1
|
Cheng Y, Zhai Y, Yuan Y, Wang Q, Li S, Sun H. The Contributions of Thrombospondin-1 to Epilepsy Formation. Neurosci Bull 2024; 40:658-672. [PMID: 38528256 PMCID: PMC11127911 DOI: 10.1007/s12264-024-01194-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 01/27/2024] [Indexed: 03/27/2024] Open
Abstract
Epilepsy is a neural network disorder caused by uncontrolled neuronal hyperexcitability induced by an imbalance between excitatory and inhibitory networks. Abnormal synaptogenesis plays a vital role in the formation of overexcited networks. Recent evidence has confirmed that thrombospondin-1 (TSP-1), mainly secreted by astrocytes, is a critical cytokine that regulates synaptogenesis during epileptogenesis. Furthermore, numerous studies have reported that TSP-1 is also involved in other processes, such as angiogenesis, neuroinflammation, and regulation of Ca2+ homeostasis, which are closely associated with the occurrence and development of epilepsy. In this review, we summarize the potential contributions of TSP-1 to epilepsy development.
Collapse
Affiliation(s)
- Yao Cheng
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, China
| | - Yujie Zhai
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, China
| | - Yi Yuan
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, China
| | - Qiaoyun Wang
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, China
| | - Shucui Li
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, China.
| | - Hongliu Sun
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, China.
| |
Collapse
|
2
|
Kaur S, Roberts DD. Emerging functions of thrombospondin-1 in immunity. Semin Cell Dev Biol 2024; 155:22-31. [PMID: 37258315 PMCID: PMC10684827 DOI: 10.1016/j.semcdb.2023.05.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 05/24/2023] [Indexed: 06/02/2023]
Abstract
Thrombospondin-1 is a secreted matricellular glycoprotein that modulates cell behavior by interacting with components of the extracellular matrix and with several cell surface receptors. Its presence in the extracellular matrix is induced by injuries that cause thrombospondin-1 release from platelets and conditions including hyperglycemia, ischemia, and aging that stimulate its expression by many cell types. Conversely, rapid receptor-mediated clearance of thrombospondin-1 from the extracellular space limits its sustained presence in the extracellular space and maintains sub-nanomolar physiological concentrations in blood plasma. Roles for thrombospondin-1 signaling, mediated by specific cellular receptors or by activation of latent TGFβ, have been defined in T and B lymphocytes, natural killer cells, macrophages, neutrophils, and dendritic cells. In addition to regulating physiological nitric oxide signaling and responses of cells to stress, studies in mice lacking thrombospondin-1 or its receptors have revealed important roles for thrombospondin-1 in regulating immune responses in infectious and autoimmune diseases and antitumor immunity.
Collapse
Affiliation(s)
- Sukhbir Kaur
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - David D Roberts
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
3
|
Lyu N, Yi JZ, Zhao M. Immunotherapy in older patients with hepatocellular carcinoma. Eur J Cancer 2021; 162:76-98. [PMID: 34954439 DOI: 10.1016/j.ejca.2021.11.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 10/31/2021] [Accepted: 11/21/2021] [Indexed: 02/06/2023]
Abstract
Hepatocellular carcinoma (HCC) is one of the most common types of cancer globally and is currently the third leading cause of cancer-related deaths. Recently, immunotherapy using immune checkpoint inhibitors (ICIs) has been shown with encouraging anticancer activity and safety in clinical trials. To reverse the phenomenon of tumours evading immune response, ICIs can be used to stimulate the natural antitumour potential of cancer cells by blocking the relevant checkpoints to activate T cells. However, the components and functions of the immune system may undergo a series of changes with ageing, known as 'immunosenescence,' potentially affecting the antitumour effect and safety of immunotherapy. In the current phase III clinical trials of ICIs including nivolumab, pembrolizumab and atezolizumab, the proportion of patients with HCC older than 65 years in CheckMate 459, KEYNOTE-240 and IMbrave150 is 51%, 58% and 50%, respectively, which is less than 70%-73% of epidemiological investigation. Therefore, the elderly population recruited in clinical trials may not accurately represent the real-world elderly patients with HCC, which affects the extrapolation of the efficacy and safety profile obtained in clinical trials to the elderly population in the real world. This review provides the latest advances in ICIs immuno-treatment available for HCC and relevant information about their therapeutic effects and safety on elderly patients. We discuss the benefits of ICIs for older HCC patients, and relevant recommendations about conducting further clinical trials are proposed for more complete answers to this clinical issue.
Collapse
Affiliation(s)
- Ning Lyu
- Department of Minimally Invasive Interventional Therapy, Liver Cancer Study and Service Group, Sun Yat-sen University Cancer Center, Guangzhou, China; State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China; Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Jun-Zhe Yi
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Ming Zhao
- Department of Minimally Invasive Interventional Therapy, Liver Cancer Study and Service Group, Sun Yat-sen University Cancer Center, Guangzhou, China; State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China; Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.
| |
Collapse
|
4
|
Kaur S, Bronson SM, Pal-Nath D, Miller TW, Soto-Pantoja DR, Roberts DD. Functions of Thrombospondin-1 in the Tumor Microenvironment. Int J Mol Sci 2021; 22:4570. [PMID: 33925464 PMCID: PMC8123789 DOI: 10.3390/ijms22094570] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/15/2021] [Accepted: 04/23/2021] [Indexed: 12/13/2022] Open
Abstract
The identification of thrombospondin-1 as an angiogenesis inhibitor in 1990 prompted interest in its role in cancer biology and potential as a therapeutic target. Decreased thrombospondin-1 mRNA and protein expression are associated with progression in several cancers, while expression by nonmalignant cells in the tumor microenvironment and circulating levels in cancer patients can be elevated. THBS1 is not a tumor suppressor gene, but the regulation of its expression in malignant cells by oncogenes and tumor suppressor genes mediates some of their effects on carcinogenesis, tumor progression, and metastasis. In addition to regulating angiogenesis and perfusion of the tumor vasculature, thrombospondin-1 limits antitumor immunity by CD47-dependent regulation of innate and adaptive immune cells. Conversely, thrombospondin-1 is a component of particles released by immune cells that mediate tumor cell killing. Thrombospondin-1 differentially regulates the sensitivity of malignant and nonmalignant cells to genotoxic stress caused by radiotherapy and chemotherapy. The diverse activities of thrombospondin-1 to regulate autophagy, senescence, stem cell maintenance, extracellular vesicle function, and metabolic responses to ischemic and genotoxic stress are mediated by several cell surface receptors and by regulating the functions of several secreted proteins. This review highlights progress in understanding thrombospondin-1 functions in cancer and the challenges that remain in harnessing its therapeutic potential.
Collapse
Affiliation(s)
- Sukhbir Kaur
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA; (S.K.); (D.P.-N.)
| | - Steven M. Bronson
- Department of Internal Medicine, Section of Molecular Medicine, Comprehensive Cancer Center, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA;
| | - Dipasmita Pal-Nath
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA; (S.K.); (D.P.-N.)
| | - Thomas W. Miller
- Centre de Recherche en Cancérologie de Marseille, Institut Paoli-Calmettes, 13273 Marseille, France
| | - David R. Soto-Pantoja
- Department of Surgery and Department of Cancer Biology, Comprehensive Cancer Center, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA
| | - David D. Roberts
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA; (S.K.); (D.P.-N.)
| |
Collapse
|
5
|
Cham LB, Adomati T, Li F, Ali M, Lang KS. CD47 as a Potential Target to Therapy for Infectious Diseases. Antibodies (Basel) 2020; 9:antib9030044. [PMID: 32882841 PMCID: PMC7551396 DOI: 10.3390/antib9030044] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/12/2020] [Accepted: 07/27/2020] [Indexed: 12/12/2022] Open
Abstract
The integrin associated protein (CD47) is a widely and moderately expressed glycoprotein in all healthy cells. Cancer cells are known to induce increased CD47 expression. Similar to cancer cells, all immune cells can upregulate their CD47 surface expression during infection. The CD47-SIRPa interaction induces an inhibitory effect on macrophages and dendritic cells (dendritic cells) while CD47-thrombospondin-signaling inhibits T cells. Therefore, the disruption of the CD47 interaction can mediate several biologic functions. Upon the blockade and knockout of CD47 reveals an immunosuppressive effect of CD47 during LCMV, influenza virus, HIV-1, mycobacterium tuberculosis, plasmodium and other bacterial pneumonia infections. In our recent study we shows that the blockade of CD47 using the anti-CD47 antibody increases the activation and effector function of macrophages, dendritic cells and T cells during viral infection. By enhancing both innate and adaptive immunity, CD47 blocking antibody promotes antiviral effect. Due to its broad mode of action, the immune-stimulatory effect derived from this antibody could be applicable in nonresolving and (re)emerging infections. The anti-CD47 antibody is currently under clinical trial for the treatment of cancer and could also have amenable therapeutic potential against infectious diseases. This review highlights the immunotherapeutic targeted role of CD47 in the infectious disease realm.
Collapse
|
6
|
Cao D, Chen MK, Zhang QF, Zhou YF, Zhang MY, Mai SJ, Zhang YJ, Chen MS, Li XX, Wang HY. Identification of immunological subtypes of hepatocellular carcinoma with expression profiling of immune-modulating genes. Aging (Albany NY) 2020; 12:12187-12205. [PMID: 32544882 PMCID: PMC7343492 DOI: 10.18632/aging.103395] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 05/20/2020] [Indexed: 12/24/2022]
Abstract
Recent studies demonstrate that immune checkpoint inhibitor (ICI) therapy has achieved success in many types of advanced cancers including advanced hepatocellular carcinoma (HCC). However, ICI therapy is beneficial in only some HCC patients, suggesting that immune-responses are highly variable in HCCs. Therefore, understanding the immune status in HCC microenvironment will facilitate ICI immunotherapy and guide patient selection for the therapy. In this study, we first analyzed the expression profile of immune-modulating genes and their relationship with survival of HCC patients using the data downloaded from The Cancer Genome Atlas - Liver Hepatocellular Carcinoma (TCGA-LIHC) database, and found that the higher expressions of CD276 (B7-H3) and CD47 were significantly associated with poor survival. Then we identified 4 immune subtypes of HCCs with different survivals by using the combination expression of B7-H3 (or CD47) and CD8. Patients with B7-H3low/CD8high or CD47low/CD8high have the best survival while ones with B7-H3high/CD8low or CD47high/CD8low have the worst survival. The 4 immune subtypes were validated in another 72 HCC patients obtained from South China. In conclusion, our findings suggest that HCC patient prognosis is associated with immunophenotypes by T cell infiltration (CD8 expression) and the expression of the adaptive immune resistance gene (B7-H3 or CD47), and this immune classification system will facilitate HCC patient selection for ICI immunotherapy.
Collapse
Affiliation(s)
- Di Cao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Meng-Ke Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Qing-Feng Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Yu-Feng Zhou
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Mei-Yin Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Shi-Juan Mai
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Yao-Jun Zhang
- Department of Hepatobiliary Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Min-Shan Chen
- Department of Hepatobiliary Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Xiao-Xing Li
- Precision Medicine Institute, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Hui-Yun Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| |
Collapse
|
7
|
Nath PR, Gangaplara A, Pal-Nath D, Mandal A, Maric D, Sipes JM, Cam M, Shevach EM, Roberts DD. CD47 Expression in Natural Killer Cells Regulates Homeostasis and Modulates Immune Response to Lymphocytic Choriomeningitis Virus. Front Immunol 2018; 9:2985. [PMID: 30643501 PMCID: PMC6320676 DOI: 10.3389/fimmu.2018.02985] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 12/04/2018] [Indexed: 01/08/2023] Open
Abstract
CD47 is a ubiquitous cell surface receptor that directly regulates T cell immunity by interacting with its inhibitory ligand thrombospondin-1 and limits clearance of cells by phagocytes that express its counter-receptor signal-regulatory protein-α. Murine natural killer (NK) cells express higher levels of CD47 than other lymphocytes, but the role of CD47 in regulating NK cell homeostasis and immune function remains unclear. Cd47 -/- mice exhibited depletion of NK precursors in bone marrow, consistent with the antiphagocytic function of CD47. In contrast, antisense CD47 knockdown or gene disruption resulted in a dose dependent accumulation of immature and mature NK cells in spleen. Mature Cd47 -/- NK cells exhibited increased expression of NK effector and interferon gene signatures and an increased proliferative response to interleukin-15 in vitro. Cd47 -/- mice showed no defect in their early response to acute Armstrong lymphocytic choriomeningitis virus (LCMV) infection but were moderately impaired in controlling chronic Clone-13 LCMV infection, which was associated with depletion of splenic NK cells and loss of effector cytokine and interferon response gene expression in Cd47 -/- NK cells. Broad CD47-dependent differences in NK activation, survival, and exhaustion pathways were observed in NK cell transcriptional signatures in LCMV infected mice. These data identify CD47 as a cell-intrinsic and systemic regulator of NK cell homeostasis and NK cell function in responding to a viral infection.
Collapse
Affiliation(s)
- Pulak Ranjan Nath
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Arunakumar Gangaplara
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Dipasmita Pal-Nath
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Ajeet Mandal
- CCR Collaborative Bioinformatics Resource, Office of Science and Technology Resources, National Cancer Institute and Leidos Biomedical Research, Inc., National Institutes of Health, Bethesda, MD, United States
| | - Dragan Maric
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - John M Sipes
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Maggie Cam
- CCR Collaborative Bioinformatics Resource, Office of Science and Technology Resources, National Cancer Institute and Leidos Biomedical Research, Inc., National Institutes of Health, Bethesda, MD, United States
| | - Ethan M Shevach
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - David D Roberts
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
8
|
Thrombospondin-1 Production Regulates the Inflammatory Cytokine Secretion in THP-1 Cells Through NF-κB Signaling Pathway. Inflammation 2018. [PMID: 28634844 DOI: 10.1007/s10753-017-0601-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Thrombospondin-1 (TSP-1) is upregulated in several inflammatory diseases. Recent data have shown that macrophages from TSP-1-deficient mice have a reduced inflammatory phenotype, suggesting that TSP-1 plays a part in macrophage activation. DNA microarray approach revealed that Porphyromonas gingivalis lipopolysaccharide (P. gingivalis LPS) may induce the enhanced TSP-1 expression in human monocytes, suggesting a role of TSP-1-mediated pathogenesis in periodontitis. Until recently, the function of TSP-1 has been a matter of debate. In this study, we explored the role of TSP-1 in inflammatory cytokine secretions and its putative mechanism in pathogenesis of periodontitis. We demonstrated that TSP-1 expression was significantly upregulated in gingival tissues with periodontitis and in P. gingivalis LPS-stimulated THP-1 cells. Deficiency of TSP-1 by transfecting siRNAs decreased IL-6, IL-1β, and TNF-α secretions in THP-1 cells, whereas overexpression of TSP-1 resulted in an upregulation of IL-6, IL-1β, and TNF-α productions. Additional experiments showed that Pyrrolidine dithiocarbamate (PDTC) inhibited IL-6, IL-1β, and TNF-α expression induced by overexpression of TSP-1, accompanying with downregulation of phosphorylated p65 and IκBα protein levels in response to P. gingivalis LPS. These results indicated that TSP-1 played a significant role in P. gingivalis LPS-initiated inflammatory cytokines (IL-6, IL-1β, and TNF-α) secretions of THP-1 cells, and the NF-κB signaling is involved in its induction of expression. Thus, TSP-1 effectively elevated P. gingivalis LPS-induced inflammation mediated by the NF-κB pathway and may be critical for pathology of periodontitis.
Collapse
|
9
|
McCombs JE, Kohler JJ. Pneumococcal Neuraminidase Substrates Identified through Comparative Proteomics Enabled by Chemoselective Labeling. Bioconjug Chem 2016; 27:1013-22. [PMID: 26954852 DOI: 10.1021/acs.bioconjchem.6b00050] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Neuraminidases (sialidases) are enzymes that hydrolytically remove sialic acid from sialylated proteins and lipids. Neuraminidases are encoded by a range of human pathogens, including bacteria, viruses, fungi, and protozoa. Many pathogen neuraminidases are virulence factors, indicating that desialylation of host glycoconjugates can be a critical step in infection. Specifically, desialylation of host cell surface glycoproteins can enable these molecules to function as pathogen receptors or can alter signaling through the plasma membrane. Despite these critical effects, no unbiased approaches exist to identify glycoprotein substrates of neuraminidases. Here, we combine previously reported glycoproteomics methods with quantitative proteomics analysis to identify glycoproteins whose sialylation changes in response to neuraminidase treatment. The two glycoproteomics methods-periodate oxidation and aniline-catalyzed oxime ligation (PAL) and galactose oxidase and aniline-catalyzed oxime ligation (GAL)-rely on chemoselective labeling of sialylated and nonsialylated glycoproteins, respectively. We demonstrated the utility of the combined approaches by identifying substrates of two pneumococcal neuraminidases in a human cell line that models the blood-brain barrier. The methods deliver complementary lists of neuraminidase substrates, with GAL identifying a larger number of substrates than PAL (77 versus 17). Putative neuraminidase substrates were confirmed by other methods, establishing the validity of the approach. Among the identified substrates were host glycoproteins known to function in bacteria adherence and infection. Functional assays suggest that multiple desialylated cell surface glycoproteins may act together as pneumococcus receptors. Overall, this method will provide a powerful approach to identify glycoproteins that are desialylated by both purified neuraminidases and intact pathogens.
Collapse
Affiliation(s)
- Janet E McCombs
- Department of Biochemistry, The University of Texas Southwestern Medical Center , Dallas, Texas 75390-9038, United States
| | - Jennifer J Kohler
- Department of Biochemistry, The University of Texas Southwestern Medical Center , Dallas, Texas 75390-9038, United States
| |
Collapse
|
10
|
Secreted Thrombospondin-1 Regulates Macrophage Interleukin-1β Production and Activation through CD47. Sci Rep 2016; 6:19684. [PMID: 26813769 PMCID: PMC4728557 DOI: 10.1038/srep19684] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 12/16/2015] [Indexed: 01/14/2023] Open
Abstract
Thrombospondin-1 regulates inflammation by engaging several cell surface receptors and by modulating activities of other secreted factors. We have uncovered a novel role of thrombospondin-1 in modulating production and activation of the proinflammatory cytokine IL-1β by human and murine macrophages. Physiological concentrations of thrombospondin-1 limit the induction by lipopolysaccharide of IL-1β mRNA and total protein production by human macrophages. This inhibition can be explained by the ability of thrombospondin-1 to disrupt the interaction between CD47 and CD14, thereby limiting activation of NFκB/AP-1 by lipopolysaccharide. Only the CD47-binding domain of thrombospondin-1 exhibits this activity. In contrast, CD47, CD36, and integrin-binding domains of thrombospondin-1 independently enhance the inflammasome-dependent maturation of IL-1β in human THP-1 monocyte-derived macrophages. Correspondingly, mouse bone marrow-derived macrophages that lack either thrombospondin-1 or CD47 exhibit diminished induction of mature IL-1β in response to lipopolysaccharide. Lack of CD47 also limits lipopolysaccharide induction of IL-1β, NLRP3, and caspase-1 mRNAs. These data demonstrate that thrombospondin-1 exerts CD47-dependent and -independent pro-and anti-inflammatory effects on the IL-1β pathway. Therefore, thrombospondin-1 and its receptor CD47 may be useful targets for limiting the pro-inflammatory effects of lipopolysaccharide and for treating endotoxemia.
Collapse
|
11
|
Navarathna DHMLP, Stein EV, Lessey-Morillon EC, Nayak D, Martin-Manso G, Roberts DD. CD47 Promotes Protective Innate and Adaptive Immunity in a Mouse Model of Disseminated Candidiasis. PLoS One 2015; 10:e0128220. [PMID: 26010544 PMCID: PMC4444371 DOI: 10.1371/journal.pone.0128220] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 04/24/2015] [Indexed: 11/19/2022] Open
Abstract
CD47 is a widely expressed receptor that regulates immunity by engaging its counter-receptor SIRPα on phagocytes and its secreted ligand thrombospondin-1. Mice lacking CD47 can exhibit enhanced or impaired host responses to bacterial pathogens, but its role in fungal immunity has not been examined. cd47-/- mice on a C57BL/6 background showed significantly increased morbidity and mortality following Candida albicans infection when compared with wild-type mice. Despite normal fungal colonization at earlier times, cd47-/- mice at four days post-infection had increased colonization of brain and kidneys accompanied by stronger inflammatory reactions. Neutrophil and macrophage numbers were significantly elevated in kidneys and neutrophils in the brains of infected cd47-/- mice. However, no defect in phagocytic activity towards C. albicans was observed in cd47-/- bone-marrow-derived macrophages, and neutrophil and macrophage killing of C. albicans was not impaired. CD47-deficiency did not alter the early humoral immune response to C. albicans. Th1, Th2, and Th17 population of CD4+ T cells were expanded in the spleen, and gene expression profiles of spleen and kidney showed stronger pro-inflammatory signaling in infected cd47-/- mice. The chemoattractant chemokines MIP-2α and MIP-2β were highly expressed in infected spleens of cd47-/- mice. G-CSF, GM-CSF, and the inflammasome component NLRP3 were more highly expressed in infected cd47-/- kidneys than in infected wild-type controls. Circulating pro- (TNF-α, IL-6) and anti-inflammatory cytokines (IL-10) were significantly elevated, but IL-17 was decreased. These data indicate that CD47 plays protective roles against disseminated candidiasis and alters pro-inflammatory and immunosuppressive pathways known to regulate innate and T cell immunity.
Collapse
Affiliation(s)
- Dhammika H. M. L. P. Navarathna
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, United States of America
| | - Erica V. Stein
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, United States of America
- Microbiology and Immunology Program of the Institute for Biomedical Sciences, Departments of Microbiology, Immunology and Tropical Medicine, George Washington University, Washington, D.C. 20037, United States of America
| | - Elizabeth C. Lessey-Morillon
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, United States of America
| | - Debasis Nayak
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, United States of America
| | - Gema Martin-Manso
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, United States of America
| | - David D. Roberts
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, United States of America
- * E-mail:
| |
Collapse
|
12
|
Soto-Pantoja DR, Kaur S, Roberts DD. CD47 signaling pathways controlling cellular differentiation and responses to stress. Crit Rev Biochem Mol Biol 2015; 50:212-30. [PMID: 25708195 DOI: 10.3109/10409238.2015.1014024] [Citation(s) in RCA: 128] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
CD47 is a widely expressed integral membrane protein that serves as the counter-receptor for the inhibitory phagocyte receptor signal-regulatory protein-α (SIRPα) and as a signaling receptor for the secreted matricellular protein thrombospondin-1. Recent studies employing mice and somatic cells lacking CD47 have revealed important pathophysiological functions of CD47 in cardiovascular homeostasis, immune regulation, resistance of cells and tissues to stress and chronic diseases of aging including cancer. With the emergence of experimental therapeutics targeting CD47, a more thorough understanding of CD47 signal transduction is essential. CD47 lacks a substantial cytoplasmic signaling domain, but several cytoplasmic binding partners have been identified, and lateral interactions of CD47 with other membrane receptors play important roles in mediating signaling resulting from the binding of thrombospondin-1. This review addresses recent advances in identifying the lateral binding partners, signal transduction pathways and downstream transcription networks regulated through CD47 in specific cell lineages. Major pathways regulated by CD47 signaling include calcium homeostasis, cyclic nucleotide signaling, nitric oxide and hydrogen sulfide biosynthesis and signaling and stem cell transcription factors. These pathways and other undefined proximal mediators of CD47 signaling regulate cell death and protective autophagy responses, mitochondrial biogenesis, cell adhesion and motility and stem cell self-renewal. Although thrombospondin-1 is the best characterized agonist of CD47, the potential roles of other members of the thrombospondin family, SIRPα and SIRPγ binding and homotypic CD47 interactions as agonists or antagonists of signaling through CD47 should also be considered.
Collapse
Affiliation(s)
- David R Soto-Pantoja
- a Laboratory of Pathology , Center for Cancer Research, National Cancer Institute, National Institutes of Health , Bethesda , MD , USA
| | | | | |
Collapse
|
13
|
Soto-Pantoja DR, Terabe M, Ghosh A, Ridnour LA, DeGraff WG, Wink DA, Berzofsky JA, Roberts DD. CD47 in the tumor microenvironment limits cooperation between antitumor T-cell immunity and radiotherapy. Cancer Res 2014; 74:6771-83. [PMID: 25297630 DOI: 10.1158/0008-5472.can-14-0037-t] [Citation(s) in RCA: 155] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Although significant advances in radiotherapy have increased its effectiveness in many cancer settings, general strategies to widen the therapeutic window between normal tissue toxicity and malignant tumor destruction would still offer great value. CD47 blockade has been found to confer radioprotection to normal tissues while enhancing tumor radiosensitivity. Here, we report that CD47 blockade directly enhances tumor immunosurveillance by CD8(+) T cells. Combining CD47 blockade with irradiation did not affect fibrosarcoma growth in T cell-deficient mice, whereas adoptive transfer of tumor-specific CD8(+) T cells restored combinatorial efficacy. Furthermore, ablation of CD8(+) T cells abolished radiotherapeutic response in immunocompetent syngeneic hosts. CD47 blockade in either target cells or effector cells was sufficient to enhance antigen-dependent CD8(+) CTL-mediated tumor cell killing in vitro. In CD47-deficient syngeneic hosts, engrafted B16 melanomas were 50% more sensitive to irradiation, establishing that CD47 expression in the microenvironment was sufficient to limit tumor radiosensitivity. Mechanistic investigations revealed increased tumor infiltration by cytotoxic CD8(+) T cells in a CD47-deficient microenvironment, with an associated increase in T cell-dependent intratumoral expression of granzyme B. Correspondingly, an inverse correlation between CD8(+) T-cell infiltration and CD47 expression was observed in human melanomas. Our findings establish that blocking CD47 in the context of radiotherapy enhances antitumor immunity by directly stimulating CD8(+) cytotoxic T cells, with the potential to increase curative responses.
Collapse
Affiliation(s)
- David R Soto-Pantoja
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Masaki Terabe
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Arunima Ghosh
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Lisa A Ridnour
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - William G DeGraff
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - David A Wink
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Jay A Berzofsky
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - David D Roberts
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland.
| |
Collapse
|
14
|
Weng TY, Huang SS, Yen MC, Lin CC, Chen YL, Lin CM, Chen WC, Wang CY, Chang JY, Lai MD. A novel cancer therapeutic using thrombospondin 1 in dendritic cells. Mol Ther 2013; 22:292-302. [PMID: 24127010 DOI: 10.1038/mt.2013.236] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 09/27/2013] [Indexed: 12/12/2022] Open
Abstract
Induction of thrombospondin 1 (TSP-1) is generally assumed to suppress tumor growth through inhibiting angiogenesis; however, it is less clear how TSP-1 in dendritic cells (DCs) influences tumor progression. We investigated tumor growth and immune mechanism by downregulation of TSP-1 in dendritic cells. Administration of TSP-1 small hairpin RNA (shRNA) through the skin produced anticancer therapeutic effects. Tumor-infiltrating CD4(+) and CD8(+) T cells were increased after the administration of TSP-1 shRNA. The expression of interleukin-12 and interferon-γ in the lymph nodes was enhanced by injection of TSP-1 shRNA. Lymphocytes from the mice injected with TSP-1 shRNA selectively killed the tumor cells, and the cytotoxicity of lymphocytes was abolished by depletion of CD8(+) T cells. Injection of CD11c(+) TSP-1-knockout (TSP-1-KO) bone marrow-derived DCs (BMDCs) delayed tumor growth in tumor-bearing mice. Similarly, antitumor activity induced by TSP-1-KO BMDCs was abrogated by depletion of CD8(+) T cells. In contrast, the administration of shRNAs targeting TSP-2, another TSP family member, did not extend the survival of tumor-bearing mice. Finally, TSP-1 shRNA functioned as an immunotherapeutic adjuvant to augment the therapeutic efficacy of Neu DNA vaccination. Collectively, the downregulation of TSP-1 in DCs produces an effective antitumor response that is opposite to the protumor effects by silencing of TSP-1 within tumor cells.
Collapse
Affiliation(s)
- Tzu-Yang Weng
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Shih-Shien Huang
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Meng-Chi Yen
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Center for Infectious Diseases and Signal Research, National Cheng Kung University, Tainan, Taiwan
| | - Chi-Chen Lin
- Institute of Biomedical Sciences, College of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Yi-Ling Chen
- Department of Senior Citizen Services Management, Chia Nan University of Pharmacy and Science, Tainan, Taiwan
| | - Chiu-Mei Lin
- School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Wei-Ching Chen
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chih-Yang Wang
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Jang-Yang Chang
- National Institute of Cancer Research, National Health Research Institute, Tainan, Taiwan
| | - Ming-Derg Lai
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Center for Infectious Diseases and Signal Research, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
15
|
How does the brain limit the severity of inflammation and tissue injury during bacterial meningitis? J Neuropathol Exp Neurol 2013; 72:370-85. [PMID: 23584204 DOI: 10.1097/nen.0b013e3182909f2f] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The most devastating CNS bacterial infection, bacterial meningitis, has both acute and long-term neurologic consequences. The CNS defends itself against bacterial invasion through a combination of physical barriers (i.e. blood-brain barrier, meninges, and ependyma), which contain macrophages that express a range of pattern-recognition receptors that detect pathogens before they gain access to the CNS and cerebrospinal fluid. This activates an antipathogen response consisting of inflammatory cytokines, complement, and chemoattractants. Regulation of the antipathogen inflammatory response is essential for preventing irreversible brain injury and protecting stem cell populations in the ventricle wall. The severity of brain inflammation is regulated by the clearance of apoptotic inflammatory cells and neurons. Death signaling pathways are expressed by glia to stimulate apoptosis of neutrophils, lymphocytes, and damaged neurons and to regulate in flammation and remove necrotic cells. The emerging group of neuroimmunoregulatory molecules adjusts the balance of the anti-inflammatory and proinflammatory response to provide optimal conditions for effective clearance of pathogens and apoptotic cells but reduce the severity of the inflammatory response to prevent injury to brain cells, including stem cell populations. The neuroimmunoregulatory molecules and other CNS anti-inflammatory pathways represent potential therapeutic targets capable of reducing brain injury caused by bacterial infection.
Collapse
|
16
|
Kimaro Mlacha SZ, Peret TCT, Kumar N, Romero-Steiner S, Dunning Hotopp JC, Ishmael N, Grinblat-Huse V, Riley DR, Erdman DD, Carlone GM, Sampson J, Scott JAG, Tettelin H. Transcriptional adaptation of pneumococci and human pharyngeal cells in the presence of a virus infection. BMC Genomics 2013; 14:378. [PMID: 23742656 PMCID: PMC3681581 DOI: 10.1186/1471-2164-14-378] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Accepted: 05/24/2013] [Indexed: 11/26/2022] Open
Abstract
Background Viral upper respiratory tract infections are associated with increased colonization by Streptococcus pneumoniae but the mechanisms underlying this relationship are unclear. The objective of this study is to describe a comprehensive picture of the cellular interaction between the adhering bacteria and host cells in the presence or absence of a viral co-infection. Results Gene expression profiles of Detroit-562 pharyngeal cells, which were either mock-infected or infected with human respiratory syncytial virus (RSV) or human parainfluenza virus 3 (HPIV3), were analyzed using human microarrays. Transcription response of S. pneumoniae strain TIGR4 (serotype 4) in the presence of either mock- or viral-infected cells was analyzed by pneumococcal microarray. Significantly regulated genes were identified by both significance analysis of microarray (SAM) and a ≥ 2-fold change ratio cut-off. The adherence of S. pneumoniae to human pharyngeal cells was significantly augmented in the presence of RSV or HPIV3 infection. Global gene expression profiling of the host cells during infection with RSV or HPIV3 revealed increased transcription of carcinoembryonic antigen-related cell adhesion molecules (CEACAM1), CD47, fibronectin, interferon-stimulated genes and many other host cell adhesion molecules. Pneumococci increased transcription of several genes involved in adhesive functions (psaA, pilus islet), choline uptake and incorporation (lic operon), as well as transport and binding. Conclusions We have identified a core transcriptome that represents the basic machinery required for adherence of pneumococci to D562 cells infected or not infected with a virus. These bacterial genes and cell adhesion molecules can potentially be used to control pneumococcal adherence occurring secondary to a viral infection.
Collapse
|
17
|
Martin-Manso G, Navarathna DHMLP, Galli S, Soto-Pantoja DR, Kuznetsova SA, Tsokos M, Roberts DD. Endogenous thrombospondin-1 regulates leukocyte recruitment and activation and accelerates death from systemic candidiasis. PLoS One 2012; 7:e48775. [PMID: 23144964 PMCID: PMC3492437 DOI: 10.1371/journal.pone.0048775] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Accepted: 10/01/2012] [Indexed: 01/13/2023] Open
Abstract
Disseminated Candida albicans infection results in high morbidity and mortality despite treatment with existing antifungal drugs. Recent studies suggest that modulating the host immune response can improve survival, but specific host targets for accomplishing this goal remain to be identified. The extracellular matrix protein thrombospondin-1 is released at sites of tissue injury and modulates several immune functions, but its role in C. albicans pathogenesis has not been investigated. Here, we show that mice lacking thrombospondin-1 have an advantage in surviving disseminated candidiasis and more efficiently clear the initial colonization from kidneys despite exhibiting fewer infiltrating leukocytes. By examining local and systemic cytokine responses to C. albicans and other standard inflammatory stimuli, we identify a crucial function of phagocytes in this enhanced resistance. Subcutaneous air pouch and systemic candidiasis models demonstrated that endogenous thrombospondin-1 enhances the early innate immune response against C. albicans and promotes activation of inflammatory macrophages (inducible nitric oxide synthase+, IL-6high, TNF-αhigh, IL-10low), release of the chemokines MIP-2, JE, MIP-1α, and RANTES, and CXCR2-driven polymorphonuclear leukocytes recruitment. However, thrombospondin-1 inhibited the phagocytic capacity of inflammatory leukocytes in vivo and in vitro, resulting in increased fungal burden in the kidney and increased mortality in wild type mice. Thus, thrombospondin-1 enhances the pathogenesis of disseminated candidiasis by creating an imbalance in the host immune response that ultimately leads to reduced phagocytic function, impaired fungal clearance, and increased mortality. Conversely, inhibitors of thrombospondin-1 may be useful drugs to improve patient recovery from disseminated candidiasis.
Collapse
Affiliation(s)
- Gema Martin-Manso
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | | | | | | | | | | | | |
Collapse
|
18
|
Krishnan S, Prasadarao NV. Outer membrane protein A and OprF: versatile roles in Gram-negative bacterial infections. FEBS J 2012; 279:919-31. [PMID: 22240162 DOI: 10.1111/j.1742-4658.2012.08482.x] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Outer membrane protein A (OmpA) is an abundant protein of Escherichia coli and other enterobacteria and has a multitude of functions. Although the structural features and porin function of OmpA have been well studied, its role in the pathogenesis of various bacterial infections has emerged only during the last decade. The four extracellular loops of OmpA interact with a variety of host tissues for adhesion to and invasion of the cell and for evasion of host-defense mechanisms when inside the cell. This review describes how various regions present in the extracellular loops of OmpA contribute to the pathogenesis of neonatal meningitis induced by E. coli K1 and to many other functions. In addition, the function of OmpA-like proteins, such as OprF of Pseudomonas aeruginosa, is discussed.
Collapse
Affiliation(s)
- Subramanian Krishnan
- Division of Infectious Diseases, Department of Pediatrics, The Saban Research Institute, Children's Hospital Los Angeles, CA, USA
| | | |
Collapse
|
19
|
gp96 expression in neutrophils is critical for the onset of Escherichia coli K1 (RS218) meningitis. Nat Commun 2011; 2:552. [PMID: 22109526 PMCID: PMC3537828 DOI: 10.1038/ncomms1554] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Accepted: 10/19/2011] [Indexed: 01/01/2023] Open
Abstract
Despite the fundamental function of neutrophils (PMNs) in innate immunity, their role in Escherichia coli K1 (EC-K1) induced meningitis is unexplored. Here we show that PMN-depleted mice are resistant to EC-K1 (RS218) meningitis. EC-K1 survives and multiplies in PMNs for which outer membrane protein A (OmpA) expression is essential. EC-K1infection of PMNs increases the cell surface expression of gp96, which acts as a receptor for bacterial entry. Suppression of gp96 expression in newborn mice prevents the onset of EC-K1 meningitis. Infection of PMNs with EC-K1 suppresses oxidative burst by down regulating rac1, rac2 and gp91phox transcription both in vitro and in vivo. The interaction of loop 2 of OmpA with gp96 is essential for EC-K1-mediated inhibition of oxidative burst. These results reveal that EC-K1 exploits surface expressed gp96 in PMNs to prevent oxidative burst for the onset of neonatal meningitis.
Collapse
|
20
|
Infection of nonhost species dendritic cells in vitro with an attenuated myxoma virus induces gene expression that predicts its efficacy as a vaccine vector. J Virol 2011; 85:12982-94. [PMID: 21835800 DOI: 10.1128/jvi.00128-11] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Recombinant myxoma virus (MYXV) can be produced without a loss of infectivity, and its highly specific host range makes it an ideal vaccine vector candidate, although careful examination of its interaction with the immune system is necessary. Similar to rabbit bone marrow-derived dendritic cells (BM-DCs), ovine dendritic cells can be infected by SG33, a MYXV vaccine strain, and support recombinant antigen expression. The frequency of infected cells in the nonhost was lower and the virus cycle was abortive in these cell types. Among BM-DC subpopulations, Langerhans cell-like DCs were preferentially infected at low multiplicities of infection. Interestingly, ovine BM-DCs remained susceptible to MYXV after maturation, although apoptosis occurred shortly after infection as a function of the virus titer. When gene expression was assessed in infected BM-DC cultures, type I interferon (IFN)-related and inflammatory genes were strongly upregulated. DC gene expression profiles were compared with the profiles produced by other poxviruses in interaction with DCs, but very few commonalities were found, although genes that were previously shown to predict vaccine efficacy were present. Collectively, these data support the idea that MYXV permits efficient priming of adaptive immune responses and should be considered a promising vaccine vector along with other poxviruses.
Collapse
|
21
|
Thrombospondin-1: multiple paths to inflammation. Mediators Inflamm 2011; 2011:296069. [PMID: 21765615 PMCID: PMC3134184 DOI: 10.1155/2011/296069] [Citation(s) in RCA: 196] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2011] [Revised: 04/06/2011] [Accepted: 05/05/2011] [Indexed: 12/31/2022] Open
Abstract
Inflammation is a defensive process against tissue injury. Once this self-protective strategy is initiated, an effective resolution of the process is crucial to avoid major and unnecessary tissue damage. If the underlying event inducing inflammation is not addressed and homeostasis is not restored, this process can become chronic and lead to angiogenesis and carcinogenesis. Thrombospondin-1 (TSP-1) is a matricellular protein involved in angiogenesis, cancer, and inflammation. The effects of TSP-1 have been studied in many preclinical tumor models, and mimetic peptides are being tested in cancer clinical trials. However, the molecular mechanisms explaining its role in inflammatory processes are not well understood. This paper will discuss the role of TSP-1 in inflammation and its interaction with key receptors that may explain its functions in that process. Recent literature will be reviewed showing novel mechanisms by which this multifaceted protein could modulate the inflammatory process and impact its resolution.
Collapse
|
22
|
Mittal R, Krishnan S, Gonzalez-Gomez I, Prasadarao NV. Deciphering the roles of outer membrane protein A extracellular loops in the pathogenesis of Escherichia coli K1 meningitis. J Biol Chem 2011; 286:2183-93. [PMID: 21071448 PMCID: PMC3023514 DOI: 10.1074/jbc.m110.178236] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Revised: 10/05/2010] [Indexed: 11/06/2022] Open
Abstract
Outer membrane protein A (OmpA) has been implicated as an important virulence factor in several gram-negative bacterial infections such as Escherichia coli K1, a leading cause of neonatal meningitis associated with significant mortality and morbidity. In this study, we generated E. coli K1 mutants that express OmpA in which three or four amino acids from various extracellular loops were changed to alanines, and we examined their ability to survive in several immune cells. We observed that loop regions 1 and 2 play an important role in the survival of E. coli K1 inside neutrophils and dendritic cells, and loop regions 1 and 3 are needed for survival in macrophages. Concomitantly, E. coli K1 mutants expressing loop 1 and 2 mutations were unable to cause meningitis in a newborn mouse model. Of note, mutations in loop 4 of OmpA enhance the severity of the pathogenesis by allowing the pathogen to survive better in circulation and to produce high bacteremia levels. These results demonstrate, for the first time, the roles played by different regions of extracellular loops of OmpA of E. coli K1 in the pathogenesis of meningitis and may help in designing effective preventive strategies against this deadly disease.
Collapse
Affiliation(s)
- Rahul Mittal
- From the Division of Infectious Diseases, Department of Pediatrics, and
| | | | | | - Nemani V. Prasadarao
- From the Division of Infectious Diseases, Department of Pediatrics, and
- Surgery
- Saban Research Institute, Childrens Hospital Los Angeles and Keck School of Medicine, University of Southern California, Los Angeles, California 90027
| |
Collapse
|