cas9 gene editing to constrain lyn splicing and expression, generating single-isoform LynA knockout (LynAKO) or LynBKO mice. Autoimmune disease in total LynKO mice is characterized by production of antinuclear antibodies, glomerulonephritis, impaired B cell development, and overabundance of activated B cells and proinflammatory myeloid cells. Expression of LynA or LynB alone uncoupled the developmental phenotype from the autoimmune disease: B cell transitional populations were restored, but myeloid cells and differentiated B cells were dysregulated. These changes were isoform-specific, sexually dimorphic, and distinct from the complete LynKO. Despite the apparent differences in disease etiology and penetrance, loss of either LynA or LynB had the potential to induce severe autoimmune disease with parallels to human systemic lupus erythematosus (SLE).
Collapse
Affiliation(s)
- Ben F. Brian
- Graduate Program in Molecular Pharmacology and Therapeutics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Monica L. Sauer
- Graduate Program in Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Joseph T. Greene
- Department of Pharmacology, University of Minnesota, Minneapolis, MN 55455, USA
| | - S. Erandika Senevirathne
- Graduate Program in Molecular Pharmacology and Therapeutics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Anders J. Lindstedt
- Graduate Program in Microbiology, Immunology, and Cancer Biology, University of Minnesota, Minneapolis, MN 55455, USA
- Medical Scientist Training Program, University of Minnesota, Minneapolis, MN 55455, USA
| | - Olivia L. Funk
- Department of Pharmacology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Brian L. Ruis
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Luis A. Ramirez
- Department of Pharmacology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Jennifer L. Auger
- Department of Pediatrics, Division of Rheumatology, Allergy and Immunology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Whitney L. Swanson
- Department of Pharmacology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Myra G. Nunez
- Department of Pharmacology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Branden S. Moriarity
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, USA
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
- Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | - Clifford A. Lowell
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Bryce A. Binstadt
- Department of Pediatrics, Division of Rheumatology, Allergy and Immunology, University of Minnesota, Minneapolis, MN 55455, USA
- Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Tanya S. Freedman
- Department of Pharmacology, University of Minnesota, Minneapolis, MN 55455, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
- Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA
- Center for Autoimmune Diseases Research, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
11
|
Ma Y, Wang J, Guo S, Meng Z, Ren Y, Xie Y, Wang M. Cytokine/chemokine levels in the CSF and serum of anti-NMDAR encephalitis: A systematic review and meta-analysis. Front Immunol 2022; 13:1064007. [PMID: 36761173 DOI: 10.3389/fimmu.2022.919979/full] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 12/23/2022] [Indexed: 05/20/2023] Open
Abstract
OBJECTIVES To summarize the cytokine/chemokine levels of anti-N-methyl-Daspartate receptor encephalitis (NMDAR-E) and explore the potential role of these molecules and immune cells in the pathogenic mechanism. METHODS The PubMed, Cochrane Library, Embase, and Web of Science databases were searched for various articles that assessed the concentrations of cytokines/chemokines in the unstimulated cerebrospinal fluid (CSF) or serum of patients with NMDAR-E in this systematic review and meta-analysis. The standardized mean difference (SMD) and 95% confidence interval (CI) were calculated by Stata17.0. RESULTS A total of 19 articles were included in the systematic review from 260 candidate papers, and cytokine/chemokine levels reported in the CSF/serum were examined in each article. This meta-analysis included 17 eligible studies comprising 579 patients with NMDAR-E, 367 patients with noninflammatory neurological disorders, and 42 healthy controls from China, Spain, South Korea, Australia, Czechia, and Sweden. The results indicated that the levels of different cytokines interleukin (IL)-6, tumor necrosis factor (TNF)-α, IL-10, IL-13, IL-1β, IL-12, and IL-17 and chemokine C-X-C motif ligand (CXCL)10 in the CSF were significantly higher in NMDAR-E patients with a large effect size. In addition, B cell activating factor (BAFF), CXCL13, and interferon (IFN)-γ levels in the CSF were higher in NMDAR-E patients with a middle effect size. In contrast, levels of IL-2 and IL-4 in the CSF and CXCL13 and BAFF in the serum did not show a significant difference between cases and controls. CONCLUSIONS These analyses showed that the central immune response in NMDAR-E is a process that involves multiple immune cell interactions mediated by cytokines/chemokines, and T cells play an important role in the pathogenesis of immunity. SYSTEMATIC REVIEW REGISTRATION https://www.crd.york.ac.uk/PROSPERO/, identifier (CRD42022342485).
Collapse
Affiliation(s)
- Yushan Ma
- Department of Laboratory Medicine, West China Hospital of Sichuan University, Chengdu, China
- Department of Laboratory Medicine, The Third Hospital of Mianyang, Sichuan Mental Health Center, Mianyang, China
| | - Jierui Wang
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, China
| | - Shuo Guo
- Department of Laboratory Medicine, West China Hospital of Sichuan University, Chengdu, China
| | - Zirui Meng
- Department of Laboratory Medicine, West China Hospital of Sichuan University, Chengdu, China
| | - Yan Ren
- Department of Laboratory Medicine, West China Hospital of Sichuan University, Chengdu, China
| | - Yi Xie
- Department of Laboratory Medicine, West China Hospital of Sichuan University, Chengdu, China
| | - Minjin Wang
- Department of Laboratory Medicine, West China Hospital of Sichuan University, Chengdu, China
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
12
|
Abstract
Effective regulation of immune-cell activation is critical for ensuring that the immune response, and inflammation generated for the purpose of pathogen elimination, are limited in space and time to minimize tissue damage. Autoimmune disease can occur when immunoreceptor signaling is dysregulated, leading to unrestrained inflammation and organ damage. Conversely, tumors can coopt the tissue healing and immunosuppressive functions of hematopoietic cells to promote metastasis and evade therapy. The Src-family kinase Lyn is an essential regulator of immunoreceptor signaling, initiating both proinflammatory and suppressive signaling pathways in myeloid immune cells (eg, neutrophils, dendritic cells, monocytes, macrophages) and in B lymphocytes. Defects in Lyn signaling are implicated in autoimmune disease, but mechanisms by which Lyn, expressed along with a battery of other Src-family kinases, may uniquely direct both positive and negative signaling remain incompletely defined. This review describes our current understanding of the activating and inhibitory contributions of Lyn to immunoreceptor signaling and how these processes contribute to myeloid and B-cell function. We also highlight recent work suggesting that the 2 proteins generated by alternative splicing of lyn, LynA and LynB, differentially regulate both immune and cancer-cell signaling. These principles may also extend to other Lyn-expressing cells, such as neuronal and endocrine cells. Unraveling the common and cell-specific aspects of Lyn function could lead to new approaches to therapeutically target dysregulated pathways in pathologies ranging from autoimmune and neurogenerative disease to cancer.
Collapse
Affiliation(s)
- Ben F Brian
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, USA
- Current Affiliation: Current affiliation for B.F.B.: Division of Immunology & Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Tanya S Freedman
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, USA
- Center for Immunology, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Center for Autoimmune Diseases Research, University of Minnesota, Minneapolis, MN, USA
- Correspondence: Tanya S. Freedman, PhD, University of Minnesota Twin Cities Campus: University of Minnesota, 6-120 Jackson Hall, 321 Church St. S.E., Minneapolis, MN 55455, USA. E-mail:
| |
Collapse
|
13
|
Yeung L, Gottschalk TA, Hall P, Tsantikos E, Gallagher RH, Kitching AR, Hibbs ML, Wright MD, Hickey MJ. Tetraspanin CD53 modulates lymphocyte trafficking but not systemic autoimmunity in Lyn-deficient mice. Immunol Cell Biol 2021; 99:1053-1066. [PMID: 34514627 DOI: 10.1111/imcb.12501] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/07/2021] [Accepted: 09/08/2021] [Indexed: 12/01/2022]
Abstract
The leukocyte-restricted tetraspanin CD53 has been shown to promote lymphocyte homing to lymph nodes (LNs) and myeloid cell recruitment to acutely inflamed peripheral organs, and accelerate the onset of immune-mediated disease. However, its contribution in the setting of chronic systemic autoimmunity has not been investigated. We made use of the Lyn-/- autoimmune model, generating Cd53-/- Lyn-/- mice, and compared trafficking of immune cells into secondary lymphoid organs and systemic autoimmune disease development with mice lacking either gene alone. Consistent with previous observations, absence of CD53 led to reduced LN cellularity via reductions in both B and T cells, a phenotype also observed in Cd53-/- Lyn-/- mice. In some settings, Cd53-/- Lyn-/- lymphocytes showed greater loss of surface L-selectin and CD69 upregulation above that imparted by Lyn deficiency alone, indicating that absence of these two proteins can mediate additive effects in the immune system. Conversely, prototypical effects of Lyn deficiency including splenomegaly, plasma cell expansion, elevated serum immunoglobulin M and anti-nuclear antibodies were unaffected by CD53 deficiency. Furthermore, while Lyn-/- mice developed glomerular injury and showed elevated glomerular neutrophil retention above than that in wild-type mice, absence of CD53 in Lyn-/- mice did not alter these responses. Together, these findings demonstrate that while tetraspanin CD53 promotes lymphocyte trafficking into LNs independent of Lyn, it does not make an important contribution to development of autoimmunity, plasma cell dysfunction or glomerular injury in the Lyn-/- model of systemic autoimmunity.
Collapse
Affiliation(s)
- Louisa Yeung
- Centre for Inflammatory Diseases, Department of Medicine, Monash Medical Centre, Monash University, Clayton, VIC, Australia.,Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Timothy A Gottschalk
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Pam Hall
- Centre for Inflammatory Diseases, Department of Medicine, Monash Medical Centre, Monash University, Clayton, VIC, Australia
| | - Evelyn Tsantikos
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Rebecca H Gallagher
- Centre for Inflammatory Diseases, Department of Medicine, Monash Medical Centre, Monash University, Clayton, VIC, Australia.,Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - A Richard Kitching
- Centre for Inflammatory Diseases, Department of Medicine, Monash Medical Centre, Monash University, Clayton, VIC, Australia.,Departments of Nephrology and Pediatric Nephrology, Monash Medical Centre, Clayton, VIC, Australia
| | - Margaret L Hibbs
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Mark D Wright
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Michael J Hickey
- Centre for Inflammatory Diseases, Department of Medicine, Monash Medical Centre, Monash University, Clayton, VIC, Australia
| |
Collapse
|
14
|
Gottschalk TA, Vincent FB, Hoi AY, Hibbs ML. Granulocyte colony-stimulating factor is not pathogenic in lupus nephritis. IMMUNITY INFLAMMATION AND DISEASE 2021; 9:758-770. [PMID: 33960699 PMCID: PMC8342225 DOI: 10.1002/iid3.430] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 03/21/2021] [Accepted: 03/25/2021] [Indexed: 12/24/2022]
Abstract
Systemic lupus erythematosus (lupus) is an autoimmune disease characterized by autoantibodies that form immune complexes with self‐antigens, which deposit in various tissues, leading to inflammation and disease. The etiology of disease is complex and still not completely elucidated. Dysregulated inflammation is an important disease feature, and the mainstay of lupus treatment still utilizes nonspecific anti‐inflammatory drugs. Granulocyte colony‐stimulating factor (G‐CSF) is a growth, survival, and activation factor for neutrophils and a mobilizer of hematopoietic stem cells, both of which underlie inflammatory responses in lupus. To determine whether G‐CSF has a causal role in lupus, we genetically deleted G‐CSF from Lyn‐deficient mice, an experimental model of lupus nephritis. Lyn−/−G‐CSF−/− mice displayed many of the inflammatory features of Lyn‐deficient mice; however, they had reduced bone marrow and tissue neutrophils, consistent with G‐CSF's role in neutrophil development. Unexpectedly, in comparison to aged Lyn‐deficient mice, matched Lyn−/−G‐CSF−/− mice maintained neutrophil hyperactivation and exhibited exacerbated numbers of effector memory T cells, augmented autoantibody titers, and worsened lupus nephritis. In humans, serum G‐CSF levels were not elevated in patients with lupus or with active renal disease. Thus, these studies suggest that G‐CSF is not pathogenic in lupus, and therefore G‐CSF blockade is an unsuitable therapeutic avenue.
Collapse
Affiliation(s)
- Timothy A Gottschalk
- Leukocyte Signalling Laboratory, Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Fabien B Vincent
- Centre for Inflammatory Diseases, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, Australia
| | - Alberta Y Hoi
- Centre for Inflammatory Diseases, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, Australia
| | - Margaret L Hibbs
- Leukocyte Signalling Laboratory, Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
15
|
Nataraja C, Dankers W, Flynn J, Lee JPW, Zhu W, Vincent FB, Gearing LJ, Ooi J, Pervin M, Cristofaro MA, Sherlock R, Hasnat MA, Harris J, Morand EF, Jones SA. GILZ Regulates the Expression of Pro-Inflammatory Cytokines and Protects Against End-Organ Damage in a Model of Lupus. Front Immunol 2021; 12:652800. [PMID: 33889157 PMCID: PMC8056982 DOI: 10.3389/fimmu.2021.652800] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 03/15/2021] [Indexed: 12/21/2022] Open
Abstract
Glucocorticoid-induced leucine zipper (GILZ) mimics many of the anti-inflammatory effects of glucocorticoids, suggesting it as a point of therapeutic intervention that could bypass GC adverse effects. We previously reported that GILZ down-regulation is a feature of human SLE, and loss of GILZ permits the development of autoantibodies and lupus-like autoimmunity in mice. To further query the contribution of GILZ to protection against autoimmune inflammation, we studied the development of the lupus phenotype in Lyn-deficient (Lyn-/-) mice in which GILZ expression was genetically ablated. In Lyn-/- mice, splenomegaly, glomerulonephritis, anti-dsDNA antibody titres and cytokine expression were exacerbated by GILZ deficiency, while other autoantibody titres and glomerular immune complex deposition were unaffected. Likewise, in patients with SLE, GILZ was inversely correlated with IL23A, and in SLE patients not taking glucocorticoids, GILZ was also inversely correlated with BAFF and IL18. This suggests that at the onset of autoimmunity, GILZ protects against tissue injury by modulating pro-inflammatory pathways, downstream of antibodies, to regulate the cycle of inflammation in SLE.
Collapse
Affiliation(s)
- Champa Nataraja
- Monash University Centre for Inflammatory Disease, School of Clinical Sciences at Monash Health, Melbourne, VIC, Australia
| | - Wendy Dankers
- Monash University Centre for Inflammatory Disease, School of Clinical Sciences at Monash Health, Melbourne, VIC, Australia
| | - Jacqueline Flynn
- Monash University Centre for Inflammatory Disease, School of Clinical Sciences at Monash Health, Melbourne, VIC, Australia
| | - Jacinta P W Lee
- Monash University Centre for Inflammatory Disease, School of Clinical Sciences at Monash Health, Melbourne, VIC, Australia
| | - Wendy Zhu
- Monash University Centre for Inflammatory Disease, School of Clinical Sciences at Monash Health, Melbourne, VIC, Australia
| | - Fabien B Vincent
- Monash University Centre for Inflammatory Disease, School of Clinical Sciences at Monash Health, Melbourne, VIC, Australia
| | - Linden J Gearing
- Centre for Innate Immunity and Infectious Diseases, Department of Molecular and Translational Science, Hudson Institute, Melbourne, VIC, Australia
| | - Joshua Ooi
- Monash University Centre for Inflammatory Disease, School of Clinical Sciences at Monash Health, Melbourne, VIC, Australia
| | - Mehnaz Pervin
- Monash University Centre for Inflammatory Disease, School of Clinical Sciences at Monash Health, Melbourne, VIC, Australia
| | - Megan A Cristofaro
- Monash University Centre for Inflammatory Disease, School of Clinical Sciences at Monash Health, Melbourne, VIC, Australia
| | - Rochelle Sherlock
- Monash University Centre for Inflammatory Disease, School of Clinical Sciences at Monash Health, Melbourne, VIC, Australia
| | - Md Abul Hasnat
- Monash University Centre for Inflammatory Disease, School of Clinical Sciences at Monash Health, Melbourne, VIC, Australia
| | - James Harris
- Monash University Centre for Inflammatory Disease, School of Clinical Sciences at Monash Health, Melbourne, VIC, Australia
| | - Eric F Morand
- Monash University Centre for Inflammatory Disease, School of Clinical Sciences at Monash Health, Melbourne, VIC, Australia
| | - Sarah A Jones
- Monash University Centre for Inflammatory Disease, School of Clinical Sciences at Monash Health, Melbourne, VIC, Australia
| |
Collapse
|
16
|
Sun Y, Yang Y, Zhao Y, Li X, Zhang Y, Liu Z. The role of the tyrosine kinase Lyn in allergy and cancer. Mol Immunol 2021; 131:121-126. [PMID: 33419562 DOI: 10.1016/j.molimm.2020.12.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 12/10/2020] [Accepted: 12/20/2020] [Indexed: 01/07/2023]
Abstract
With worsening air pollution brought by global social development, the prevalence of allergic diseases has increased dramatically in the past few decades. The novel Lck/yes-related protein tyrosine kinase (Lyn) belongs to the Src kinase family (SFK) and plays a pivotal role in the pathogenesis of inflammation, tumor, and allergy. This signaling molecule is vital in the IgE/FcεRI signaling pathway that regulates allergy. The Lyn-FcεRIβ interaction is essential for mast cell activation. The signaling pathway of Lyn has become the focus of immune, inflammatory, tumor, and allergy research. This molecule has positive and negative regulatory effects, which have attracted researchers' attention. This paper reviews the basic characteristics of Lyn and its regulatory mechanism and role in tumor and other diseases, specifically in allergies.
Collapse
Affiliation(s)
- Yizhao Sun
- College of Pharmaceutical Sciences, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China
| | - Yanlei Yang
- College of Pharmaceutical Sciences, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China
| | - Yang Zhao
- College of Pharmaceutical Sciences, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China
| | - Xiangsheng Li
- College of Pharmaceutical Sciences, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China
| | - Yanfen Zhang
- Technology Transfer Center, Hebei University, Baoding, 071002, China.
| | - Zhongcheng Liu
- College of Pharmaceutical Sciences, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China.
| |
Collapse
|
17
|
Prati F, Buonfiglio R, Furlotti G, Cavarischia C, Mangano G, Picollo R, Oggianu L, di Matteo A, Olivieri S, Bovi G, Porceddu PF, Reggiani A, Garrone B, Di Giorgio FP, Ombrato R. Optimization of Indazole-Based GSK-3 Inhibitors with Mitigated hERG Issue and In Vivo Activity in a Mood Disorder Model. ACS Med Chem Lett 2020; 11:825-831. [PMID: 32435391 DOI: 10.1021/acsmedchemlett.9b00633] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 03/24/2020] [Indexed: 12/12/2022] Open
Abstract
Bipolar disorders still represent a global unmet medical need and pose a requirement for novel effective treatments. In this respect, glycogen synthase kinase 3β (GSK-3β) aberrant activity has been linked to the pathophysiology of several disease conditions, including mood disorders. Therefore, the development of GSK-3β inhibitors with good in vivo efficacy and safety profile associated with high brain exposure is required. Accordingly, we have previously reported the selective indazole-based GSK-3 inhibitor 1, which showed excellent efficacy in a mouse model of mania. Despite the favorable preclinical profile, analog 1 suffered from activity at the hERG ion channel, which prevented its further progression. Herein, we describe our strategy to improve this off-target liability through modulation of physicochemical properties, such as lipophilicity and basicity. These efforts led to the potent inhibitor 14, which possessed reduced hERG affinity, promising in vitro ADME properties, and was very effective in a mood stabilizer in vivo model.
Collapse
Affiliation(s)
- Federica Prati
- Angelini Pharma S.p.A., Viale Amelia, 70, 00181 Rome, Italy
| | | | - Guido Furlotti
- Angelini Pharma S.p.A., Viale Amelia, 70, 00181 Rome, Italy
| | | | | | | | - Laura Oggianu
- Angelini Pharma S.p.A., Viale Amelia, 70, 00181 Rome, Italy
| | - Anna di Matteo
- Angelini Pharma S.p.A., Viale Amelia, 70, 00181 Rome, Italy
| | | | - Graziella Bovi
- Angelini Pharma S.p.A., Viale Amelia, 70, 00181 Rome, Italy
| | - Pier Francesca Porceddu
- D3Validation Research Line, Fondazione Istituto Italiano di Tecnologia, via Morego 30, 16163 Genoa, Italy
| | - Angelo Reggiani
- D3Validation Research Line, Fondazione Istituto Italiano di Tecnologia, via Morego 30, 16163 Genoa, Italy
| | | | | | | |
Collapse
|
18
|
Roberts ME, Barvalia M, Silva JAFD, Cederberg RA, Chu W, Wong A, Tai DC, Chen S, Matos I, Priatel JJ, Cullis PR, Harder KW. Deep Phenotyping by Mass Cytometry and Single-Cell RNA-Sequencing Reveals LYN-Regulated Signaling Profiles Underlying Monocyte Subset Heterogeneity and Lifespan. Circ Res 2020; 126:e61-e79. [PMID: 32151196 DOI: 10.1161/circresaha.119.315708] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
RATIONALE Monocytes are key effectors of the mononuclear phagocyte system, playing critical roles in regulating tissue homeostasis and coordinating inflammatory reactions, including those involved in chronic inflammatory diseases such as atherosclerosis. Monocytes have traditionally been divided into 2 major subsets termed conventional monocytes and patrolling monocytes (pMo) but recent systems immunology approaches have identified marked heterogeneity within these cells, and much of what regulates monocyte population homeostasis remains unknown. We and others have previously identified LYN tyrosine kinase as a key negative regulator of myeloid cell biology; however, LYN's role in regulating specific monocyte subset homeostasis has not been investigated. OBJECTIVE We sought to comprehensively profile monocytes to elucidate the underlying heterogeneity within monocytes and dissect how Lyn deficiency affects monocyte subset composition, signaling, and gene expression. We further tested the biological significance of these findings in a model of atherosclerosis. METHODS AND RESULTS Mass cytometric analysis of monocyte subsets and signaling pathway activation patterns in conventional monocytes and pMos revealed distinct baseline signaling profiles and far greater heterogeneity than previously described. Lyn deficiency led to a selective expansion of pMos and alterations in specific signaling pathways within these cells, revealing a critical role for LYN in pMo physiology. LYN's role in regulating pMos was cell-intrinsic and correlated with an increased circulating half-life of Lyn-deficient pMos. Furthermore, single-cell RNA sequencing revealed marked perturbations in the gene expression profiles of Lyn-/- monocytes with upregulation of genes involved in pMo development, survival, and function. Lyn deficiency also led to a significant increase in aorta-associated pMos and protected Ldlr-/- mice from high-fat diet-induced atherosclerosis. CONCLUSIONS Together our data identify LYN as a key regulator of pMo development and a potential therapeutic target in inflammatory diseases regulated by pMos.
Collapse
Affiliation(s)
- Morgan E Roberts
- From the Department of Microbiology and Immunology (M.E.R., M.B., J.A.F.D.S., R.A.C., W.C., A.W., I.M., K.W.H.), University of British Columbia, Vancouver, Canada
| | - Maunish Barvalia
- From the Department of Microbiology and Immunology (M.E.R., M.B., J.A.F.D.S., R.A.C., W.C., A.W., I.M., K.W.H.), University of British Columbia, Vancouver, Canada
| | - Jessica A F D Silva
- From the Department of Microbiology and Immunology (M.E.R., M.B., J.A.F.D.S., R.A.C., W.C., A.W., I.M., K.W.H.), University of British Columbia, Vancouver, Canada
| | - Rachel A Cederberg
- From the Department of Microbiology and Immunology (M.E.R., M.B., J.A.F.D.S., R.A.C., W.C., A.W., I.M., K.W.H.), University of British Columbia, Vancouver, Canada
| | - William Chu
- From the Department of Microbiology and Immunology (M.E.R., M.B., J.A.F.D.S., R.A.C., W.C., A.W., I.M., K.W.H.), University of British Columbia, Vancouver, Canada
| | - Amanda Wong
- From the Department of Microbiology and Immunology (M.E.R., M.B., J.A.F.D.S., R.A.C., W.C., A.W., I.M., K.W.H.), University of British Columbia, Vancouver, Canada
| | - Daven C Tai
- Department of Pediatrics (D.C.T.), University of British Columbia, Vancouver, Canada.,British Columbia Children's Hospital Research Institute, Vancouver, Canada (D.C.T., J.J.P.)
| | - Sam Chen
- Department of Biochemistry and Molecular Biology (S.C., P.R.C.), University of British Columbia, Vancouver, Canada
| | - Israel Matos
- From the Department of Microbiology and Immunology (M.E.R., M.B., J.A.F.D.S., R.A.C., W.C., A.W., I.M., K.W.H.), University of British Columbia, Vancouver, Canada
| | - John J Priatel
- Department of Pathology and Laboratory Medicine (J.J.P.), University of British Columbia, Vancouver, Canada.,British Columbia Children's Hospital Research Institute, Vancouver, Canada (D.C.T., J.J.P.)
| | - Pieter R Cullis
- Department of Biochemistry and Molecular Biology (S.C., P.R.C.), University of British Columbia, Vancouver, Canada
| | - Kenneth W Harder
- From the Department of Microbiology and Immunology (M.E.R., M.B., J.A.F.D.S., R.A.C., W.C., A.W., I.M., K.W.H.), University of British Columbia, Vancouver, Canada
| |
Collapse
|
19
|
Getahun A, Cambier JC. Non-Antibody-Secreting Functions of B Cells and Their Contribution to Autoimmune Disease. Annu Rev Cell Dev Biol 2019; 35:337-356. [PMID: 30883216 DOI: 10.1146/annurev-cellbio-100617-062518] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
B cells play multiple important roles in the pathophysiology of autoimmune disease. Beyond producing pathogenic autoantibodies, B cells can act as antigen-presenting cells and producers of cytokines, including both proinflammatory and anti-inflammatory cytokines. Here we review our current understanding of the non-antibody-secreting roles that B cells may play during development of autoimmunity, as learned primarily from reductionist preclinical models. Attention is also given to concepts emerging from clinical studies using B cell depletion therapy, which shed light on the roles of these mechanisms in human autoimmune disease.
Collapse
Affiliation(s)
- Andrew Getahun
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado 80045, USA; .,Department of Biomedical Research, National Jewish Health, Denver, Colorado 80206, USA
| | - John C Cambier
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado 80045, USA; .,Department of Biomedical Research, National Jewish Health, Denver, Colorado 80206, USA
| |
Collapse
|
20
|
Bier J, Rao G, Payne K, Brigden H, French E, Pelham SJ, Lau A, Lenthall H, Edwards ESJ, Smart JM, Cole TS, Choo S, Joshi AY, Abraham RS, O'Sullivan M, Boztug K, Meyts I, Gray PE, Berglund LJ, Hsu P, Wong M, Holland SM, Notarangelo LD, Uzel G, Ma CS, Brink R, Tangye SG, Deenick EK. Activating mutations in PIK3CD disrupt the differentiation and function of human and murine CD4 + T cells. J Allergy Clin Immunol 2019; 144:236-253. [PMID: 30738173 DOI: 10.1016/j.jaci.2019.01.033] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 12/21/2018] [Accepted: 01/17/2019] [Indexed: 01/09/2023]
Abstract
BACKGROUND Gain-of-function (GOF) mutations in PIK3CD cause a primary immunodeficiency characterized by recurrent respiratory tract infections, susceptibility to herpesvirus infections, and impaired antibody responses. Previous work revealed defects in CD8+ T and B cells that contribute to this clinical phenotype, but less is understood about the role of CD4+ T cells in disease pathogenesis. OBJECTIVE We sought to dissect the effects of increased phosphoinositide 3-kinase (PI3K) signaling on CD4+ T-cell function. METHODS We performed detailed ex vivo, in vivo, and in vitro phenotypic and functional analyses of patients' CD4+ T cells and a novel murine disease model caused by overactive PI3K signaling. RESULTS PI3K overactivation caused substantial increases in numbers of memory and follicular helper T (TFH) cells and dramatic changes in cytokine production in both patients and mice. Furthermore, PIK3CD GOF human TFH cells had dysregulated phenotype and function characterized by increased programmed cell death protein 1, CXCR3, and IFN-γ expression, the phenotype of a TFH cell subset with impaired B-helper function. This was confirmed in vivo in which Pik3cd GOF CD4+ T cells also acquired an aberrant TFH phenotype and provided poor help to support germinal center reactions and humoral immune responses by antigen-specific wild-type B cells. The increase in numbers of both memory and TFH cells was largely CD4+ T-cell extrinsic, whereas changes in cytokine production and TFH cell function were cell intrinsic. CONCLUSION Our studies reveal that CD4+ T cells with overactive PI3K have aberrant activation and differentiation, thereby providing mechanistic insight into dysfunctional antibody responses in patients with PIK3CD GOF mutations.
Collapse
Affiliation(s)
- Julia Bier
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, Australia; St Vincent's Clinical School, University of New South Wales, Sydney, Australia
| | - Geetha Rao
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, Australia
| | - Kathryn Payne
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, Australia
| | - Henry Brigden
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, Australia; University of Bath, Bath, United Kingdom
| | - Elise French
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, Australia; University of Bath, Bath, United Kingdom
| | - Simon J Pelham
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, Australia; St Vincent's Clinical School, University of New South Wales, Sydney, Australia
| | - Anthony Lau
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, Australia; St Vincent's Clinical School, University of New South Wales, Sydney, Australia
| | - Helen Lenthall
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, Australia
| | - Emily S J Edwards
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, Australia; St Vincent's Clinical School, University of New South Wales, Sydney, Australia
| | - Joanne M Smart
- Department of Allergy and Immunology, Royal Children's Hospital Melbourne, Melbourne, Australia
| | - Theresa S Cole
- Department of Allergy and Immunology, Royal Children's Hospital Melbourne, Melbourne, Australia
| | - Sharon Choo
- Department of Allergy and Immunology, Royal Children's Hospital Melbourne, Melbourne, Australia
| | - Avni Y Joshi
- Division of Allergy and Immunology, Mayo Clinic Children's Center, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minn
| | - Roshini S Abraham
- Division of Allergy and Immunology, Mayo Clinic Children's Center, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minn; Department of Pathology and Laboratory Medicine, Nationwide Children's Hospital, Columbus, Ohio
| | - Michael O'Sullivan
- Department of Immunology and Allergy, Princess Margaret Hospital, Subiaco, Australia
| | - Kaan Boztug
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria; CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria; St Anna Children's Hospital and Children's Cancer Research Institute, Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - Isabelle Meyts
- Department of Immunology and Microbiology, Childhood Immunology, Department of Pediatrics, University Hospitals Leuven and KU Leuven, Leuven, Belgium
| | - Paul E Gray
- School of Women's and Children's Health, University of New South Wales, Sydney, Australia; Clinical Immunogenomics Research Consortia Australia, Sydney, Australia
| | - Lucinda J Berglund
- Clinical Immunogenomics Research Consortia Australia, Sydney, Australia; Immunopathology Department, Westmead Hospital, Westmead, Australia; Faculty of Medicine, University of Sydney, Sydney, Australia
| | - Peter Hsu
- Clinical Immunogenomics Research Consortia Australia, Sydney, Australia; Faculty of Medicine, University of Sydney, Sydney, Australia; Children's Hospital at Westmead, Westmead, Australia
| | - Melanie Wong
- Clinical Immunogenomics Research Consortia Australia, Sydney, Australia; Faculty of Medicine, University of Sydney, Sydney, Australia; Children's Hospital at Westmead, Westmead, Australia
| | - Steven M Holland
- Laboratory of Clinical Immunology and Microbiology, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Luigi D Notarangelo
- Laboratory of Clinical Immunology and Microbiology, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Gulbu Uzel
- Laboratory of Clinical Immunology and Microbiology, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Cindy S Ma
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, Australia; St Vincent's Clinical School, University of New South Wales, Sydney, Australia; Clinical Immunogenomics Research Consortia Australia, Sydney, Australia
| | - Robert Brink
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, Australia; St Vincent's Clinical School, University of New South Wales, Sydney, Australia; Clinical Immunogenomics Research Consortia Australia, Sydney, Australia
| | - Stuart G Tangye
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, Australia; St Vincent's Clinical School, University of New South Wales, Sydney, Australia; Clinical Immunogenomics Research Consortia Australia, Sydney, Australia.
| | - Elissa K Deenick
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, Australia; St Vincent's Clinical School, University of New South Wales, Sydney, Australia; Clinical Immunogenomics Research Consortia Australia, Sydney, Australia.
| |
Collapse
|
21
|
Wu R, Zeng J, Yuan J, Deng X, Huang Y, Chen L, Zhang P, Feng H, Liu Z, Wang Z, Gao X, Wu H, Wang H, Su Y, Zhao M, Lu Q. MicroRNA-210 overexpression promotes psoriasis-like inflammation by inducing Th1 and Th17 cell differentiation. J Clin Invest 2018; 128:2551-2568. [PMID: 29757188 DOI: 10.1172/jci97426] [Citation(s) in RCA: 198] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 03/20/2018] [Indexed: 12/16/2022] Open
Abstract
Immune imbalance of T lymphocyte subsets is a hallmark of psoriasis, but the molecular mechanisms underlying this aspect of psoriasis pathology are poorly understood. Here, we report that microRNA-210 (miR-210), a miR that is highly expressed in both psoriasis patients and mouse models, induces helper T (Th) 17 and Th1 cell differentiation but inhibits Th2 differentiation through repressing STAT6 and LYN expression, contributing to several aspects of the immune imbalance in psoriasis. Both miR-210 ablation in mice and inhibition of miR-210 by intradermal injection of antagomir-210 blocked the immune imbalance and the development of psoriasis-like inflammation in an imiquimod-induced or IL-23-induced psoriasis-like mouse model. We further showed that TGF-β and IL-23 enhance miR-210 expression by inducing HIF-1α, which recruits P300 and promotes histone H3 acetylation in the miR-210 promoter region. Our results reveal a crucial role for miR-210 in the immune imbalance of T lymphocyte subsets in psoriasis and suggest a potential therapeutic avenue.
Collapse
Affiliation(s)
- Ruifang Wu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Jinrong Zeng
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Jin Yuan
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Xinjie Deng
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Yi Huang
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Lina Chen
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Peng Zhang
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Huan Feng
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Zixin Liu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Zijun Wang
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Xiaofei Gao
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Haijing Wu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Honglin Wang
- Shanghai Institute of Immunology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, China
| | - Yuwen Su
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Ming Zhao
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Qianjin Lu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| |
Collapse
|
22
|
Abstract
Interleukin-6 (IL-6) is a pivotal cytokine with a diverse repertoire of physiological functions that include regulation of immune cell proliferation and differentiation. Dysregulation of IL-6 signalling is associated with inflammatory and lymphoproliferative disorders such as rheumatoid arthritis and Castleman disease, and several classes of therapeutics have been developed that target components of the IL-6 signalling pathway. So far, monoclonal antibodies against IL-6 or IL-6 receptor (IL-6R) and Janus kinases (JAK) inhibitors have been successfully developed for the treatment of autoimmune diseases such as rheumatoid arthritis. However, clinical trials of agents targeting IL-6 signalling have also raised questions about the diseases and patient populations for which such agents have an appropriate benefit-risk profile. Knowledge from clinical trials and advances in our understanding of the complexities of IL-6 signalling, including the potential to target an IL-6 trans-signalling pathway, are now indicating novel opportunities for therapeutic intervention. In this Review, we overview the roles of IL-6 in health and disease and analyse progress with several approaches of inhibiting IL-6-signalling, with the aim of illuminating when and how to apply IL-6 blockade.
Collapse
|
23
|
Brodie EJ, Infantino S, Low MSY, Tarlinton DM. Lyn, Lupus, and (B) Lymphocytes, a Lesson on the Critical Balance of Kinase Signaling in Immunity. Front Immunol 2018; 9:401. [PMID: 29545808 PMCID: PMC5837976 DOI: 10.3389/fimmu.2018.00401] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 02/13/2018] [Indexed: 01/23/2023] Open
Abstract
Systemic lupus erythematosus (SLE) is a progressive autoimmune disease characterized by increased sensitivity to self-antigens, auto-antibody production, and systemic inflammation. B cells have been implicated in disease progression and as such represent an attractive therapeutic target. Lyn is a Src family tyrosine kinase that plays a major role in regulating signaling pathways within B cells as well as other hematopoietic cells. Its role in initiating negative signaling cascades is especially critical as exemplified by Lyn-/- mice developing an SLE-like disease with plasma cell hyperplasia, underscoring the importance of tightly regulating signaling within B cells. This review highlights recent advances in our understanding of the function of the Src family tyrosine kinase Lyn in B lymphocytes and its contribution to positive and negative signaling pathways that are dysregulated in autoimmunity.
Collapse
Affiliation(s)
- Erica J. Brodie
- Department of Immunology and Pathology, Monash University, Melbourne, VIC, Australia
| | - Simona Infantino
- Department of Immunology and Pathology, Monash University, Melbourne, VIC, Australia
| | - Michael S. Y. Low
- Department of Immunology and Pathology, Monash University, Melbourne, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
- Immunology Division, Walter and Eliza Hall Institute of Medical Research, University of Melbourne, Parkville, VIC, Australia
- Department of Haematology, Monash Health, Monash Hospital, Clayton, VIC, Australia
| | - David M. Tarlinton
- Department of Immunology and Pathology, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
24
|
Satterthwaite AB. Bruton's Tyrosine Kinase, a Component of B Cell Signaling Pathways, Has Multiple Roles in the Pathogenesis of Lupus. Front Immunol 2018; 8:1986. [PMID: 29403475 PMCID: PMC5786522 DOI: 10.3389/fimmu.2017.01986] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Accepted: 12/21/2017] [Indexed: 01/08/2023] Open
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by the loss of adaptive immune tolerance to nucleic acid-containing antigens. The resulting autoantibodies form immune complexes that promote inflammation and tissue damage. Defining the signals that drive pathogenic autoantibody production is an important step in the development of more targeted therapeutic approaches for lupus, which is currently treated primarily with non-specific immunosuppression. Here, we review the contribution of Bruton’s tyrosine kinase (Btk), a component of B and myeloid cell signaling pathways, to disease in murine lupus models. Both gain- and loss-of-function genetic studies have revealed that Btk plays multiple roles in the production of autoantibodies. These include promoting the activation, plasma cell differentiation, and class switching of autoreactive B cells. Small molecule inhibitors of Btk are effective at reducing autoantibody levels, B cell activation, and kidney damage in several lupus models. These studies suggest that Btk may promote end-organ damage both by facilitating the production of autoantibodies and by mediating the inflammatory response of myeloid cells to these immune complexes. While Btk has not been associated with SLE in GWAS studies, SLE B cells display signaling defects in components both upstream and downstream of Btk consistent with enhanced activation of Btk signaling pathways. Taken together, these observations indicate that limiting Btk activity is critical for maintaining B cell tolerance and preventing the development of autoimmune disease. Btk inhibitors, generally well-tolerated and approved to treat B cell malignancy, may thus be a useful therapeutic approach for SLE.
Collapse
Affiliation(s)
- Anne B Satterthwaite
- Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, United States.,Department of Immunology, The University of Texas Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
25
|
The role of free kappa and lambda light chains in the pathogenesis and treatment of inflammatory diseases. Biomed Pharmacother 2017; 91:632-644. [PMID: 28494417 DOI: 10.1016/j.biopha.2017.04.121] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 04/08/2017] [Accepted: 04/27/2017] [Indexed: 12/12/2022] Open
|
26
|
Li R, Fang L, Pu Q, Lin P, Hoggarth A, Huang H, Li X, Li G, Wu M. Lyn prevents aberrant inflammatory responses to Pseudomonas infection in mammalian systems by repressing a SHIP-1-associated signaling cluster. Signal Transduct Target Ther 2016; 1:16032. [PMID: 29263906 PMCID: PMC5661651 DOI: 10.1038/sigtrans.2016.32] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 11/18/2016] [Accepted: 11/22/2016] [Indexed: 02/05/2023] Open
Abstract
The pleiotropic Src kinase Lyn has critical roles in host defense in alveolar macrophages against bacterial infection, but the underlying mechanism for Lyn-mediated inflammatory response remains largely elusive. Using mouse Pseudomonas aeruginosa infection models, we observed that Lyn-/- mice manifest severe lung injury and enhanced inflammatory responses, compared with wild-type littermates. We demonstrate that Lyn exerts this immune function through interaction with IL-6 receptor and cytoskeletal protein Ezrin via its SH2 and SH3 domains. Depletion of Lyn results in excessive STAT3 activation, and enhanced the Src homology 2-containing inositol-5-phopsphatase 1 (SHIP-1) expression. Deletion of SHIP-1 in Lyn-/- mice (double knockout) promotes mouse survival and reduces inflammatory responses during P. aeruginosa infection, revealing the rescue of the deadly infectious phenotype in Lyn deficiency. Mechanistically, loss of SHIP-1 reduces NF-κB-dependent cytokine production and dampens MAP kinase activation through a TLR4-independent PI3K/Akt pathway. These findings reveal Lyn as a regulator for host immune response against P. aeruginosa infection through SHIP-1 and IL-6/STAT3 signaling pathway in alveolar macrophages.
Collapse
Affiliation(s)
- Rongpeng Li
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, North Dakota, USA.,Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province, Jiangsu Normal University, Xuzhou, Jiangsu 221116, P.R., China
| | - Lizhu Fang
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, North Dakota, USA
| | - Qinqin Pu
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, North Dakota, USA.,State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Ping Lin
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, North Dakota, USA
| | - Austin Hoggarth
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, North Dakota, USA
| | - Huang Huang
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, North Dakota, USA
| | - Xuefeng Li
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, North Dakota, USA.,Institute of Human Virology, Sun Yat-sen University, Guangzhou, China
| | - Guoping Li
- Inflammation and Allergic Disease Research Unit, First Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Min Wu
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, North Dakota, USA.,State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| |
Collapse
|
27
|
Oon S, Wilson NJ, Wicks I. Targeted therapeutics in SLE: emerging strategies to modulate the interferon pathway. Clin Transl Immunology 2016; 5:e79. [PMID: 27350879 PMCID: PMC4910120 DOI: 10.1038/cti.2016.26] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 04/12/2016] [Accepted: 04/12/2016] [Indexed: 12/20/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a prototypic autoimmune disease characterized by impaired immune tolerance, resulting in the generation of pathogenic autoantibodies and immune complexes. Although autoreactive B lymphocytes have been the first targets for biologic therapies in SLE, the importance of the innate immune system, and in particular, pathways involved in interferon (IFN) signaling, has emerged. There are now data supporting a central role for a plasmacytoid dendritic cell-derived type I IFN pathway in SLE, with a number of biologic therapeutics and small-molecule inhibitors undergoing clinical trials. Monoclonal antibodies targeting IFN-α have completed phase II clinical trials, and an antibody against the type I IFN receptor is entering a phase III trial. However, other IFNs, such as IFN gamma, and the more recently discovered type III IFNs, are also emerging as targets in SLE; and blockade of upstream components of the IFN signaling pathway may enable inhibition of more than one IFN subtype. In this review, we discuss the current understanding of IFNs in SLE, focusing on emerging therapies.
Collapse
Affiliation(s)
- Shereen Oon
- Division of Inflammation, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Rheumatology Department, The Royal Melbourne Hospital, Parkville, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | | | - Ian Wicks
- Division of Inflammation, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Rheumatology Department, The Royal Melbourne Hospital, Parkville, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
28
|
Jones SA, Toh AEJ, Odobasic D, Oudin MAV, Cheng Q, Lee JPW, White SJ, Russ BE, Infantino S, Light A, Tarlinton DM, Harris J, Morand EF. Glucocorticoid-induced leucine zipper (GILZ) inhibits B cell activation in systemic lupus erythematosus. Ann Rheum Dis 2016; 75:739-47. [PMID: 26612340 DOI: 10.1136/annrheumdis-2015-207744] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 11/01/2015] [Indexed: 01/29/2023]
Abstract
OBJECTIVES Systemic lupus erythematosus (SLE) is a serious multisystem autoimmune disease, mediated by disrupted B cell quiescence and typically treated with glucocorticoids. We studied whether B cells in SLE are regulated by the glucocorticoid-induced leucine zipper (GILZ) protein, an endogenous mediator of anti-inflammatory effects of glucocorticoids. METHODS We conducted a study of GILZ expression in blood mononuclear cells of patients with SLE, performed in vitro analyses of GILZ function in mouse and human B cells, assessed the contributions of GILZ to autoimmunity in mice, and used the nitrophenol coupled to keyhole limpet haemocyanin model of immunisation in mice. RESULTS Reduced B cell GILZ was observed in patients with SLE and lupus-prone mice, and impaired induction of GILZ in patients with SLE receiving glucocorticoids was associated with increased disease activity. GILZ was downregulated in naïve B cells upon stimulation in vitro and in germinal centre B cells, which contained less enrichment of H3K4me3 at the GILZ promoter compared with naïve and memory B cells. Mice lacking GILZ spontaneously developed lupus-like autoimmunity, and GILZ deficiency resulted in excessive B cell responses to T-dependent stimulation. Accordingly, loss of GILZ in naïve B cells allowed upregulation of multiple genes that promote the germinal centre B cell phenotype, including lupus susceptibility genes and genes involved in cell survival and proliferation. Finally, treatment of human B cells with a cell-permeable GILZ fusion protein potently suppressed their responsiveness to T-dependent stimuli. CONCLUSIONS Our findings demonstrated that GILZ is a non-redundant regulator of B cell activity, with important potential clinical implications in SLE.
Collapse
Affiliation(s)
- Sarah A Jones
- Centre for Inflammatory Diseases, School of Clinical Sciences at Monash Health, Monash University, Clayton, Melbourne, Australia
| | - Andrew E J Toh
- Centre for Inflammatory Diseases, School of Clinical Sciences at Monash Health, Monash University, Clayton, Melbourne, Australia
| | - Dragana Odobasic
- Centre for Inflammatory Diseases, School of Clinical Sciences at Monash Health, Monash University, Clayton, Melbourne, Australia
| | - Marie-Anne Virginie Oudin
- Centre for Inflammatory Diseases, School of Clinical Sciences at Monash Health, Monash University, Clayton, Melbourne, Australia
| | - Qiang Cheng
- Centre for Inflammatory Diseases, School of Clinical Sciences at Monash Health, Monash University, Clayton, Melbourne, Australia
| | - Jacinta P W Lee
- Centre for Inflammatory Diseases, School of Clinical Sciences at Monash Health, Monash University, Clayton, Melbourne, Australia
| | - Stefan J White
- Department of Human Genetics, Leiden Genome Technology Center, Leiden University Medical Center, Leiden, The Netherlands
| | - Brendan E Russ
- Department of Microbiology and Immunology, The Doherty Institute at The University of Melbourne, Parkville, Victoria, Australia
| | - Simona Infantino
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia Department of Experimental Medicine, University of Melbourne, Parkville, Victoria, Australia
| | - Amanda Light
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia Department of Experimental Medicine, University of Melbourne, Parkville, Victoria, Australia
| | - David M Tarlinton
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia Department of Experimental Medicine, University of Melbourne, Parkville, Victoria, Australia
| | - James Harris
- Centre for Inflammatory Diseases, School of Clinical Sciences at Monash Health, Monash University, Clayton, Melbourne, Australia
| | - Eric F Morand
- Centre for Inflammatory Diseases, School of Clinical Sciences at Monash Health, Monash University, Clayton, Melbourne, Australia
| |
Collapse
|
29
|
Furlotti G, Alisi MA, Cazzolla N, Dragone P, Durando L, Magarò G, Mancini F, Mangano G, Ombrato R, Vitiello M, Armirotti A, Capurro V, Lanfranco M, Ottonello G, Summa M, Reggiani A. Hit Optimization of 5-Substituted-N-(piperidin-4-ylmethyl)-1H-indazole-3-carboxamides: Potent Glycogen Synthase Kinase-3 (GSK-3) Inhibitors with in Vivo Activity in Model of Mood Disorders. J Med Chem 2015; 58:8920-37. [PMID: 26486317 DOI: 10.1021/acs.jmedchem.5b01208] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Novel treatments for bipolar disorder with improved efficacy and broader spectrum of activity are urgently needed. Glycogen synthase kinase 3β (GSK-3β) has been suggested to be a key player in the pathophysiology of bipolar disorder. A series of novel GSK-3β inhibitors having the common N-[(1-alkylpiperidin-4-yl)methyl]-1H-indazole-3-carboxamide scaffold were prepared taking advantage of an X-ray cocrystal structure of compound 5 with GSK-3β. We probed different substitutions at the indazole 5-position and at the piperidine-nitrogen to obtain potent ATP-competitive GSK-3β inhibitors with good cell activity. Among the compounds assessed in the in vivo PK experiments, 14i showed, after i.p. dosing, encouraging plasma PK profile and brain exposure, as well as efficacy in a mouse model of mania. Compound 14i was selected for further in vitro/in vivo pharmacological evaluation, in order to elucidate the use of ATP-competitive GSK-3β inhibitors as new tools in the development of new treatments for mood disorders.
Collapse
Affiliation(s)
- Guido Furlotti
- Angelini S.p.A., Angelini Research Center , P.le della Stazione s.n.c., Santa Palomba-Pomezia, 00071 Rome, Italy
| | - Maria Alessandra Alisi
- Angelini S.p.A., Angelini Research Center , P.le della Stazione s.n.c., Santa Palomba-Pomezia, 00071 Rome, Italy
| | - Nicola Cazzolla
- Angelini S.p.A., Angelini Research Center , P.le della Stazione s.n.c., Santa Palomba-Pomezia, 00071 Rome, Italy
| | - Patrizia Dragone
- Angelini S.p.A., Angelini Research Center , P.le della Stazione s.n.c., Santa Palomba-Pomezia, 00071 Rome, Italy
| | - Lucia Durando
- Angelini S.p.A., Angelini Research Center , P.le della Stazione s.n.c., Santa Palomba-Pomezia, 00071 Rome, Italy
| | - Gabriele Magarò
- Angelini S.p.A., Angelini Research Center , P.le della Stazione s.n.c., Santa Palomba-Pomezia, 00071 Rome, Italy
| | - Francesca Mancini
- Angelini S.p.A., Angelini Research Center , P.le della Stazione s.n.c., Santa Palomba-Pomezia, 00071 Rome, Italy
| | - Giorgina Mangano
- Angelini S.p.A., Angelini Research Center , P.le della Stazione s.n.c., Santa Palomba-Pomezia, 00071 Rome, Italy
| | - Rosella Ombrato
- Angelini S.p.A., Angelini Research Center , P.le della Stazione s.n.c., Santa Palomba-Pomezia, 00071 Rome, Italy
| | - Marco Vitiello
- Angelini S.p.A., Angelini Research Center , P.le della Stazione s.n.c., Santa Palomba-Pomezia, 00071 Rome, Italy
| | - Andrea Armirotti
- Drug Discovery and Development Department, Istituto Italiano di Tecnologia , Via Morego 30, 16163 Genova, Italy
| | - Valeria Capurro
- Drug Discovery and Development Department, Istituto Italiano di Tecnologia , Via Morego 30, 16163 Genova, Italy
| | - Massimiliano Lanfranco
- Drug Discovery and Development Department, Istituto Italiano di Tecnologia , Via Morego 30, 16163 Genova, Italy
| | - Giuliana Ottonello
- Drug Discovery and Development Department, Istituto Italiano di Tecnologia , Via Morego 30, 16163 Genova, Italy
| | - Maria Summa
- Drug Discovery and Development Department, Istituto Italiano di Tecnologia , Via Morego 30, 16163 Genova, Italy
| | - Angelo Reggiani
- Drug Discovery and Development Department, Istituto Italiano di Tecnologia , Via Morego 30, 16163 Genova, Italy
| |
Collapse
|
30
|
Gottschalk TA, Tsantikos E, Hibbs ML. Pathogenic Inflammation and Its Therapeutic Targeting in Systemic Lupus Erythematosus. Front Immunol 2015; 6:550. [PMID: 26579125 PMCID: PMC4623412 DOI: 10.3389/fimmu.2015.00550] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 10/14/2015] [Indexed: 12/16/2022] Open
Abstract
Systemic lupus erythematosus (SLE, lupus) is a highly complex and heterogeneous autoimmune disease that most often afflicts women in their child-bearing years. It is characterized by circulating self-reactive antibodies that deposit in tissues, including skin, kidneys, and brain, and the ensuing inflammatory response can lead to irreparable tissue damage. Over many years, clinical trials in SLE have focused on agents that control B- and T-lymphocyte activation, and, with the single exception of an agent known as belimumab which targets the B-cell survival factor BAFF, they have been disappointing. At present, standard therapy for SLE with mild disease is the agent hydroxychloroquine. During disease flares, steroids are often used, while the more severe manifestations with major organ involvement warrant potent, broad-spectrum immunosuppression with cyclophosphamide or mycophenolate. Current treatments have severe and dose-limiting toxicities and thus a more specific therapy targeting a causative factor or signaling pathway would be greatly beneficial in SLE treatment. Moreover, the ability to control inflammation alongside B-cell activation may be a superior approach for disease control. There has been a recent focus on the innate immune system and associated inflammation, which has uncovered key players in driving the pathogenesis of SLE. Delineating some of these intricate inflammatory mechanisms has been possible with studies using spontaneous mouse mutants and genetically engineered mice. These strains, to varying degrees, exhibit hallmarks of the human disease and therefore have been utilized to model human SLE and to test new drugs. Developing a better understanding of the initiation and perpetuation of disease in SLE may uncover suitable novel targets for therapeutic intervention. Here, we discuss the involvement of inflammation in SLE disease pathogenesis, with a focus on several key proinflammatory cytokines and myeloid growth factors, and review the known outcomes or the potential for targeting these factors in SLE.
Collapse
Affiliation(s)
- Timothy A Gottschalk
- Leukocyte Signalling Laboratory, Department of Immunology and Pathology, Alfred Medical Research and Education Precinct, Monash University , Melbourne, VIC , Australia
| | - Evelyn Tsantikos
- Leukocyte Signalling Laboratory, Department of Immunology and Pathology, Alfred Medical Research and Education Precinct, Monash University , Melbourne, VIC , Australia
| | - Margaret L Hibbs
- Leukocyte Signalling Laboratory, Department of Immunology and Pathology, Alfred Medical Research and Education Precinct, Monash University , Melbourne, VIC , Australia
| |
Collapse
|
31
|
Ho LJ, Luo SF, Lai JH. Biological effects of interleukin-6: Clinical applications in autoimmune diseases and cancers. Biochem Pharmacol 2015; 97:16-26. [DOI: 10.1016/j.bcp.2015.06.009] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2015] [Accepted: 06/09/2015] [Indexed: 01/13/2023]
|
32
|
Mayeux J, Skaug B, Luo W, Russell LM, John S, Saelee P, Abbasi H, Li QZ, Garrett-Sinha LA, Satterthwaite AB. Genetic Interaction between Lyn, Ets1, and Btk in the Control of Antibody Levels. THE JOURNAL OF IMMUNOLOGY 2015. [PMID: 26209625 DOI: 10.4049/jimmunol.1500165] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Tight control of B cell differentiation into plasma cells (PCs) is critical for proper immune responses and the prevention of autoimmunity. The Ets1 transcription factor acts in B cells to prevent PC differentiation. Ets1(-/-) mice accumulate PCs and produce autoantibodies. Ets1 expression is downregulated upon B cell activation through the BCR and TLRs and is maintained by the inhibitory signaling pathway mediated by Lyn, CD22 and SiglecG, and SHP-1. In the absence of these inhibitory components, Ets1 levels are reduced in B cells in a Btk-dependent manner. This leads to increased PCs, autoantibodies, and an autoimmune phenotype similar to that of Ets1(-/-) mice. Defects in inhibitory signaling molecules, including Lyn and Ets1, are associated with human lupus, although the effects are more subtle than the complete deficiency that occurs in knockout mice. In this study, we explore the effect of partial disruption of the Lyn/Ets1 pathway on B cell tolerance and find that Lyn(+/-)Ets1(+/-) mice demonstrate greater and earlier production of IgM, but not IgG, autoantibodies compared with Lyn(+/-) or Ets1(+/-) mice. We also show that Btk-dependent downregulation of Ets1 is important for normal PC homeostasis when inhibitory signaling is intact. Ets1 deficiency restores the decrease in steady state PCs and Ab levels observed in Btk(-/-) mice. Thus, depending on the balance of activating and inhibitory signals to Ets1, there is a continuum of effects on autoantibody production and PC maintenance. This ranges from full-blown autoimmunity with complete loss of Ets1-maintaining signals to reduced PC and Ab levels with impaired Ets1 downregulation.
Collapse
Affiliation(s)
- Jessica Mayeux
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Brian Skaug
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Wei Luo
- Department of Biochemistry, Center of Excellence in Bioinformatics and Life Sciences, State University of New York at Buffalo, Buffalo, NY 14203; and
| | - Lisa M Russell
- Department of Biochemistry, Center of Excellence in Bioinformatics and Life Sciences, State University of New York at Buffalo, Buffalo, NY 14203; and
| | - Shinu John
- Department of Biochemistry, Center of Excellence in Bioinformatics and Life Sciences, State University of New York at Buffalo, Buffalo, NY 14203; and
| | - Prontip Saelee
- Department of Biochemistry, Center of Excellence in Bioinformatics and Life Sciences, State University of New York at Buffalo, Buffalo, NY 14203; and
| | - Hansaa Abbasi
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Quan-Zhen Li
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Lee Ann Garrett-Sinha
- Department of Biochemistry, Center of Excellence in Bioinformatics and Life Sciences, State University of New York at Buffalo, Buffalo, NY 14203; and
| | - Anne B Satterthwaite
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390; Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| |
Collapse
|
33
|
Manipulation of B-cell responses with histone deacetylase inhibitors. Nat Commun 2015; 6:6838. [PMID: 25913720 DOI: 10.1038/ncomms7838] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 03/04/2015] [Indexed: 12/24/2022] Open
Abstract
Histone deacetylase inhibitors (HDACi) are approved for treating certain haematological malignancies, however, recent evidence also illustrates they are modulators of the immune system. In experimental models, HDACi are particularly potent against malignancies originating from the B-lymphocyte lineage. Here we examine the ability of this class of compounds to modify both protective and autoimmune antibody responses. In vitro, HDACi affect B-cell proliferation, survival and differentiation in an HDAC-class-dependent manner. Strikingly, treatment of lupus-prone Mrl/lpr mice with the HDACi panobinostat significantly reduces autoreactive plasma-cell numbers, autoantibodies and nephritis, while other immune parameters remain largely unaffected. Immunized control mice treated with panobinostat or the clinically approved HDACi vorinostat have significantly impaired primary antibody responses, but these treatments surprisingly spare circulating memory B cells. These studies indicate that panobinostat is a potential therapy for B-cell-driven autoimmune conditions and HDACi do not induce major long-term detrimental effects on B-cell memory.
Collapse
|
34
|
Roberts ME, Bishop JL, Fan X, Beer JL, Kum WWS, Krebs DL, Huang M, Gill N, Priatel JJ, Finlay BB, Harder KW. Lyn deficiency leads to increased microbiota-dependent intestinal inflammation and susceptibility to enteric pathogens. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2014; 193:5249-63. [PMID: 25339668 DOI: 10.4049/jimmunol.1302832] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The Lyn tyrosine kinase governs the development and function of various immune cells, and its dysregulation has been linked to malignancy and autoimmunity. Using models of chemically induced colitis and enteric infection, we show that Lyn plays a critical role in regulating the intestinal microbiota and inflammatory responses as well as protection from enteric pathogens. Lyn(-/-) mice were highly susceptible to dextran sulfate sodium (DSS) colitis, characterized by significant wasting, rectal bleeding, colonic pathology, and enhanced barrier permeability. Increased DSS susceptibility in Lyn(-/-) mice required the presence of T but not B cells and correlated with dysbiosis and increased IFN-γ(+) and/or IL-17(+) colonic T cells. This dysbiosis was characterized by an expansion of segmented filamentous bacteria, associated with altered intestinal production of IL-22 and IgA, and was transmissible to wild-type mice, resulting in increased susceptibility to DSS. Lyn deficiency also resulted in an inability to control infection by the enteric pathogens Salmonella enterica serovar Typhimurium and Citrobacter rodentium. Lyn(-/-) mice exhibited profound cecal inflammation, bacterial dissemination, and morbidity following S. Typhimurium challenge and greater colonic inflammation throughout the course of C. rodentium infection. These results identify Lyn as a key regulator of the mucosal immune system, governing pathophysiology in multiple models of intestinal disease.
Collapse
Affiliation(s)
- Morgan E Roberts
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Jennifer L Bishop
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Xueling Fan
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Jennifer L Beer
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Winnie W S Kum
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada; Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada; and
| | - Danielle L Krebs
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Morris Huang
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Navkiran Gill
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada; Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada; and
| | - John J Priatel
- Child and Family Research Institute, Vancouver, British Columbia V5Z 4H4, Canada
| | - B Brett Finlay
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada; Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada; and
| | - Kenneth W Harder
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada;
| |
Collapse
|
35
|
Tsantikos E, Gottschalk TA, Maxwell MJ, Hibbs ML. Role of the Lyn tyrosine kinase in the development of autoimmune disease. ACTA ACUST UNITED AC 2014. [DOI: 10.2217/ijr.14.44] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
36
|
Infantino S, Jones SA, Walker JA, Maxwell MJ, Light A, O'Donnell K, Tsantikos E, Peperzak V, Phesse T, Ernst M, Mackay F, Hibbs ML, Fairfax KA, Tarlinton DM. The tyrosine kinase Lyn limits the cytokine responsiveness of plasma cells to restrict their accumulation in mice. Sci Signal 2014; 7:ra77. [PMID: 25118329 DOI: 10.1126/scisignal.2005105] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Maintenance of an appropriate number of plasma cells, long-lived antibody-producing cells that are derived from B cells, is essential for maintaining immunological memory while limiting disease. Plasma cell survival relies on extrinsic factors, the limited availability of which determines the size of the plasma cell population. Mice deficient in the nonreceptor tyrosine kinase Lyn are prone to an autoimmune disease that is characterized by inflammation and an excess of plasma cells (plasmacytosis). We demonstrated that the plasmacytosis was intrinsic to B cells and independent of inflammation. We also showed that Lyn attenuated signaling by signal transducer and activator of transcription 3 (STAT3) and STAT5 in response to the cytokines interleukin-6 (IL-6) and IL-3, respectively, in two previously uncharacterized plasma cell signaling pathways. Thus, in the absence of Lyn, the survival of plasma cells was improved, which enabled the plasma cells to become established in excess numbers in niches in vivo. These data identify Lyn as a key regulator of survival signaling in plasma cells, limiting plasma cell accumulation and autoimmune disease susceptibility.
Collapse
Affiliation(s)
- Simona Infantino
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia. Department of Experimental Medicine, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Sarah A Jones
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia. Department of Experimental Medicine, University of Melbourne, Parkville, Victoria 3052, Australia. Centre for Inflammatory Diseases, Southern Clinical School, Monash Medical Centre, Clayton, Victoria 3800, Australia
| | - Jennifer A Walker
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia. Department of Experimental Medicine, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Mhairi J Maxwell
- Department of Immunology, Alfred Medical Research and Education Precinct, Monash University, Commercial Road, Melbourne, Victoria 3004, Australia
| | - Amanda Light
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia. Department of Experimental Medicine, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Kristy O'Donnell
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia. Department of Experimental Medicine, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Evelyn Tsantikos
- Department of Immunology, Alfred Medical Research and Education Precinct, Monash University, Commercial Road, Melbourne, Victoria 3004, Australia
| | - Victor Peperzak
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia. Department of Experimental Medicine, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Toby Phesse
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia. Department of Experimental Medicine, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Matthias Ernst
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia. Department of Experimental Medicine, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Fabienne Mackay
- Department of Immunology, Alfred Medical Research and Education Precinct, Monash University, Commercial Road, Melbourne, Victoria 3004, Australia
| | - Margaret L Hibbs
- Department of Immunology, Alfred Medical Research and Education Precinct, Monash University, Commercial Road, Melbourne, Victoria 3004, Australia
| | - Kirsten A Fairfax
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia. Department of Experimental Medicine, University of Melbourne, Parkville, Victoria 3052, Australia. Department of Immunology, Alfred Medical Research and Education Precinct, Monash University, Commercial Road, Melbourne, Victoria 3004, Australia
| | - David M Tarlinton
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia. Department of Experimental Medicine, University of Melbourne, Parkville, Victoria 3052, Australia.
| |
Collapse
|
37
|
Luo W, Mayeux J, Gutierrez T, Russell L, Getahun A, Müller J, Tedder T, Parnes J, Rickert R, Nitschke L, Cambier J, Satterthwaite AB, Garrett-Sinha LA. A balance between B cell receptor and inhibitory receptor signaling controls plasma cell differentiation by maintaining optimal Ets1 levels. THE JOURNAL OF IMMUNOLOGY 2014; 193:909-920. [PMID: 24929000 DOI: 10.4049/jimmunol.1400666] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Signaling through the BCR can drive B cell activation and contribute to B cell differentiation into Ab-secreting plasma cells. The positive BCR signal is counterbalanced by a number of membrane-localized inhibitory receptors that limit B cell activation and plasma cell differentiation. Deficiencies in these negative signaling pathways may cause autoantibody generation and autoimmune disease in both animal models and human patients. We have previously shown that the transcription factor Ets1 can restrain B cell differentiation into plasma cells. In this study, we tested the roles of the BCR and inhibitory receptors in controlling the expression of Ets1 in mouse B cells. We found that Ets1 is downregulated in B cells by BCR or TLR signaling through a pathway dependent on PI3K, Btk, IKK2, and JNK. Deficiencies in inhibitory pathways, such as a loss of the tyrosine kinase Lyn, the phosphatase Src homology region 2 domain-containing phosphatase 1 (SHP1) or membrane receptors CD22 and/or Siglec-G, result in enhanced BCR signaling and decreased Ets1 expression. Restoring Ets1 expression in Lyn- or SHP1-deficient B cells inhibits their enhanced plasma cell differentiation. Our findings indicate that downregulation of Ets1 occurs in response to B cell activation via either BCR or TLR signaling, thereby allowing B cell differentiation and that the maintenance of Ets1 expression is an important function of the inhibitory Lyn → CD22/SiglecG → SHP1 pathway in B cells.
Collapse
Affiliation(s)
- Wei Luo
- Department of Biochemistry, Center of Excellence in Bioinformatics and Life Sciences, State University of New York at Buffalo, Buffalo, NY 14203
| | - Jessica Mayeux
- Department of Biochemistry, Center of Excellence in Bioinformatics and Life Sciences, State University of New York at Buffalo, Buffalo, NY 14203
| | - Toni Gutierrez
- Department of Biochemistry, Center of Excellence in Bioinformatics and Life Sciences, State University of New York at Buffalo, Buffalo, NY 14203
| | - Lisa Russell
- Department of Biochemistry, Center of Excellence in Bioinformatics and Life Sciences, State University of New York at Buffalo, Buffalo, NY 14203
| | - Andrew Getahun
- Department of Biochemistry, Center of Excellence in Bioinformatics and Life Sciences, State University of New York at Buffalo, Buffalo, NY 14203
| | - Jennifer Müller
- Department of Biochemistry, Center of Excellence in Bioinformatics and Life Sciences, State University of New York at Buffalo, Buffalo, NY 14203
| | - Thomas Tedder
- Department of Biochemistry, Center of Excellence in Bioinformatics and Life Sciences, State University of New York at Buffalo, Buffalo, NY 14203
| | - Jane Parnes
- Department of Biochemistry, Center of Excellence in Bioinformatics and Life Sciences, State University of New York at Buffalo, Buffalo, NY 14203
| | - Robert Rickert
- Department of Biochemistry, Center of Excellence in Bioinformatics and Life Sciences, State University of New York at Buffalo, Buffalo, NY 14203
| | - Lars Nitschke
- Department of Biochemistry, Center of Excellence in Bioinformatics and Life Sciences, State University of New York at Buffalo, Buffalo, NY 14203
| | - John Cambier
- Department of Biochemistry, Center of Excellence in Bioinformatics and Life Sciences, State University of New York at Buffalo, Buffalo, NY 14203
| | - Anne B Satterthwaite
- Department of Biochemistry, Center of Excellence in Bioinformatics and Life Sciences, State University of New York at Buffalo, Buffalo, NY 14203
| | - Lee Ann Garrett-Sinha
- Department of Biochemistry, Center of Excellence in Bioinformatics and Life Sciences, State University of New York at Buffalo, Buffalo, NY 14203
| |
Collapse
|
38
|
Hua Z, Gross AJ, Lamagna C, Ramos-Hernández N, Scapini P, Ji M, Shao H, Lowell CA, Hou B, DeFranco AL. Requirement for MyD88 signaling in B cells and dendritic cells for germinal center anti-nuclear antibody production in Lyn-deficient mice. THE JOURNAL OF IMMUNOLOGY 2013; 192:875-85. [PMID: 24379120 DOI: 10.4049/jimmunol.1300683] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The intracellular tyrosine kinase Lyn mediates inhibitory receptor function in B cells and myeloid cells, and Lyn(-/-) mice spontaneously develop an autoimmune and inflammatory disease that closely resembles human systemic lupus erythematosus. TLR-signaling pathways have been implicated in the production of anti-nuclear Abs in systemic lupus erythematosus and mouse models of it. We used a conditional allele of Myd88 to determine whether the autoimmunity of Lyn(-/-) mice is dependent on TLR/MyD88 signaling in B cells and/or in dendritic cells (DCs). The production of IgG anti-nuclear Abs, as well as the deposition of these Abs in the glomeruli of the kidneys, leading to glomerulonephritis in Lyn(-/-) mice, were completely abolished by selective deletion of Myd88 in B cells, and autoantibody production and glomerulonephritis were delayed or decreased by deletion of Myd88 in DCs. The reduced autoantibody production in mice lacking MyD88 in B cells or DCs was accompanied by a dramatic decrease in the spontaneous germinal center (GC) response, suggesting that autoantibodies in Lyn(-/-) mice may depend on GC responses. Consistent with this view, IgG anti-nuclear Abs were absent if T cells were deleted (TCRβ(-/-) TCRδ(-/-) mice) or if T cells were unable to contribute to GC responses as the result of mutation of the adaptor molecule SAP. Thus, the autoimmunity of Lyn(-/-) mice was dependent on T cells and on TLR/MyD88 signaling in B cells and in DCs, supporting a model in which DC hyperactivity combines with defects in tolerance in B cells to lead to a T cell-dependent systemic autoimmunity in Lyn(-/-) mice.
Collapse
Affiliation(s)
- Zhaolin Hua
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Lamagna C, Hu Y, DeFranco AL, Lowell CA. B cell-specific loss of Lyn kinase leads to autoimmunity. THE JOURNAL OF IMMUNOLOGY 2013; 192:919-28. [PMID: 24376269 DOI: 10.4049/jimmunol.1301979] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The Lyn tyrosine kinase regulates inhibitory signaling in B and myeloid cells: loss of Lyn results in a lupus-like autoimmune disease with hyperactive B cells and myeloproliferation. We have characterized the relative contribution of Lyn-regulated signaling pathways in B cells specifically to the development of autoimmunity by crossing the novel lyn(flox/flox) animals with mice carrying the Cre recombinase under the control of the Cd79a promoter, resulting in deletion of Lyn in B cells. The specific deletion of Lyn in B cells is sufficient for the development of immune complex-mediated glomerulonephritis. The B cell-specific Lyn-deficient mice have no defects in early bone marrow B cell development but have reduced numbers of mature B cells with poor germinal centers, as well as increased numbers of plasma and B1a cells, similar to the lyn(-/-) animals. Within 8 mo of life, B cell-specific Lyn mutant mice develop high titers of IgG anti-Smith Ag ribonucleoprotein and anti-dsDNA autoantibodies, which deposit in their kidneys, resulting in glomerulonephritis. B cell-specific Lyn mutant mice also develop myeloproliferation, similar to the lyn(-/-) animals. The additional deletion of MyD88 in B cells, achieved by crossing lyn(flox/flox)Cd79a-cre mice with myd88(flox/flox) animals, reversed the autoimmune phenotype observed in B cell-specific Lyn-deficient mice by blocking production of class-switched pathogenic IgG autoantibodies. Our results demonstrate that B cell-intrinsic Lyn-dependent signaling pathways regulate B cell homeostasis and activation, which in concert with B cell-specific MyD88 signaling pathways can drive the development of autoimmune disease.
Collapse
Affiliation(s)
- Chrystelle Lamagna
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA 94143
| | | | | | | |
Collapse
|
40
|
Gutierrez T, Mayeux JM, Ortega SB, Karandikar NJ, Li QZ, Rakheja D, Zhou XJ, Satterthwaite AB. IL-21 promotes the production of anti-DNA IgG but is dispensable for kidney damage in lyn-/- mice. Eur J Immunol 2012; 43:382-93. [PMID: 23169140 DOI: 10.1002/eji.201142095] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Revised: 10/27/2012] [Accepted: 11/15/2012] [Indexed: 02/07/2023]
Abstract
The autoimmune disease systemic lupus erythematosus is characterized by loss of tolerance to nuclear Ags and a heightened inflammatory environment, which together result in end organ damage. Lyn-deficient mice, a model of systemic lupus erythematosus, lack an inhibitor of B-cell and myeloid cell activation. This results in B-cell hyper-responsiveness, plasma cell accumulation, autoantibodies, and glomerulonephritis (GN). IL-21 is associated with autoimmunity in mice and humans and promotes B-cell differentiation and class switching. Here, we explore the role of IL-21 in the autoimmune phenotypes of lyn(-/-) mice. We find that IL-21 mRNA is reduced in the spleens of lyn(-/-) IL-6(-/-) and lyn(-/-) Btk(lo) mice, neither of which produce pathogenic autoantibodies or develop significant GN. While IL-21 is dispensable for plasma cell accumulation and IgM autoantibodies in lyn(-/-) mice, it is required for anti-DNA IgG antibodies and some aspects of T-cell activation. Surprisingly, GN still develops in lyn(-/-) IL-21(-/-) mice. This likely results from the presence of IgG autoantibodies against a limited set of non-DNA Ags. These studies identify a specific role for IL-21 in the class switching of anti-DNA B cells and demonstrate that neither IL-21 nor anti-DNA IgG is required for kidney damage in lyn(-/-) mice.
Collapse
Affiliation(s)
- Toni Gutierrez
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390-8884, USA
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Lau M, Tsantikos E, Maxwell MJ, Tarlinton DM, Anderson GP, Hibbs ML. Loss of STAT6 promotes autoimmune disease and atopy on a susceptible genetic background. J Autoimmun 2012; 39:388-97. [PMID: 22867713 DOI: 10.1016/j.jaut.2012.06.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Revised: 06/22/2012] [Accepted: 06/27/2012] [Indexed: 01/22/2023]
Abstract
Atopy and autoimmunity are usually considered opposed immunological manifestations. Lyn(-/-) mice develop lupus-like autoimmune disease yet have coexistent intrinsic allergic traits and are prone to severe, persistent asthma induced exogenously. Recently it has been proposed that the Th2 environment and IgE auto-Abs promotes autoimmune disease in Lyn(-/-) mice. To examine this apparent contradiction, we derived Lyn(-/-) mice with a null mutation in STAT6, a regulator of Th2 immunity that integrates signaling from the IL-4/IL-13 receptor complex. Atopy and spontaneous peritoneal eosinophilia, characteristic of Lyn(-/-) mice, were lost in young Lyn(-/-)STAT6(-/-) mice; however, autoimmune disease was markedly exacerbated. At a time-point where Lyn(-/-) mice showed only mild autoimmune disease, Lyn(-/-)STAT6(-/-) mice had maximal titres of IgG and IgA auto-Abs, impaired renal function, myeloid expansion and a highly activated T cell compartment. Remarkably, low level IgE auto-Abs but not IgG1 auto-Abs were a feature of some aged Lyn(-/-)STAT6(-/-) mice. Furthermore, aged Lyn(-/-)STAT6(-/-) mice showed dramatically increased levels of serum IgE but minimal IgG1, suggesting that class-switching to IgE can occur in the absence of an IgG1 intermediate. The results show that Lyn-deficient mice can overcome the effects of disabling Th2 immunity, highlighting the importance of Lyn in controlling Th2 responses. Our data also indicates that, under certain conditions, STAT6-independent factors can promote IgE class-switching. This work has important clinical implications as many experimental therapies designed for the treatment of asthma or atopy are based on targeting the STAT6 axis, which could potentially reveal life endangering autoimmunity or promote atopy in susceptible individuals.
Collapse
Affiliation(s)
- Maverick Lau
- Leukocyte Signaling Laboratory, Department of Immunology, Monash University, Central Clinical School, Alfred Medical Research and Education Precinct, Commercial Road, Melbourne, Victoria 3004, Australia.
| | | | | | | | | | | |
Collapse
|
42
|
Laresgoiti-Servitje E, Gomez-Lopez N. The Pathophysiology of Preeclampsia Involves Altered Levels of Angiogenic Factors Promoted by Hypoxia and Autoantibody-Mediated Mechanisms1. Biol Reprod 2012; 87:36. [DOI: 10.1095/biolreprod.112.099861] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
43
|
Ingley E. Functions of the Lyn tyrosine kinase in health and disease. Cell Commun Signal 2012; 10:21. [PMID: 22805580 PMCID: PMC3464935 DOI: 10.1186/1478-811x-10-21] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Accepted: 07/04/2012] [Indexed: 12/24/2022] Open
Abstract
Src family kinases such as Lyn are important signaling intermediaries, relaying and modulating different inputs to regulate various outputs, such as proliferation, differentiation, apoptosis, migration and metabolism. Intriguingly, Lyn can mediate both positive and negative signaling processes within the same or different cellular contexts. This duality is exemplified by the B-cell defect in Lyn-/- mice in which Lyn is essential for negative regulation of the B-cell receptor; conversely, B-cells expressing a dominant active mutant of Lyn (Lynup/up) have elevated activities of positive regulators of the B-cell receptor due to this hyperactive kinase. Lyn has well-established functions in most haematopoietic cells, viz. progenitors via influencing c-kit signaling, through to mature cell receptor/integrin signaling, e.g. erythrocytes, platelets, mast cells and macrophages. Consequently, there is an important role for this kinase in regulating hematopoietic abnormalities. Lyn is an important regulator of autoimmune diseases such as asthma and psoriasis, due to its profound ability to influence immune cell signaling. Lyn has also been found to be important for maintaining the leukemic phenotype of many different liquid cancers including acute myeloid leukaemia (AML), chronic myeloid leukaemia (CML) and B-cell lymphocytic leukaemia (BCLL). Lyn is also expressed in some solid tumors and here too it is establishing itself as a potential therapeutic target for prostate, glioblastoma, colon and more aggressive subtypes of breast cancer. LAY To relay information, a cell uses enzymes that put molecular markers on specific proteins so they interact with other proteins or move to specific parts of the cell to have particular functions. A protein called Lyn is one of these enzymes that regulate information transfer within cells to modulate cell growth, survival and movement. Depending on which type of cell and the source of the information input, Lyn can positively or negatively regulate the information output. This ability of Lyn to be able to both turn on and turn off the relay of information inside cells makes it difficult to fully understand its precise function in each specific circumstance. Lyn has important functions for cells involved in blood development, including different while blood cells as well as red blood cells, and in particular for the immune cells that produce antibodies (B-cells), as exemplified by the major B-cell abnormalities that mice with mutations in the Lyn gene display. Certain types of leukaemia and lymphoma appear to have too much Lyn activity that in part causes the characteristics of these diseases, suggesting it may be a good target to develop new anti-leukaemia drugs. Furthermore, some specific types, and even specific subtypes, of solid cancers, e.g. prostate, brain and breast cancer can also have abnormal regulation of Lyn. Consequently, targeting this protein in these cancers could also prove to be beneficial.
Collapse
Affiliation(s)
- Evan Ingley
- Cell Signalling Group, Laboratory for Cancer Medicine, Western Australian Institute for Medical Research, Centre for Medical Research, The University of Western Australia, Rear 50 Murray Street, Perth, WA, 6000, Australia.
| |
Collapse
|
44
|
Tsantikos E, Maxwell MJ, Kountouri N, Harder KW, Tarlinton DM, Hibbs ML. Genetic Interdependence of Lyn and Negative Regulators of B Cell Receptor Signaling in Autoimmune Disease Development. THE JOURNAL OF IMMUNOLOGY 2012; 189:1726-36. [DOI: 10.4049/jimmunol.1103427] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
45
|
Abstract
The first textbook on autoimmunity was published by Ian Mackay and McFarland Burnett in 1963. It was the first attempt to summarize existing knowledge on human autoimmunity. Since that time, there have been tens of thousands of experimental papers and numerous textbooks that focus on the diagnosis and treatment of human autoimmunity. There have been at least as many, if not more, directed at similar issues in animal models. Enormous strides have been made not only in diagnosis, but also in the pathophysiology and especially in treatment. We have gone from the era of simple HLA typing to deep sequencing and, more recently, epigenetic analysis. We have gone from the era of white blood cell differentials to detailed lymphoid phenotyping. We have gone from the era of simple antinuclear antibodies to detailed and sophisticated immunodiagnosis with recombinant autoantigens and disease-specific epitopes. We have gone from the era of using only corticosteroids to selective biologic agents. Diseases that were previously considered idiopathic are now very much understood as autoimmune. We are in the era of autoinflammatory reactions and the concept of both innate versus adaptive immunity in mediating immunopathology. In this edition of Clinical Reviews in Allergy and Immunology, we focus on key and cutting-edge issues in the pathophysiology of autoimmunity. The issues are very much oriented and driven by hypothesis, i.e., a prediction of events expected to occur based on observations. It is not meant to be a complete summary of potential mechanisms of autoimmunity, but rather an attempt to accelerate discussion and better understanding. The primary goal is obviously to help our patients with autoimmune disease.
Collapse
Affiliation(s)
- Wesley H Brooks
- Experimental HTS Core, SRB-3, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612-9416, USA.
| |
Collapse
|
46
|
Riewaldt J, Düber S, Boernert M, Krey M, Dembinski M, Weiss S, Garbe AI, Kretschmer K. Severe Developmental B Lymphopoietic Defects in Foxp3-Deficient Mice are Refractory to Adoptive Regulatory T Cell Therapy. Front Immunol 2012; 3:141. [PMID: 22679447 PMCID: PMC3367401 DOI: 10.3389/fimmu.2012.00141] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Accepted: 05/16/2012] [Indexed: 01/21/2023] Open
Abstract
The role of Foxp3-expressing regulatory T (Treg) cells in tolerance and autoimmunity is well-established. However, although of considerable clinical interest, the role of Treg cells in the regulation of hematopoietic homeostasis remains poorly understood. Thus, we analysed B and T lymphopoiesis in the scurfy (Sf) mouse model of Treg cell deficiency. In these experiments, the near-complete block of B lymphopoiesis in the BM of adolescent Sf mice was attributed to autoimmune T cells. We could exclude a constitutive lympho-hematopoietic defect or a B cell-intrinsic function of Foxp3. Efficient B cell development in the BM early in ontogeny and pronounced extramedullary B lymphopoietic activity resulted in a peripheral pool of mature B cells in adolescent Sf mice. However, marginal zone B and B-1a cells were absent throughout ontogeny. Developmental B lymphopoietic defects largely correlated with defective thymopoiesis. Importantly, neonatal adoptive Treg cell therapy suppressed exacerbated production of inflammatory cytokines and restored thymopoiesis but was ineffective in recovering defective B lymphopoiesis, probably due to a failure to compensate production of stroma cell-derived IL-7 and CXCL12. Our observations on autoimmune-mediated incapacitation of the BM environment in Foxp3-deficient mice will have direct implications for the rational design of BM transplantation protocols for patients with severe genetic deficiencies in functional Foxp3+ Treg cells.
Collapse
Affiliation(s)
- Julia Riewaldt
- Center for Regenerative Therapies Dresden, Technical University Dresden Dresden, Germany
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Attenuation of phosphoinositide 3-kinase δ signaling restrains autoimmune disease. J Autoimmun 2012; 38:381-91. [DOI: 10.1016/j.jaut.2012.04.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Revised: 04/02/2012] [Accepted: 04/02/2012] [Indexed: 11/20/2022]
|
48
|
Fairfax K, Mackay IR, Mackay F. BAFF/BLyS inhibitors: A new prospect for treatment of systemic lupus erythematosus. IUBMB Life 2012; 64:595-602. [PMID: 22641424 DOI: 10.1002/iub.1046] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Accepted: 04/03/2012] [Indexed: 01/18/2023]
Abstract
In November 2009, Human Genome Sciences and Glaxo-Smith Kline [HGS (Rockville, Maryland) and GSK, respectively] announced that Belimumab, a neutralizing antibody to the tumour necrosis factor (TNF)-like ligand, B-cell activating factor (BAFF belonging to the TNF family, also named BLyS), met the primary endpoints in two phase III clinical trials in systemic lupus erythematosus (SLE, lupus). In March 2011, Belimumab was approved by the US Federal Drug Agency for treatment of SLE patients; this was followed in May with approval by the European Medicines Agency for use in the European Union. This is an exciting development as it is the first successful late-stage clinical trial in SLE in over 40 years. In the light of this breakthrough, we review the key data and research outcomes and examine how blocking BAFF in patients with SLE significantly improves clinical outcomes.
Collapse
Affiliation(s)
- Kirsten Fairfax
- Faculty of Medicine, Department of Immunology, Central Clinical School, Nursing and Health Sciences, Monash University, Melbourne, Australia
| | | | | |
Collapse
|
49
|
Anderson GP. Free Immunoglobulin Light Chains in Chronic Obstructive Pulmonary Disease. Am J Respir Crit Care Med 2012; 185:793-5. [DOI: 10.1164/rccm.201201-0041ed] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
50
|
Krebs DL, Chehal MK, Sio A, Huntington ND, Da ML, Ziltener P, Inglese M, Kountouri N, Priatel JJ, Jones J, Tarlinton DM, Anderson GP, Hibbs ML, Harder KW. Lyn-Dependent Signaling Regulates the Innate Immune Response by Controlling Dendritic Cell Activation of NK Cells. THE JOURNAL OF IMMUNOLOGY 2012; 188:5094-105. [DOI: 10.4049/jimmunol.1103395] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|