1
|
Basilico S, Göttgens B. Dysregulation of haematopoietic stem cell regulatory programs in acute myeloid leukaemia. J Mol Med (Berl) 2017; 95:719-727. [PMID: 28429049 PMCID: PMC5487585 DOI: 10.1007/s00109-017-1535-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 03/29/2017] [Accepted: 04/11/2017] [Indexed: 12/28/2022]
Abstract
Haematopoietic stem cells (HSC) are situated at the apex of the haematopoietic differentiation hierarchy, ensuring the life-long supply of mature haematopoietic cells and forming a reservoir to replenish the haematopoietic system in case of emergency such as acute blood loss. To maintain a balanced production of all mature lineages and at the same time secure a stem cell reservoir, intricate regulatory programs have evolved to control multi-lineage differentiation and self-renewal in haematopoietic stem and progenitor cells (HSPCs). Leukaemogenic mutations commonly disrupt these regulatory programs causing a block in differentiation with simultaneous enhancement of proliferation. Here, we briefly summarize key aspects of HSPC regulatory programs, and then focus on their disruption by leukaemogenic fusion genes containing the mixed lineage leukaemia (MLL) gene. Using MLL as an example, we explore important questions of wider significance that are still under debate, including the importance of cell of origin, to what extent leukaemia oncogenes impose specific regulatory programs and the relevance of leukaemia stem cells for disease development and prognosis. Finally, we suggest that disruption of stem cell regulatory programs is likely to play an important role in many other pathologies including ageing-associated regenerative failure.
Collapse
Affiliation(s)
- Silvia Basilico
- Department of Haematology, Cambridge Institute for Medical Research and Wellcome Trust and MRC Cambridge Stem Cell Institute, University of Cambridge, Hills Road, Cambridge, CB2 0XY, UK
| | - Berthold Göttgens
- Department of Haematology, Cambridge Institute for Medical Research and Wellcome Trust and MRC Cambridge Stem Cell Institute, University of Cambridge, Hills Road, Cambridge, CB2 0XY, UK.
| |
Collapse
|
2
|
Freitas C, Wittner M, Nguyen J, Rondeau V, Biajoux V, Aknin ML, Gaudin F, Beaussant-Cohen S, Bertrand Y, Bellanné-Chantelot C, Donadieu J, Bachelerie F, Espéli M, Dalloul A, Louache F, Balabanian K. Lymphoid differentiation of hematopoietic stem cells requires efficient Cxcr4 desensitization. J Exp Med 2017; 214:2023-2040. [PMID: 28550161 PMCID: PMC5502422 DOI: 10.1084/jem.20160806] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 02/23/2017] [Accepted: 04/19/2017] [Indexed: 12/23/2022] Open
Abstract
The CXCL12/CXCR4 signaling exerts a dominant role in promoting hematopoietic stem and progenitor cell (HSPC) retention and quiescence in bone marrow. Gain-of-function CXCR4 mutations that affect homologous desensitization of the receptor have been reported in the WHIM Syndrome (WS), a rare immunodeficiency characterized by lymphopenia. The mechanisms underpinning this remain obscure. Using a mouse model with a naturally occurring WS-linked gain-of-function Cxcr4 mutation, we explored the possibility that the lymphopenia in WS arises from defects at the HSPC level. We reported that Cxcr4 desensitization is required for quiescence/cycling balance of murine short-term hematopoietic stem cells and their differentiation into multipotent and downstream lymphoid-biased progenitors. Alteration in Cxcr4 desensitization resulted in decrease of circulating HSPCs in five patients with WS. This was also evidenced in WS mice and mirrored by accumulation of HSPCs in the spleen, where we observed enhanced extramedullary hematopoiesis. Therefore, efficient Cxcr4 desensitization is critical for lymphoid differentiation of HSPCs, and its impairment is a key mechanism underpinning the lymphopenia observed in mice and likely in WS patients.
Collapse
Affiliation(s)
- Christelle Freitas
- Inflammation Chemokines and Immunopathology, Institut National de la Santé et de la Recherche Medicale (INSERM), Faculté de Médecine, Université Paris-Sud, Université Paris-Saclay, Clamart, France
| | - Monika Wittner
- INSERM UMR_S1170, Institut Gustave Roussy, CNRS GDR 3697 MicroNiT, Université Paris-Sud, Université Paris-Saclay, Villejuif, France
| | - Julie Nguyen
- Inflammation Chemokines and Immunopathology, Institut National de la Santé et de la Recherche Medicale (INSERM), Faculté de Médecine, Université Paris-Sud, Université Paris-Saclay, Clamart, France
| | - Vincent Rondeau
- Inflammation Chemokines and Immunopathology, Institut National de la Santé et de la Recherche Medicale (INSERM), Faculté de Médecine, Université Paris-Sud, Université Paris-Saclay, Clamart, France
| | - Vincent Biajoux
- Inflammation Chemokines and Immunopathology, Institut National de la Santé et de la Recherche Medicale (INSERM), Faculté de Médecine, Université Paris-Sud, Université Paris-Saclay, Clamart, France
| | - Marie-Laure Aknin
- Institut Paris-Saclay d'Innovation Thérapeutique, UMS IPSIT-US31-UMS3679, Chatenay-Malabry, France
| | - Françoise Gaudin
- Inflammation Chemokines and Immunopathology, Institut National de la Santé et de la Recherche Medicale (INSERM), Faculté de Médecine, Université Paris-Sud, Université Paris-Saclay, Clamart, France.,Institut Paris-Saclay d'Innovation Thérapeutique, UMS IPSIT-US31-UMS3679, Chatenay-Malabry, France
| | - Sarah Beaussant-Cohen
- Service d'Hémato-Oncologie Pédiatrique, CHU Jean Minjoz, Université de Franche-Comté, Besançon, France
| | - Yves Bertrand
- Service d'Hémato-Oncologie Pédiatrique, Hospices Civils de Lyon, Université Claude Bernard Lyon I, Lyon, France
| | | | - Jean Donadieu
- AP-HP, Registre Français des Neutropénies Chroniques Sévères, Centre de référence des Déficits Immunitaires Héréditaires, Service d'Hémato-Oncologie Pédiatrique, Hôpital Trousseau, Paris, France
| | - Françoise Bachelerie
- Inflammation Chemokines and Immunopathology, Institut National de la Santé et de la Recherche Medicale (INSERM), Faculté de Médecine, Université Paris-Sud, Université Paris-Saclay, Clamart, France
| | - Marion Espéli
- Inflammation Chemokines and Immunopathology, Institut National de la Santé et de la Recherche Medicale (INSERM), Faculté de Médecine, Université Paris-Sud, Université Paris-Saclay, Clamart, France
| | - Ali Dalloul
- Inflammation Chemokines and Immunopathology, Institut National de la Santé et de la Recherche Medicale (INSERM), Faculté de Médecine, Université Paris-Sud, Université Paris-Saclay, Clamart, France
| | - Fawzia Louache
- INSERM UMR_S1170, Institut Gustave Roussy, CNRS GDR 3697 MicroNiT, Université Paris-Sud, Université Paris-Saclay, Villejuif, France
| | - Karl Balabanian
- Inflammation Chemokines and Immunopathology, Institut National de la Santé et de la Recherche Medicale (INSERM), Faculté de Médecine, Université Paris-Sud, Université Paris-Saclay, Clamart, France
| |
Collapse
|
3
|
Zepponi V, Michaels Lopez V, Martinez-Cingolani C, Boudil A, Pasqualetto V, Skhiri L, Gautreau L, Legrand A, Megret J, Zavala F, Ezine S. Lymphoid Gene Upregulation on Circulating Progenitors Participates in Their T-Lineage Commitment. THE JOURNAL OF IMMUNOLOGY 2015; 195:156-65. [PMID: 26026063 DOI: 10.4049/jimmunol.1403219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 05/04/2015] [Indexed: 11/19/2022]
Abstract
Extrathymic T cell precursors can be detected in many tissues and represent an immediately competent population for rapid T cell reconstitution in the event of immunodeficiencies. Blood T cell progenitors have been detected, but their source in the bone marrow (BM) remains unclear. Prospective purification of BM-resident and circulating progenitors, together with RT-PCR single-cell analysis, was used to evaluate and compare multipotent progenitors (MPPs) and common lymphoid progenitors (CLPs). Molecular analysis of circulating progenitors in comparison with BM-resident progenitors revealed that CCR9(+) progenitors are more abundant in the blood than CCR7(+) progenitors. Second, although Flt3(-) CLPs are less common in the BM, they are abundant in the blood and have reduced Cd25(+)-expressing cells and downregulated c-Kit and IL-7Rα intensities. Third, in contrast, stage 3 MPP (MPP3) cells, the unique circulating MPP subset, have upregulated Il7r, Gata3, and Notch1 in comparison with BM-resident counterparts. Evaluation of the populations' respective abilities to generate splenic T cell precursors (Lin(-)Thy1.2(+)CD25(+)IL7Rα(+)) after grafting recipient nude mice revealed that MPP3 cells were the most effective subset (relative to CLPs). Although several lymphoid genes are expressed by MPP3 cells and Flt3(-) CLPs, the latter only give rise to B cells in the spleen, and Notch1 expression level is not modulated in the blood, as for MPP3 cells. We conclude that CLPs have reached the point where they cannot be a Notch1 target, a limiting condition on the path to T cell engagement.
Collapse
Affiliation(s)
- Vanessa Zepponi
- INSERM, Unité 1151, Université Paris Descartes, Unité Mixte de Recherche 8253, 75993 Paris Cedex 14, France
| | - Victoria Michaels Lopez
- INSERM, Unité 1151, Université Paris Descartes, Unité Mixte de Recherche 8253, 75993 Paris Cedex 14, France
| | | | - Amine Boudil
- INSERM, Unité 1151, Université Paris Descartes, Unité Mixte de Recherche 8253, 75993 Paris Cedex 14, France
| | - Valérie Pasqualetto
- INSERM, Unité 1151, Université Paris Descartes, Unité Mixte de Recherche 8253, 75993 Paris Cedex 14, France
| | - Lamia Skhiri
- INSERM, Unité 1151, Université Paris Descartes, Unité Mixte de Recherche 8253, 75993 Paris Cedex 14, France
| | - Laetitia Gautreau
- INSERM, Unité 1151, Université Paris Descartes, Unité Mixte de Recherche 8253, 75993 Paris Cedex 14, France
| | - Agnès Legrand
- INSERM, Unité 1151, Université Paris Descartes, Unité Mixte de Recherche 8253, 75993 Paris Cedex 14, France
| | - Jerome Megret
- INSERM, Unité 1151, Université Paris Descartes, Unité Mixte de Recherche 8253, 75993 Paris Cedex 14, France
| | - Flora Zavala
- INSERM, Unité 1151, Université Paris Descartes, Unité Mixte de Recherche 8253, 75993 Paris Cedex 14, France
| | - Sophie Ezine
- INSERM, Unité 1151, Université Paris Descartes, Unité Mixte de Recherche 8253, 75993 Paris Cedex 14, France
| |
Collapse
|
4
|
Tang H, An S, Zhen H, Chen F. Characterization of combinatorial histone modifications on lineage-affiliated genes during hematopoietic stem cell myeloid commitment. Acta Biochim Biophys Sin (Shanghai) 2014; 46:894-901. [PMID: 25205219 DOI: 10.1093/abbs/gmu078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Hematopoietic stem cells (HSCs) are multipotent stem cells capable of self-renewal and multilineage differentiation. Mechanisms regulating the maintenance of HSCs' multipotency and differentiation are still unclear. In this study, we observed the role of combinatorial histone modification pattern in the maintenance of HSCs' pluripotency and differentiation. HSCs (CD34(+)CD38(low)) were collected from human umbilical cord blood and induced to differentiate to committed cells in vitro. The histone modifications on lineage-specific transcription factors/genes in multipotent HSCs and differentiated progenies, including megakaryocytes, granulocytes, and erythrocytes, were analyzed by chromatin immunoprecipitation-quantitative polymerase chain reaction. Our results showed that a certain level of acH4 and acH3 together with high level of H3K4me2, low level of H3K4me3, and a certain level of H3K9me3 and H3K27me3 were present in lineage-specific genes in CD34(+)CD38(low) HSCs. As CD34(+)CD38(low) cells differentiated into granulocytes, erythroid cells, and megakaryocytes, the modification levels of acH3, acH4, and H3K4me2 on lineage-specific genes remained the same or elevated, while H3K4me3 level was increased greatly. At the same time, H3K9me3 and H3K27me3 modification levels became lower. In non-lineage-specific genes, the acH3 and acH4 levels were decreased, and H3K4me3 level remained at low level, while H3K9me3 and H3K27me3 levels were increased drastically. Our data suggest that combinatorial histone modification patterns have implicated function in maintaining the multipotency of HSCs and keeping the accuracy of gene expression program during HSC differentiation.
Collapse
Affiliation(s)
- Huarong Tang
- Department of Radiation Therapy, Zhejiang Key Laboratory of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou 310022, China Department of Hematology, Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Shimin An
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Huanying Zhen
- Department of Physiology, Central South University, Xiangya School of Medicine, Changsha 410013, China
| | - Fangping Chen
- Department of Hematology, Third Xiangya Hospital, Central South University, Changsha 410013, China
| |
Collapse
|
5
|
Huang H, Goto M, Tsunoda H, Sun L, Taniguchi K, Matsunaga H, Kambara H. Non-biased and efficient global amplification of a single-cell cDNA library. Nucleic Acids Res 2013; 42:e12. [PMID: 24141095 PMCID: PMC3902946 DOI: 10.1093/nar/gkt965] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Analysis of single-cell gene expression promises a more precise understanding of molecular mechanisms of a living system. Most techniques only allow studies of the expressions for limited numbers of gene species. When amplification of cDNA was carried out for analysing more genes, amplification biases were frequently reported. A non-biased and efficient global-amplification method, which uses a single-cell cDNA library immobilized on beads, was developed for analysing entire gene expressions for single cells. Every step in this analysis from reverse transcription to cDNA amplification was optimized. By removing degrading excess primers, the bias due to the digestion of cDNA was prevented. Since the residual reagents, which affect the efficiency of each subsequent reaction, could be removed by washing beads, the conditions for uniform and maximized amplification of cDNAs were achieved. The differences in the amplification rates for randomly selected eight genes were within 1.5-folds, which could be negligible for most of the applications of single-cell analysis. The global amplification gives a large amount of amplified cDNA (>100 μg) from a single cell (2-pg mRNA), and that amount is enough for downstream analysis. The proposed global-amplification method was used to analyse transcript ratios of multiple cDNA targets (from several copies to several thousand copies) quantitatively.
Collapse
Affiliation(s)
- Huan Huang
- Biosystems Research Department, Hitachi Central Research Laboratory, 1-280 Higashi-koigakubo, Kokubunji-shi, Tokyo 185-8601, Japan and Maternity Department, First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 300, Nanjing 210029, China
| | | | | | | | | | | | | |
Collapse
|
6
|
Franzin C, Piccoli M, Serena E, Bertin E, Urbani L, Luni C, Pasqualetto V, Eaton S, Elvassore N, De Coppi P, Pozzobon M. Single-cell PCR analysis of murine embryonic stem cells cultured on different substrates highlights heterogeneous expression of stem cell markers. Biol Cell 2013; 105:549-60. [PMID: 24024612 DOI: 10.1111/boc.201300034] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 09/06/2013] [Indexed: 11/27/2022]
Abstract
BACKGROUND INFORMATION In the last few years, recent evidence has revealed that inside an apparently homogeneous cell population there indeed appears to be heterogeneity. This is particularly true for embryonic stem (ES) cells where markers of pluripotency are dynamically expressed within the single cells. In this work, we have designed and tested a new set of primers for multiplex PCR detection of pluripotency markers expression, and have applied it to perform a single-cell analysis in murine ES cells cultured on three different substrates that could play an important role in controlling cell behaviour and fate: (i) mouse embryonic fibroblast (MEF) feeder layer, as the standard method for ES cells culture; (ii) Matrigel coating; (iii) micropatterned hydrogel. RESULTS Compared with population analysis, using a single-cell approach, we were able to evaluate not only the number of cells that maintained the expression of a specific gene but, most importantly, how many cells co-expressed different markers. We found that micropatterned hydrogel seems to represent a good alternative to MEF, as the expression of stemness markers is better preserved than in Matrigel culture. CONCLUSIONS This single-cell assay allows for the assessment of the stemness maintenance at a single-cell level in terms of gene expression profile, and can be applied in stem cell research to characterise freshly isolated and cultured cells, or to standardise, for instance, the method of culture closely linked to the transcriptional activity and the differentiation potential.
Collapse
Affiliation(s)
- Chiara Franzin
- Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Padova, 35127, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Shirai M, Taniguchi T, Kambara H. Emerging applications of single-cell diagnostics. Top Curr Chem (Cham) 2012; 336:99-116. [PMID: 22610135 DOI: 10.1007/128_2012_327] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The performance of DNA sequencers (next generation sequencing) is rapidly enhanced these days, being used for genetic diagnostics. Although many phenomena could be elucidated with such massive genome data, it is still a big challenge to obtain comprehensive understanding of diseases and the relevant biology at the cellular level. In general terms, the data obtained to date are averages of ensembles of cells, but it is not certain whether the same features are the same inside an individual cell. Accordingly, important information may be masked by the averaging process. As the technologies for analyzing bio-molecular components in single cells are being developed, single cell analysis seems promising to address the current limitations due to averaging problems. Although the technologies for single cell analysis are still at the infant stage, the single cell approach has the potential to improve the accuracy of diagnosis based on knowledge of intra- and inter-cellular networks. In this review several technologies and applications (especially medical applications) of genome and transcriptome analysis or single cells are described.
Collapse
Affiliation(s)
- M Shirai
- Central Research Laboratory, Hitachi, Ltd., 1-280, Higachi-koigakubo, Kokubunji-shi, Tokyo, Japan
| | | | | |
Collapse
|
8
|
Desanti GE, Jenkinson WE, Parnell SM, Boudil A, Gautreau-Rolland L, Eksteen B, Ezine S, Lane PJL, Jenkinson EJ, Anderson G. Clonal analysis reveals uniformity in the molecular profile and lineage potential of CCR9(+) and CCR9(-) thymus-settling progenitors. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2011; 186:5227-35. [PMID: 21421850 PMCID: PMC3826122 DOI: 10.4049/jimmunol.1002686] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The entry of T cell progenitors to the thymus marks the beginning of a multistage developmental process that culminates in the generation of self-MHC-restricted CD4(+) and CD8(+) T cells. Although multiple factors including the chemokine receptors CCR7 and CCR9 are now defined as important mediators of progenitor recruitment and colonization in both the fetal and adult thymi, the heterogeneity of thymus-colonizing cells that contribute to development of the T cell pool is complex and poorly understood. In this study, in conjunction with lineage potential assays, we perform phenotypic and genetic analyses on thymus-settling progenitors (TSP) isolated from the embryonic mouse thymus anlagen and surrounding perithymic mesenchyme, including simultaneous gene expression analysis of 14 hemopoietic regulators using single-cell multiplex RT-PCR. We show that, despite the known importance of CCL25-CCR9 mediated thymic recruitment of T cell progenitors, embryonic PIR(+)c-Kit(+) TSP can be subdivided into CCR9(+) and CCR9(-) subsets that differ in their requirements for a functional thymic microenvironment for thymus homing. Despite these differences, lineage potential studies of purified CCR9(+) and CCR9(-) TSP reveal a common bias toward T cell-committed progenitors, and clonal gene expression analysis reveals a genetic consensus that is evident between and within single CCR9(+) and CCR9(-) TSP. Collectively, our data suggest that although the earliest T cell progenitors may display heterogeneity with regard to their requirements for thymus colonization, they represent a developmentally homogeneous progenitor pool that ensures the efficient generation of the first cohorts of T cells during thymus development.
Collapse
Affiliation(s)
- Guillaume E. Desanti
- Medical School, Institute for Biomedical Research, Medical Research Council Center for Immune Regulation, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - William E. Jenkinson
- Medical School, Institute for Biomedical Research, Medical Research Council Center for Immune Regulation, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Sonia M. Parnell
- Medical School, Institute for Biomedical Research, Medical Research Council Center for Immune Regulation, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | | | | | - Bertus Eksteen
- Medical School, Institute for Biomedical Research, Medical Research Council Center for Immune Regulation, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | | | - Peter J. L. Lane
- Medical School, Institute for Biomedical Research, Medical Research Council Center for Immune Regulation, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Eric J. Jenkinson
- Medical School, Institute for Biomedical Research, Medical Research Council Center for Immune Regulation, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Graham Anderson
- Medical School, Institute for Biomedical Research, Medical Research Council Center for Immune Regulation, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| |
Collapse
|
9
|
Foxler DE, James V, Shelton SJ, Vallim TQDA, Shaw PE, Sharp TV. PU.1 is a major transcriptional activator of the tumour suppressor gene LIMD1. FEBS Lett 2011; 585:1089-96. [PMID: 21402070 PMCID: PMC3078326 DOI: 10.1016/j.febslet.2011.03.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2010] [Revised: 02/24/2011] [Accepted: 03/07/2011] [Indexed: 12/30/2022]
Abstract
LIMD1 is a tumour suppressor gene (TSG) down regulated in ∼80% of lung cancers with loss also demonstrated in breast and head and neck squamous cell carcinomas. LIMD1 is also a candidate TSG in childhood acute lymphoblastic leukaemia. Mechanistically, LIMD1 interacts with pRB, repressing E2F-driven transcription as well as being a critical component of microRNA-mediated gene silencing. In this study we show a CpG island within the LIMD1 promoter contains a conserved binding motif for the transcription factor PU.1. Mutation of the PU.1 consensus reduced promoter driven transcription by 90%. ChIP and EMSA analysis demonstrated that PU.1 specifically binds to the LIMD1 promoter. siRNA depletion of PU.1 significantly reduced endogenous LIMD1 expression, demonstrating that PU.1 is a major transcriptional activator of LIMD1.
Collapse
Affiliation(s)
- Daniel E. Foxler
- School of Biomedical Sciences, University of Nottingham Medical School, Nottingham NG7 1UH, UK
| | - Victoria James
- School of Biomedical Sciences, University of Nottingham Medical School, Nottingham NG7 1UH, UK
| | - Samuel J. Shelton
- School of Biomedical Sciences, University of Nottingham Medical School, Nottingham NG7 1UH, UK
| | - Thomas Q. de A. Vallim
- Department of Biological Chemistry, University of California Los Angeles, David Geffen School of Medicine, Los Angeles, CA 90095, United States
- Department of Cardiology, University of California Los Angeles, David Geffen School of Medicine, Los Angeles, CA 90095, United States
| | - Peter E. Shaw
- School of Biomedical Sciences, University of Nottingham Medical School, Nottingham NG7 1UH, UK
| | - Tyson V. Sharp
- School of Biomedical Sciences, University of Nottingham Medical School, Nottingham NG7 1UH, UK
| |
Collapse
|