1
|
Pham JA, Coronel MM. Unlocking Transplant Tolerance with Biomaterials. Adv Healthc Mater 2025; 14:e2400965. [PMID: 38843866 PMCID: PMC11834385 DOI: 10.1002/adhm.202400965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/31/2024] [Indexed: 07/04/2024]
Abstract
For patients suffering from organ failure due to injury or autoimmune disease, allogeneic organ transplantation with chronic immunosuppression is considered the god standard in terms of clinical treatment. However, the true "holy grail" of transplant immunology is operational tolerance, in which the recipient exhibits a sustained lack of alloreactivity toward unencountered antigen presented by the donor graft. This outcome is resultant from critical changes to the phenotype and genotype of the immune repertoire predicated by the activation of specific signaling pathways responsive to soluble and mechanosensitive cues. Biomaterials have emerged as a medium for interfacing with and reprogramming these endogenous pathways toward tolerance in precise, minimally invasive, and spatiotemporally defined manners. By viewing seminal and contemporary breakthroughs in transplant tolerance induction through the lens of biomaterials-mediated immunomodulation strategies-which include intrinsic material immunogenicity, the depot effect, graft coatings, induction and delivery of tolerogenic immune cells, biomimicry of tolerogenic immune cells, and in situ reprogramming-this review emphasizes the stunning diversity of approaches in the field and spotlights exciting future directions for research to come.
Collapse
Affiliation(s)
- John‐Paul A. Pham
- Department of Biomedical EngineeringUniversity of MichiganAnn ArborMI48109USA
- Elizabeth Caswell Diabetes InstituteUniversity of MichiganAnn ArborMI48109USA
| | - María M. Coronel
- Department of Biomedical EngineeringUniversity of MichiganAnn ArborMI48109USA
- Elizabeth Caswell Diabetes InstituteUniversity of MichiganAnn ArborMI48109USA
| |
Collapse
|
2
|
Yue L, Li J, Yao M, Song S, Zhang X, Wang Y. Cutting edge of immune response and immunosuppressants in allogeneic and xenogeneic islet transplantation. Front Immunol 2024; 15:1455691. [PMID: 39346923 PMCID: PMC11427288 DOI: 10.3389/fimmu.2024.1455691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 08/27/2024] [Indexed: 10/01/2024] Open
Abstract
As an effective treatment for diabetes, islet transplantation has garnered significant attention and research in recent years. However, immune rejection and the toxicity of immunosuppressive drugs remain critical factors influencing the success of islet transplantation. While immunosuppressants are essential in reducing immune rejection reactions and can significantly improve the survival rate of islet transplants, improper use of these drugs can markedly increase mortality rates following transplantation. Additionally, the current availability of islet organ donations fails to meet the demand for organ transplants, making xenotransplantation a crucial method for addressing organ shortages. This review will cover the following three aspects: 1) the immune responses occurring during allogeneic islet transplantation, including three stages: inflammation and IBMIR, allogeneic immune response, and autoimmune recurrence; 2) commonly used immunosuppressants in allogeneic islet transplantation, including calcineurin inhibitors (Cyclosporine A, Tacrolimus), mycophenolate mofetil, glucocorticoids, and Bortezomib; and 3) early and late immune responses in xenogeneic islet transplantation and the immune effects of triple therapy (ECDI-fixed donor spleen cells (ECDI-SP) + anti-CD20 + Sirolimus) on xenotransplantation.
Collapse
Affiliation(s)
- Liting Yue
- Center of Critical Care Medicine, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Jisong Li
- Department of Gastrointestinal Surgery, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Mingjun Yao
- Center of Critical Care Medicine, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Siyuan Song
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
| | - Xiaoqin Zhang
- Center of Critical Care Medicine, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Yi Wang
- Center of Critical Care Medicine, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Sichuan Provincial People’s Hospital, Chengdu, China
| |
Collapse
|
3
|
Tunbridge MJ, Luo X, Thomson AW. Negative Vaccination Strategies for Promotion of Transplant Tolerance. Transplantation 2024; 108:1715-1729. [PMID: 38361234 PMCID: PMC11265982 DOI: 10.1097/tp.0000000000004911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Organ transplantation requires the use of immunosuppressive medications that lack antigen specificity, have many adverse side effects, and fail to induce immunological tolerance to the graft. The safe induction of tolerance to allogeneic tissue without compromising host responses to infection or enhancing the risk of malignant disease is a major goal in transplantation. One promising approach to achieve this goal is based on the concept of "negative vaccination." Vaccination (or actively acquired immunity) involves the presentation of both a foreign antigen and immunostimulatory adjuvant to the immune system to induce antigen-specific immunity. By contrast, negative vaccination, in the context of transplantation, involves the delivery of donor antigen before or after transplantation, together with a "negative adjuvant" to selectively inhibit the alloimmune response. This review will explore established and emerging negative vaccination strategies for promotion of organ or pancreatic islet transplant tolerance. These include donor regulatory myeloid cell infusion, which has progressed to early-phase clinical trials, apoptotic donor cell infusion that has advanced to nonhuman primate models, and novel nanoparticle antigen-delivery systems.
Collapse
Affiliation(s)
- Matthew J. Tunbridge
- Adelaide Medical School, University of Adelaide, Adelaide, Australia
- Department of Medicine (Nephrology), Duke University Medical Center, Durham, North Carolina, USA
| | - Xunrong Luo
- Department of Medicine (Nephrology), Duke University Medical Center, Durham, North Carolina, USA
| | - Angus W. Thomson
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
4
|
Ren D, Chen J, Yu M, Yi C, Hu X, Deng J, Guo S. Emerging strategies for tissue engineering in vascularized composite allotransplantation: A review. J Tissue Eng 2024; 15:20417314241254508. [PMID: 38826796 PMCID: PMC11143860 DOI: 10.1177/20417314241254508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 04/28/2024] [Indexed: 06/04/2024] Open
Abstract
Vascularized composite allotransplantation (VCA), which can effectively improve quality of life, is a promising therapy for repair and reconstruction after face or body trauma. However, intractable issues are associated with VCA, such as the inevitable multiple immunogenicities of different tissues that cause severe rejection, the limited protocols available for clinical application, and the shortage of donor sources. The existing regimens used to extend the survival of patients receiving VCAs and suppress rejection are generally the lifelong application of immunosuppressive drugs, which have side effects. Consequently, studies aiming at tissue engineering methods for VCA have become a topic. In this review, we summarize the emerging therapeutic strategies for tissue engineering aimed to prolong the survival time of VCA grafts, delay the rejection and promote prevascularization and tissue regeneration to provide new ideas for future research on VCA treatment.
Collapse
Affiliation(s)
- Danyang Ren
- Department of Plastic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jun Chen
- Department of Plastic Surgery, Linhai Branch, The Second Affiliated Hospital, Zhejiang University School of Medicine, Taizhou, Zhejiang, China
| | - Meirong Yu
- Center for Basic and Translational Research, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Chenggang Yi
- Department of Plastic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xueqing Hu
- Department of Plastic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Junjie Deng
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Joint Centre of Translational Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, China
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, China
| | - Songxue Guo
- Department of Plastic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of The Diagnosis and Treatment of Severe Trauma and Burn of Zhejiang Province, Hangzhou, Zhejiang, China
| |
Collapse
|
5
|
Schroth SL, Jones RTL, Thorp EB. Alloantigen Infusion Activates the Transcriptome of Type 2 Conventional Dendritic Cells. Immunohorizons 2023; 7:683-693. [PMID: 37855737 PMCID: PMC10615655 DOI: 10.4049/immunohorizons.2300067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 10/20/2023] Open
Abstract
Recent studies have revealed novel molecular mechanisms by which innate monocytic cells acutely recognize and respond to alloantigen with significance to allograft rejection and tolerance. What remains unclear is the single-cell heterogeneity of the innate alloresponse, particularly the contribution of dendritic cell (DC) subsets. To investigate the response of these cells to exposure of alloantigen, C57BL/6J mice were administered live allogenic BALB/cJ splenic murine cells versus isogenic cells. In parallel, we infused apoptotic allogenic and isogenic cells, which have been reported to modulate immunity. Forty-eight hours after injection, recipient spleens were harvested, enriched for DCs, and subjected to single-cell mRNA sequencing. Injection of live cells induced a greater transcriptional change across DC subsets compared with apoptotic cells. In the setting of live cell infusion, type 2 conventional DCs (cDC2s) were most transcriptionally responsive with a Ccr2+ cDC2 subcluster uniquely responding to the presence of alloantigen compared with the isogenic control. In vitro experimentation confirmed unique activation of CCR2+ cDC2s following alloantigen exposure. Candidate receptors of allorecognition in other innate populations were interrogated and A type paired Ig-like receptors were found to be increased in the cDC2 population following alloexposure. These results illuminate previously unclear distinctions between therapeutic infusions of live versus apoptotic allogenic cells and suggest a role for cDC2s in innate allorecognition. More critically, these studies allow for future interrogation of the transcriptional response of immune cells in the setting of alloantigen exposure in vivo, encouraging assessment of novel pathways and previously unexamined receptors in this setting.
Collapse
Affiliation(s)
- Samantha L. Schroth
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Rebecca T. L. Jones
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Edward B. Thorp
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL
| |
Collapse
|
6
|
Kabakchieva P, Assyov Y, Gerasoudis S, Vasilev G, Peshevska-Sekulovska M, Sekulovski M, Lazova S, Miteva DG, Gulinac M, Tomov L, Velikova T. Islet transplantation-immunological challenges and current perspectives. World J Transplant 2023; 13:107-121. [PMID: 37388389 PMCID: PMC10303418 DOI: 10.5500/wjt.v13.i4.107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/16/2023] [Accepted: 06/06/2023] [Indexed: 06/16/2023] Open
Abstract
Pancreatic islet transplantation is a minimally invasive procedure aiming to reverse the effects of insulin deficiency in patients with type 1 diabetes (T1D) by transplanting pancreatic beta cells. Overall, pancreatic islet transplantation has improved to a great extent, and cellular replacement will likely become the mainstay treatment. We review pancreatic islet transplantation as a treatment for T1D and the immunological challenges faced. Published data demonstrated that the time for islet cell transfusion varied between 2 and 10 h. Approximately 54% of the patients gained insulin independence at the end of the first year, while only 20% remained insulin-free at the end of the second year. Eventually, most transplanted patients return to using some form of exogenous insulin within a few years after the transplantation, which imposed the need to improve immunological factors before transplantation. We also discuss the immunosuppressive regimens, apoptotic donor lymphocytes, anti-TIM-1 antibodies, mixed chimerism-based tolerance induction, induction of antigen-specific tolerance utilizing ethylene carbodiimide-fixed splenocytes, pretransplant infusions of donor apoptotic cells, B cell depletion, preconditioning of isolated islets, inducing local immunotolerance, cell encapsulation and immunoisolation, using of biomaterials, immunomodulatory cells, etc.
Collapse
Affiliation(s)
- Plamena Kabakchieva
- Clinic of Internal Diseases, Naval Hospital-Varna, Military Medical Academy, Varna 9010, Bulgaria
| | - Yavor Assyov
- Clinic of Endocrinology, Department of Internal Diseases, University Hospital "Alexandrovska", Medical University-Sofia, Sofia 1434, Bulgaria
| | | | - Georgi Vasilev
- Department of Neurology, Faculty of Medicine, Medical University of Plovdiv, Plovdiv 4000, Bulgaria
| | - Monika Peshevska-Sekulovska
- Department of Gastroenterology, University Hospital Lozenetz, Sofia 1407, Bulgaria
- Medical Faculty, Sofia University St. Kliment Ohridski, Sofia 1407, Bulgaria
| | - Metodija Sekulovski
- Medical Faculty, Sofia University St. Kliment Ohridski, Sofia 1407, Bulgaria
- Department of Anesthesiology and Intensive Care, University hospital Lozenetz, Sofia 1407, Bulgaria
| | - Snezhina Lazova
- Department of Pediatric, University Hospital "N. I. Pirogov", Sofia 1606, Bulgaria
- Department of Healthcare, Faculty of Public Health "Prof. Tsekomir Vodenicharov, MD, DSc", Medical University of Sofia, Sofia 1527, Bulgaria
| | | | - Milena Gulinac
- Department of General and Clinical Pathology, Medical University of Plovdiv, Plovdiv 4000, Bulgaria
| | - Latchezar Tomov
- Department of Informatics, New Bulgarian University, Sofia 1618, Bulgaria
| | - Tsvetelina Velikova
- Medical Faculty, Sofia University St. Kliment Ohridski, Sofia 1407, Bulgaria
| |
Collapse
|
7
|
Dangi A, Husain I, Jordan CZ, Yu S, Luo X. Conversion of CD73hiFR4hi anergic T cells to IFN-γ-producing effector cells disrupts established immune tolerance. J Clin Invest 2023; 133:e163872. [PMID: 36649085 PMCID: PMC9974094 DOI: 10.1172/jci163872] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Affiliation(s)
- Anil Dangi
- Nephrology, Duke University Medical Center, Durham, North Carolina, USA
| | - Irma Husain
- Nephrology, Duke University Medical Center, Durham, North Carolina, USA
| | - Collin Z. Jordan
- Nephrology, Duke University Medical Center, Durham, North Carolina, USA
| | - Shuangjin Yu
- Organ Transplantation, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Xunrong Luo
- Nephrology, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
8
|
Schneiderman J, Qiu L, Yeap XY, Kang X, Zheng F, Ye J, Xie Y, Wang JJ, Sambandam Y, Mathew J, Li L, Leventhal J, Edelson RL, Zhang ZJ. Pre-transplant infusion of donor leukocytes treated with extracorporeal photochemotherapy induces immune hypo-responsiveness and long-term allograft survival in murine models. Sci Rep 2022; 12:7298. [PMID: 35508582 PMCID: PMC9068706 DOI: 10.1038/s41598-022-11290-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 04/20/2022] [Indexed: 11/18/2022] Open
Abstract
Recipients of solid organ transplantation (SOT) rely on life-long immunosuppression (IS), which is associated with significant side effects. Extracorporeal photochemotherapy (ECP) is a safe, existing cellular therapy used to treat transplant rejection by modulating the recipient’s own blood cells. We sought to induce donor-specific hypo-responsiveness of SOT recipients by infusing ECP-treated donor leukocytes prior to transplant. To this end, we utilized major histocompatibility complex mismatched rodent models of allogeneic cardiac, liver, and kidney transplantation to test this novel strategy. Leukocytes isolated from donor-matched spleens for ECP treatment (ECP-DL) were infused into transplant recipients seven days prior to SOT. Pre-transplant infusion of ECP-DL without additional IS was associated with prolonged graft survival in all models. This innovative approach promoted the production of tolerogenic dendritic cells and regulatory T-cells with subsequent inhibition of T-cell priming and differentiation, along with a significant reduction of donor-specific T-cells in the spleen and grafts of treated animals. This new application of donor-type ECP-treated leukocytes provides insight into the mechanisms behind ECP-induced immunoregulation and holds significant promise in the prevention of graft rejection and reduction in need of global immune suppressive therapy in patients following SOT.
Collapse
Affiliation(s)
- Jennifer Schneiderman
- Department of Pediatrics, Hematology/Oncology/Neuro-Oncology/Stem Cell Transplantation and Cellular Therapy Program, Feinberg School of Medicine, Ann and Robert H. Lurie Children's Hospital of Chicago, Northwestern University, Chicago, IL, USA.
| | - Longhui Qiu
- Department of Surgery, Comprehensive Transplant Center, Feinberg School of Medicine, Microsurgery Core, Northwestern University, Chicago, IL, USA
| | - Xin Yi Yeap
- Department of Surgery, Comprehensive Transplant Center, Feinberg School of Medicine, Microsurgery Core, Northwestern University, Chicago, IL, USA
| | - Xin Kang
- Department of Surgery, Comprehensive Transplant Center, Feinberg School of Medicine, Microsurgery Core, Northwestern University, Chicago, IL, USA
| | - Feibo Zheng
- Department of Surgery, Comprehensive Transplant Center, Feinberg School of Medicine, Microsurgery Core, Northwestern University, Chicago, IL, USA
| | - Junsheng Ye
- Department of Surgery, Comprehensive Transplant Center, Feinberg School of Medicine, Microsurgery Core, Northwestern University, Chicago, IL, USA
| | - Yan Xie
- Department of Surgery, Comprehensive Transplant Center, Feinberg School of Medicine, Microsurgery Core, Northwestern University, Chicago, IL, USA
| | - Jiao-Jing Wang
- Department of Surgery, Comprehensive Transplant Center, Feinberg School of Medicine, Microsurgery Core, Northwestern University, Chicago, IL, USA
| | - Yuvaraj Sambandam
- Department of Surgery, Comprehensive Transplant Center, Feinberg School of Medicine, Microsurgery Core, Northwestern University, Chicago, IL, USA
| | - James Mathew
- Department of Surgery, Comprehensive Transplant Center, Feinberg School of Medicine, Microsurgery Core, Northwestern University, Chicago, IL, USA
| | - Lin Li
- Department of Pathology and Laboratory Medicine, Cedars Sinai Medical Center, West Hollywood, CA, USA
| | - Joseph Leventhal
- Department of Surgery, Comprehensive Transplant Center, Feinberg School of Medicine, Microsurgery Core, Northwestern University, Chicago, IL, USA.,Department of Surgery, Organ Transplantation, Feinberg School of Medicine, Kidney and Pancreas Transplant Programs, Northwestern University, Chicago, IL, USA
| | - Richard L Edelson
- Department of Dermatology, Yale School of Medicine, New Haven, CT, USA
| | - Zheng Jenny Zhang
- Department of Surgery, Comprehensive Transplant Center, Feinberg School of Medicine, Microsurgery Core, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
9
|
Casey LM, Hughes KR, Saunders MN, Miller SD, Pearson RM, Shea LD. Mechanistic contributions of Kupffer cells and liver sinusoidal endothelial cells in nanoparticle-induced antigen-specific immune tolerance. Biomaterials 2022; 283:121457. [PMID: 35286851 PMCID: PMC11225973 DOI: 10.1016/j.biomaterials.2022.121457] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 01/10/2022] [Accepted: 03/03/2022] [Indexed: 02/06/2023]
Abstract
The intravenous delivery of disease-relevant antigens (Ag) by polymeric nanoparticles (NP-Ags) has demonstrated Ag-specific immune tolerance in autoimmune and allergic disorders as well as allogeneic transplant rejection. NP-Ags are observed to distribute to the spleen, which has an established role in the induction of immune tolerance. However, studies have shown that the spleen is dispensable for NP-Ag-induced tolerance, suggesting significant contributions from other immunological sites. Here, we investigated the tolerogenic contributions of Kupffer cells (KCs) and liver sinusoidal endothelial cells (LSECs) to NP-Ag-induced tolerance in a mouse model of multiple sclerosis, experimental autoimmune encephalomyelitis (EAE). Intravenously delivered Ag-conjugated poly(lactide-co-glycolide) NPs (PLG-Ag) distributed largely to the liver, where they associated with both KCs and LSECs. This distribution was accompanied by CD4 T cell accumulation, clonal deletion, and PD-L1 expression by KCs and LSECs. Ex vivo co-cultures of PLG-Ag-treated KCs or LSECs with Ag-specific CD4 T cells resulted in PGE2 and IL-10 or PGE2 secretion, respectively. KC depletion and adoptive transfer experiments demonstrated that KCs were sufficient, but not necessary, to mediate PLG-Ag-induced tolerance in EAE. The durability of PLG-Ag-induced tolerance in the absence of KCs may be attributed to the distribution of PLG-Ags to LSECs, which demonstrated similar levels of PD-L1, PGE2, and T cell stimulatory ability. Collectively, these studies provide mechanistic support for the role of liver KCs and LSECs in Ag-specific tolerance for a biomaterial platform that is currently being evaluated in clinical trials.
Collapse
Affiliation(s)
- Liam M Casey
- Department of Chemical Engineering, University of Michigan, 2300 Hayward Avenue, Ann Arbor, MI, 48105, USA
| | - Kevin R Hughes
- Department of Biomedical Engineering, University of Michigan, 1119 Carl A. Gerstacker Building, 2200 Bonisteel Boulevard, Ann Arbor, MI, 48109, USA
| | - Michael N Saunders
- Department of Biomedical Engineering, University of Michigan, 1119 Carl A. Gerstacker Building, 2200 Bonisteel Boulevard, Ann Arbor, MI, 48109, USA; Medical Scientist Training Program, University of Michigan, 1135 Catherine St., 2965 Taubman Health Sciences Library, Ann Arbor, MI, 48109, USA
| | - Stephen D Miller
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, 6-713 Tarry Building, 303 E. Chicago Avenue, Chicago, IL, 60611, USA; Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, 60208, USA; The Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, 60611, USA
| | - Ryan M Pearson
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 N. Pine Street, Baltimore, MD, 21201, USA; Department of Microbiology and Immunology, University of Maryland School of Medicine, 685 W. Baltimore Street, Baltimore, MD, 21201, USA; Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, 22 S. Greene Street, Baltimore, MD, 21201, USA.
| | - Lonnie D Shea
- Department of Chemical Engineering, University of Michigan, 2300 Hayward Avenue, Ann Arbor, MI, 48105, USA; Department of Biomedical Engineering, University of Michigan, 1119 Carl A. Gerstacker Building, 2200 Bonisteel Boulevard, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
10
|
Sato N, Marubashi S. Induction of Immune Tolerance in Islet Transplantation Using Apoptotic Donor Leukocytes. J Clin Med 2021; 10:5306. [PMID: 34830586 PMCID: PMC8625503 DOI: 10.3390/jcm10225306] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 10/31/2021] [Accepted: 11/10/2021] [Indexed: 11/17/2022] Open
Abstract
Allogeneic islet transplantation has become an effective treatment option for severe Type 1 diabetes with intractable impaired awareness due to hypoglycemic events. Although current immunosuppressive protocols effectively prevent the acute rejection associated with initial T cell activation in recipients, chronic rejection has remained an obstacle for achieving long-term allogeneic islet engraftment. The development of donor-specific immune tolerance to the allograft is the ultimate goal given its potential ability to overcome chronic rejection and disregard the need for maintenance immunosuppression, which may be toxic to islet grafts. Recently, a breakthrough in tolerance induction during allogeneic islet transplantation using apoptotic donor lymphocytes (ADLs) in a non-human primate model had been reported. Several studies have suggested that the clonal depletion, anergy, and expansion of the antigen-specific regulatory immune network are the mechanisms for donor-specific tolerance with ADLs, which act synergistically to induce robust transplant tolerance. This achievement represents a huge step forward toward the clinical application of immune tolerance induction. We herein summarize the reported operational induction therapies in islet transplantation using the ADLs. Moreover, a few obstacles for the engraftment of transplanted islets, such as islet immunogenicity and instant blood-mediated response, which need to be resolved in the future, are also discussed.
Collapse
Affiliation(s)
| | - Shigeru Marubashi
- Department of Hepato–Biliary–Pancreatic and Transplant Surgery, Fukushima Medical University, Hikagigaoka-1, Fukushima 960-1295, Japan;
| |
Collapse
|
11
|
Emerson AE, Slaby EM, Hiremath SC, Weaver JD. Biomaterial-based approaches to engineering immune tolerance. Biomater Sci 2021; 8:7014-7032. [PMID: 33179649 DOI: 10.1039/d0bm01171a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The development of biomaterial-based therapeutics to induce immune tolerance holds great promise for the treatment of autoimmune diseases, allergy, and graft rejection in transplantation. Historical approaches to treat these immunological challenges have primarily relied on systemic delivery of broadly-acting immunosuppressive agents that confer undesirable, off-target effects. The evolution and expansion of biomaterial platforms has proven to be a powerful tool in engineering immunotherapeutics and enabled a great diversity of novel and targeted approaches in engineering immune tolerance, with the potential to eliminate side effects associated with systemic, non-specific immunosuppressive approaches. In this review, we summarize the technological advances within three broad biomaterials-based strategies to engineering immune tolerance: nonspecific tolerogenic agent delivery, antigen-specific tolerogenic therapy, and the emergent area of tolerogenic cell therapy.
Collapse
Affiliation(s)
- Amy E Emerson
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA.
| | | | | | | |
Collapse
|
12
|
Sousa AR, Mano JF, Oliveira MB. Engineering Strategies for Allogeneic Solid Tissue Acceptance. Trends Mol Med 2021; 27:572-587. [PMID: 33865718 DOI: 10.1016/j.molmed.2021.03.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 03/05/2021] [Accepted: 03/12/2021] [Indexed: 10/21/2022]
Abstract
Advances in allogeneic transplantation of solid organs and tissues depend on our understanding of mechanisms that mediate the prevention of graft rejection. For the past decades, clinical practice has established guidelines to prevent allograft rejection, which mostly rely on the intake of nontargeted immunosuppressants as the gold standard. However, such lifelong regimens have been reported to trigger severe morbidities and commonly fail in preventing late allograft loss. In this review, the biology of allogeneic rejection and self-tolerance is analyzed, as well as the mechanisms of cellular-based therapeutics driving suppression and/or tolerance. Bioinspired engineering strategies that take advantage of cells, biomaterials, or combinations thereof to prevent allograft rejection are addressed, as well as biological mechanisms that drive their efficacy.
Collapse
Affiliation(s)
- Ana Rita Sousa
- Department of Chemistry, CICECO - Aveiro Institute of Materials, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - João F Mano
- Department of Chemistry, CICECO - Aveiro Institute of Materials, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - Mariana B Oliveira
- Department of Chemistry, CICECO - Aveiro Institute of Materials, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| |
Collapse
|
13
|
Husain I, Luo X. Apoptotic Donor Cells in Transplantation. Front Immunol 2021; 12:626840. [PMID: 33717145 PMCID: PMC7947657 DOI: 10.3389/fimmu.2021.626840] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 01/18/2021] [Indexed: 12/31/2022] Open
Abstract
Despite significant advances in prevention and treatment of transplant rejection with immunosuppressive medications, we continue to face challenges of long-term graft survival, detrimental medication side effects to both the recipient and transplanted organ together with risks for opportunistic infections. Transplantation tolerance has so far only been achieved through hematopoietic chimerism, which carries with it a serious and life-threatening risk of graft versus host disease, along with variability in persistence of chimerism and uncertainty of sustained tolerance. More recently, numerous in vitro and in vivo studies have explored the therapeutic potential of silent clearance of apoptotic cells which have been well known to aid in maintaining peripheral tolerance to self. Apoptotic cells from a donor not only have the ability of down regulating the immune response, but also are a way of providing donor antigens to recipient antigen-presenting-cells that can then promote donor-specific peripheral tolerance. Herein, we review both laboratory and clinical evidence that support the utility of apoptotic cell-based therapies in prevention and treatment of graft versus host disease and transplant rejection along with induction of donor-specific tolerance in solid organ transplantation. We have highlighted the potential limitations and challenges of this apoptotic donor cell-based therapy together with ongoing advancements and attempts made to overcome them.
Collapse
Affiliation(s)
- Irma Husain
- Department of Medicine, Duke University, Durham, NC, United States
| | - Xunrong Luo
- Department of Medicine, Duke University, Durham, NC, United States
| |
Collapse
|
14
|
Yu S, Dangi A, Burnette M, Abecassis MM, Thorp EB, Luo X. Acute murine cytomegalovirus disrupts established transplantation tolerance and causes recipient allo-sensitization. Am J Transplant 2021; 21:515-524. [PMID: 32659030 PMCID: PMC7855505 DOI: 10.1111/ajt.16197] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/22/2020] [Accepted: 06/29/2020] [Indexed: 01/25/2023]
Abstract
We have previously shown that acute cytomegalovirus (CMV) infection disrupts the induction of transplantation tolerance. However, what impact acute CMV infection would have on the maintenance of established tolerance and on subsequent recipient allo-sensitization is a clinically important unanswered question. Here we used an allogeneic murine islet transplantation tolerance model to examine the impact of acute CMV infection on: (a) disruption of established transplantation tolerance during tolerance maintenance; and (b) the possibility of recipient allo-sensitization by CMV-mediated disruption of stable tolerance. We demonstrated that acute CMV infection abrogated transplantation tolerance during the maintenance stage in 50%-60% recipients. We further demonstrated that acute CMV infection-mediated tolerance disruption led to recipient allo-sensitization by reverting the tolerant state of allo-specific T cells and promoting their differentiation to allo-specific memory cells. Consequently, a second same-donor islet allograft was rejected in an accelerated fashion by these recipients. Our study therefore supports close monitoring for allo-sensitization in previously tolerant transplant recipients in whom tolerance maintenance is disrupted by an episode of acute CMV infection.
Collapse
Affiliation(s)
- Shuangjin Yu
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, North Carolina,Division of Organ transplantation, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Anil Dangi
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, North Carolina
| | - Melanie Burnette
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, North Carolina
| | | | - Edward B. Thorp
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Xunrong Luo
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, North Carolina,Duke Transplant Center, Duke University School of Medicine, Durham, North Carolina
| |
Collapse
|
15
|
Clough DW, King JL, Li F, Shea LD. Integration of Islet/Beta-Cell Transplants with Host Tissue Using Biomaterial Platforms. Endocrinology 2020; 161:bqaa156. [PMID: 32894299 PMCID: PMC8253249 DOI: 10.1210/endocr/bqaa156] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 08/27/2020] [Indexed: 12/30/2022]
Abstract
Cell-based therapies are emerging for type I diabetes mellitus (T1D), an autoimmune disease characterized by the destruction of insulin-producing pancreatic β-cells, as a means to provide long-term restoration of glycemic control. Biomaterial scaffolds provide an opportunity to enhance the manufacturing and transplantation of islets or stem cell-derived β-cells. In contrast to encapsulation strategies that prevent host contact with the graft, recent approaches aim to integrate the transplant with the host to facilitate glucose sensing and insulin distribution, while also needing to modulate the immune response. Scaffolds can provide a supportive niche for cells either during the manufacturing process or following transplantation at extrahepatic sites. Scaffolds are being functionalized to deliver oxygen, angiogenic, anti-inflammatory, or trophic factors, and may facilitate cotransplantation of cells that can enhance engraftment or modulate immune responses. This local engineering of the transplant environment can complement systemic approaches for maximizing β-cell function or modulating immune responses leading to rejection. This review discusses the various scaffold platforms and design parameters that have been identified for the manufacture of human pluripotent stem cell-derived β-cells, and the transplantation of islets/β-cells to maintain normal blood glucose levels.
Collapse
Affiliation(s)
- Daniel W Clough
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan
| | - Jessica L King
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan
| | - Feiran Li
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan
| | - Lonnie D Shea
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
16
|
Dangi A, Natesh NR, Husain I, Ji Z, Barisoni L, Kwun J, Shen X, Thorp EB, Luo X. Single cell transcriptomics of mouse kidney transplants reveals a myeloid cell pathway for transplant rejection. JCI Insight 2020; 5:141321. [PMID: 32970632 PMCID: PMC7605544 DOI: 10.1172/jci.insight.141321] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 09/17/2020] [Indexed: 12/20/2022] Open
Abstract
Myeloid cells are increasingly recognized as major players in transplant rejection. Here, we used a murine kidney transplantation model and single cell transcriptomics to dissect the contribution of myeloid cell subsets and their potential signaling pathways to kidney transplant rejection. Using a variety of bioinformatic techniques, including machine learning, we demonstrate that kidney allograft–infiltrating myeloid cells followed a trajectory of differentiation from monocytes to proinflammatory macrophages, and they exhibited distinct interactions with kidney allograft parenchymal cells. While this process correlated with a unique pattern of myeloid cell transcripts, a top gene identified was Axl, a member of the receptor tyrosine kinase family Tyro3/Axl/Mertk (TAM). Using kidney transplant recipients with Axl gene deficiency, we further demonstrate that Axl augmented intragraft differentiation of proinflammatory macrophages, likely via its effect on the transcription factor Cebpb. This, in turn, promoted intragraft recruitment, differentiation, and proliferation of donor-specific T cells, and it enhanced early allograft inflammation evidenced by histology. We conclude that myeloid cell Axl expression identified by single cell transcriptomics of kidney allografts in our study plays a major role in promoting intragraft myeloid cell and T cell differentiation, and it presents a potentially novel therapeutic target for controlling kidney allograft rejection and improving kidney allograft survival. In a murine model of allogeneic kidney transplantation, single-cell transcriptomics identifies that myeloid cell Axl expression promotes allograft rejection by inducing inflammatory macrophage differentiation.
Collapse
Affiliation(s)
- Anil Dangi
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
| | - Naveen R Natesh
- Department of Biomedical Engineering, Duke University Pratt School of Engineering, Durham, North Carolina, USA
| | - Irma Husain
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
| | - Zhicheng Ji
- Department of Biostatistics & Bioinformatics
| | | | - Jean Kwun
- Department of Surgery, and.,Duke Transplant Center, Duke University School of Medicine, Durham, North Carolina, USA
| | - Xiling Shen
- Department of Biomedical Engineering, Duke University Pratt School of Engineering, Durham, North Carolina, USA
| | - Edward B Thorp
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Xunrong Luo
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA.,Duke Transplant Center, Duke University School of Medicine, Durham, North Carolina, USA
| |
Collapse
|
17
|
Dangi A, Yu S, Lee FT, Burnette M, Knechtle S, Kwun J, Luo X. Donor apoptotic cell-based therapy for effective inhibition of donor-specific memory T and B cells to promote long-term allograft survival in allosensitized recipients. Am J Transplant 2020; 20:2728-2739. [PMID: 32275799 PMCID: PMC7896418 DOI: 10.1111/ajt.15878] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 03/12/2020] [Accepted: 03/18/2020] [Indexed: 01/25/2023]
Abstract
Allosensitization constitutes a major barrier in transplantation. Preexisting donor-reactive memory T and B cells and preformed donor-specific antibodies (DSAs) have all been implicated in accelerated allograft rejection in sensitized recipients. Here, we employ a sensitized murine model of islet transplantation to test strategies that promote long-term immunosuppression-free allograft survival. We demonstrate that donor-specific memory T and B cells can be effectively inhibited by peritransplant infusions of donor apoptotic cells in combination with anti-CD40L and rapamycin, and this treatment leads to significant prolongation of islet allograft survival in allosensitized recipients. We further demonstrate that late graft rejection in recipients treated with this regimen is associated with a breakthrough of B cells and their aggressive graft infiltration. Consequently, additional posttransplant B cell depletion effectively prevents late rejection and promotes permanent acceptance of islet allografts. In contrast, persistent low levels of DSAs do not seem to impair graft outcome in these recipients. We propose that B cells contribute to late rejection as antigen-presenting cells for intragraft memory T cell expansion but not to alloantibody production and that a therapeutic strategy combining donor apoptotic cells, anti-CD40L, and rapamycin effectively inhibits proinflammatory B cells and promotes long-term islet allograft survival in such recipients.
Collapse
Affiliation(s)
- Anil Dangi
- Division of Nephrology, Department of Medicine, Duke University Medical Center, Durham, North Carolina
| | - Shuangjin Yu
- Division of Nephrology, Department of Medicine, Duke University Medical Center, Durham, North Carolina
| | - Frances T. Lee
- Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Melanie Burnette
- Division of Nephrology, Department of Medicine, Duke University Medical Center, Durham, North Carolina
| | - Stuart Knechtle
- Department of Surgery, Duke University Medical Center, Durham, North Carolina,Duke Transplant Center, Duke University Medical Center, Durham, North Carolina
| | - Jean Kwun
- Department of Surgery, Duke University Medical Center, Durham, North Carolina,Duke Transplant Center, Duke University Medical Center, Durham, North Carolina
| | - Xunrong Luo
- Division of Nephrology, Department of Medicine, Duke University Medical Center, Durham, North Carolina,Duke Transplant Center, Duke University Medical Center, Durham, North Carolina
| |
Collapse
|
18
|
Donor myeloid derived suppressor cells (MDSCs) prolong allogeneic cardiac graft survival through programming of recipient myeloid cells in vivo. Sci Rep 2020; 10:14249. [PMID: 32859934 PMCID: PMC7455707 DOI: 10.1038/s41598-020-71289-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 08/04/2020] [Indexed: 01/16/2023] Open
Abstract
Solid organ transplantation is a lifesaving therapy for patients with end-organ disease. Current immunosuppression protocols are not designed to target antigen-specific alloimmunity and are uncapable of preventing chronic allograft injury. As myeloid-derived suppressor cells (MDSCs) are potent immunoregulatory cells, we tested whether donor-derived MDSCs can protect heart transplant allografts in an antigen-specific manner. C57BL/6 (H2Kb, I-Ab) recipients pre-treated with BALB/c MDSCs were transplanted with either donor-type (BALB/c, H2Kd, I-Ad) or third-party (C3H, H2Kk, I-Ak) cardiac grafts. Spleens and allografts from C57BL/6 recipients were harvested for immune phenotyping, transcriptomic profiling and functional assays. Single injection of donor-derived MDSCs significantly prolonged the fully MHC mismatched allogeneic cardiac graft survival in a donor-specific fashion. Transcriptomic analysis of allografts harvested from donor-derived MDSCs treated recipients showed down-regulated proinflammatory cytokines. Immune phenotyping showed that the donor MDSCs administration suppressed effector T cells in recipients. Interestingly, significant increase in recipient endogenous CD11b+Gr1+ MDSC population was observed in the group treated with donor-derived MDSCs compared to the control groups. Depletion of this endogenous MDSCs with anti-Gr1 antibody reversed donor MDSCs-mediated allograft protection. Furthermore, we observed that the allogeneic mixed lymphocytes reaction was suppressed in the presence of CD11b+Gr1+ MDSCs in a donor-specific manner. Donor-derived MDSCs prolong cardiac allograft survival in a donor-specific manner via induction of recipient's endogenous MDSCs.
Collapse
|
19
|
Shah S, DeBerge M, Iovane A, Yan S, Qiu L, Wang JJ, Kanwar YS, Hummel M, Zhang ZJ, Abecassis MM, Luo X, Thorp EB. MCMV Dissemination from Latently-Infected Allografts Following Transplantation into Pre-Tolerized Recipients. Pathogens 2020; 9:pathogens9080607. [PMID: 32722544 PMCID: PMC7460028 DOI: 10.3390/pathogens9080607] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 07/22/2020] [Accepted: 07/24/2020] [Indexed: 02/06/2023] Open
Abstract
Transplantation tolerance is achieved when recipients are unresponsive to donor alloantigen yet mobilize against third-party antigens, including virus. After transplantation, cytomegalovirus (CMV) reactivation in latently-infected transplants reduces allograft viability. To determine if pre-tolerized recipients are resistant to viral dissemination in this setting, we transfused chemically-fixed donor splenocytes (1-ethyl-3- (3′-dimethyl-aminopropyl)-carbo-diimide (ECDI)-treated splenocytes (ECDIsp)) to induce donor antigen tolerance without immunosuppression. In parallel, we implanted donor islet cells to validate operational tolerance. These pre-tolerized recipients were implanted with murine CMV (MCMV) latently-infected donor kidneys (a validated model of CMV latency) to monitor graft inflammation and viral dissemination. Our results indicate that tolerance to donor islets was sustained in recipients after implantation of donor kidneys. In addition, kidney allografts implanted after ECDIsp and islet implantation exhibited low levels of fibrosis and tubulitis. In contrast, kidney cellular and innate immune infiltrates trended higher in the CMV group and exhibited increased markers of CD8+ T cell activation. Tolerance induction was unable to prevent increases in MCMV-specific CD8+ T cells or dissemination of viral IE-1 DNA. Our data suggest that latently-infected allografts are inherently more susceptible to inflammation that is associated with viral dissemination in pre-tolerized recipients. Thus, CMV latently-infected allografts require enhanced strategies to protect allograft integrity and viral spread.
Collapse
Affiliation(s)
- Sahil Shah
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA;
| | - Matthew DeBerge
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; (M.D.); (Y.S.K.)
| | - Andre Iovane
- Comprehensive Transplant Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; (A.I.); (S.Y.); (L.Q.); (J.-J.W.); (M.H.); (Z.J.Z.)
| | - Shixian Yan
- Comprehensive Transplant Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; (A.I.); (S.Y.); (L.Q.); (J.-J.W.); (M.H.); (Z.J.Z.)
| | - Longhui Qiu
- Comprehensive Transplant Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; (A.I.); (S.Y.); (L.Q.); (J.-J.W.); (M.H.); (Z.J.Z.)
| | - Jiao-Jing Wang
- Comprehensive Transplant Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; (A.I.); (S.Y.); (L.Q.); (J.-J.W.); (M.H.); (Z.J.Z.)
| | - Yashpal S. Kanwar
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; (M.D.); (Y.S.K.)
| | - Mary Hummel
- Comprehensive Transplant Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; (A.I.); (S.Y.); (L.Q.); (J.-J.W.); (M.H.); (Z.J.Z.)
- Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Zheng J. Zhang
- Comprehensive Transplant Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; (A.I.); (S.Y.); (L.Q.); (J.-J.W.); (M.H.); (Z.J.Z.)
- Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | | | - Xunrong Luo
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, NC 27705, USA;
| | - Edward B. Thorp
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; (M.D.); (Y.S.K.)
- Comprehensive Transplant Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; (A.I.); (S.Y.); (L.Q.); (J.-J.W.); (M.H.); (Z.J.Z.)
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Correspondence: ; Tel.: +1-312-503-4309
| |
Collapse
|
20
|
Lee FT, Dangi A, Shah S, Burnette M, Yang YG, Kirk AD, Hering BJ, Miller SD, Luo X. Rejection of xenogeneic porcine islets in humanized mice is characterized by graft-infiltrating Th17 cells and activated B cells. Am J Transplant 2020; 20:1538-1550. [PMID: 31883299 PMCID: PMC7286695 DOI: 10.1111/ajt.15763] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 11/18/2019] [Accepted: 12/18/2019] [Indexed: 01/25/2023]
Abstract
Xenogeneic porcine islet transplantation is a promising potential therapy for type 1 diabetes (T1D). Understanding human immune responses against porcine islets is crucial for the design of optimal immunomodulatory regimens for effective control of xenogeneic rejection of porcine islets in humans. Humanized mice are a valuable tool for studying human immune responses and therefore present an attractive alternative to human subject research. Here, by using a pig-to-humanized mouse model of xenogeneic islet transplantation, we described the human immune response to transplanted porcine islets, a process characterized by dense islet xenograft infiltration of human CD45+ cells comprising activated human B cells, CD4+ CD44+ IL-17+ Th17 cells, and CD68+ macrophages. In addition, we tested an experimental immunomodulatory regimen in promoting long-term islet xenograft survival, a triple therapy consisting of donor splenocytes treated with ethylcarbodiimide (ECDI-SP), and peri-transplant rituximab and rapamycin. We observed that the triple therapy effectively inhibited graft infiltration of T and B cells as well as macrophages, promoted transitional B cells both in the periphery and in the islet xenografts, and provided a superior islet xenograft protection. Our study therefore indicates an advantage of donor ECDI-SP treatment in controlling human immune cells in promoting long-term islet xenograft survival.
Collapse
Affiliation(s)
- Frances T. Lee
- Comprehensive Transplant Center, Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Anil Dangi
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, North Carolina
| | - Sahil Shah
- Department of Biomedical Engineering, Northwestern University, Evanston, Ilinois
| | - Melanie Burnette
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, North Carolina
| | - Yong-Guang Yang
- Department of Medicine, Columbia University Medical Center, New York, New York
| | - Allan D. Kirk
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina
| | - Bernhard J. Hering
- Schulze Diabetes Institute, University of Minnesota, Minneapolis, Minnesota
| | - Stephen D. Miller
- Department of Microbiology-Immunology, Northwestern University, Chicago, Illinois
| | - Xunrong Luo
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, North Carolina,Department of Surgery, Duke University School of Medicine, Durham, North Carolina
| |
Collapse
|
21
|
Pan W, Zheng X, Chen G, Su L, Luo S, Wang W, Ye S, Weng J, Min Y. Nanotechnology's application in Type 1 diabetes. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2020; 12:e1645. [PMID: 32558337 DOI: 10.1002/wnan.1645] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/17/2020] [Accepted: 04/17/2020] [Indexed: 12/16/2022]
Abstract
Type 1 diabetes mellitus (T1D) is an autoimmune disease caused by the immune system attacking islet cells. T1D, with a long prediabetes period, and the incidence of T1D increases with age during childhood and peaks at 10-14 years. And once it gets overt, it requires lifelong insulin replace treatment. Therefore, the diagnosis of early-stage T1D and effective treatments are important for the management of T1D patients. The imaging methods, such as magnetic resonance imaging (MRI) and so on, were applied in diagnosis of the early stage T1D and its development tracking. The addition of nanomaterials, especially in MRI, can improve the quality of T1D imaging for the diagnosis of T1D at early stage and cause less harm to human body. Meantime, among various treatment options, islet transplantation and immunotherapy are promising, effective, and less independent on insulin. The addition of nanotechnology can effectively reduce the attack of the immune system on drugs and cells, making the therapeutic drug more targeted in the body and prolonging the action time between drugs and cells, thus its addition makes these therapy safer and more efficient. In this review, we attempt to summarize the recent advances in the development of nanotechnology advances of T1D including using nanomaterials for the diagnosis and immunological imaging of T1D, protecting the transplanted islet cells from immune system attack, and delivering relevant molecules to targeted immunocytes. This article is categorized under: Diagnostic Tools > in vivo Nanodiagnostics and Imaging Therapeutic Approaches and Drug Discovery > Emerging Technologies Implantable Materials and Surgical Technologies > Nanotechnology in Tissue Repair and Replacement.
Collapse
Affiliation(s)
- Wen Pan
- Department of Endocrinology, The First Affiliated Hospital of USTC, Anhui Provincial Hospital, University of Science and Technology of China, Hefei, China.,CAS Key Lab of Soft Matter Chemistry, University of Science and Technology of China, Hefei, China.,Department of Chemistry, University of Science and Technology of China, Hefei, China
| | - Xueying Zheng
- Department of Endocrinology, The First Affiliated Hospital of USTC, Anhui Provincial Hospital, University of Science and Technology of China, Hefei, China
| | - Guiyuan Chen
- Department of Endocrinology, The First Affiliated Hospital of USTC, Anhui Provincial Hospital, University of Science and Technology of China, Hefei, China.,CAS Key Lab of Soft Matter Chemistry, University of Science and Technology of China, Hefei, China.,Department of Chemistry, University of Science and Technology of China, Hefei, China
| | - Lanhong Su
- Department of Endocrinology, The First Affiliated Hospital of USTC, Anhui Provincial Hospital, University of Science and Technology of China, Hefei, China.,CAS Key Lab of Soft Matter Chemistry, University of Science and Technology of China, Hefei, China.,Department of Chemistry, University of Science and Technology of China, Hefei, China
| | - Sihui Luo
- Department of Endocrinology, The First Affiliated Hospital of USTC, Anhui Provincial Hospital, University of Science and Technology of China, Hefei, China
| | - Wei Wang
- Department of Endocrinology, The First Affiliated Hospital of USTC, Anhui Provincial Hospital, University of Science and Technology of China, Hefei, China
| | - Shandong Ye
- Department of Endocrinology, The First Affiliated Hospital of USTC, Anhui Provincial Hospital, University of Science and Technology of China, Hefei, China
| | - Jianping Weng
- Department of Endocrinology, The First Affiliated Hospital of USTC, Anhui Provincial Hospital, University of Science and Technology of China, Hefei, China.,Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yuanzeng Min
- Department of Endocrinology, The First Affiliated Hospital of USTC, Anhui Provincial Hospital, University of Science and Technology of China, Hefei, China.,CAS Key Lab of Soft Matter Chemistry, University of Science and Technology of China, Hefei, China.,Department of Chemistry, University of Science and Technology of China, Hefei, China.,Department of Bio-X Interdisciplinary Science at Hefei National Laboratory (HFNL) for Physical Science at the Microscale, University of Science and Technology of China, Hefei, China
| |
Collapse
|
22
|
Schroth S, Glinton K, Luo X, Thorp EB. Innate Functions of Dendritic Cell Subsets in Cardiac Allograft Tolerance. Front Immunol 2020; 11:869. [PMID: 32431717 PMCID: PMC7214785 DOI: 10.3389/fimmu.2020.00869] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 04/15/2020] [Indexed: 12/13/2022] Open
Abstract
Survival rates after heart transplant have significantly improved over the last decade. Nevertheless, long-term allograft viability after 10 years remains poor and the sequelae of transplant-associated immunosuppression increases morbidity. Although several studies have implicated roles for lymphocyte-mediated rejection, less is understood with respect to non-major histocompatibility, and innate immune reactivity, which influence graft viability. As immature and mature dendritic cells (DCs) engage in both Major Histocompatibility Complex (MHC)-dependent and MHC-independent immune responses, these cells are at the crossroads of therapeutic strategies that seek to achieve both allograft tolerance and suppression of innate immunity to the allograft. Here we review emerging roles of DC subsets and their molecular protagonists during allograft tolerance and allograft rejection, with a focus on cardiac transplant. New insight into emerging DC subsets in transplant will inform novel strategies for operational tolerance and amelioration of cardiac vasculopathy.
Collapse
Affiliation(s)
- Samantha Schroth
- Department of Pathology and Feinberg Cardiovascular and Renal Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Kristofor Glinton
- Department of Pathology and Feinberg Cardiovascular and Renal Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Xunrong Luo
- Department of Medicine, School of Medicine, Duke University, Durham, NC, United States
| | - Edward B. Thorp
- Department of Pathology and Feinberg Cardiovascular and Renal Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| |
Collapse
|
23
|
Moving Toward Transplant Tolerance: Is Targeting Donor Antigen-presenting Cells the Key? Transplantation 2020; 104:664-665. [PMID: 32224810 DOI: 10.1097/tp.0000000000003042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
24
|
Kulkarni HS, Scozzi D, Gelman AE. Recent advances into the role of pattern recognition receptors in transplantation. Cell Immunol 2020; 351:104088. [PMID: 32183988 DOI: 10.1016/j.cellimm.2020.104088] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 03/05/2020] [Accepted: 03/06/2020] [Indexed: 12/19/2022]
Abstract
Pattern recognition receptors (PRRs) are germline-encoded sensors best characterized for their critical role in host defense. However, there is accumulating evidence that organ transplantation induces the release or display of molecular patterns of cellular injury and death that trigger PRR-mediated inflammatory responses. There are also new insights that indicate PRRs are able to distinguish between self and non-self, suggesting the existence of non-clonal mechanisms of allorecognition. Collectively, these reports have spurred considerable interest into whether PRRs or their ligands can be targeted to promote transplant survival. This review examines the mounting evidence that PRRs play in transplant-mediated inflammation. Given the large number of PRRs, we will focus on members from four families: the complement system, toll-like receptors, the formylated peptide receptor, and scavenger receptors through examining reports of their activity in experimental models of cellular and solid organ transplantation as well as in the clinical setting.
Collapse
Affiliation(s)
- Hrishikesh S Kulkarni
- Department of Medicine, Division of Pulmonary & Critical Care Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Davide Scozzi
- Department of Surgery, Division of Cardiothoracic Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Andrew E Gelman
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA; Department of Surgery, Division of Cardiothoracic Surgery, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
25
|
Dangi A, Yu S, Lee FT, Burnette M, Wang JJ, Kanwar YS, Zhang ZJ, Abecassis M, Thorp EB, Luo X. Murine cytomegalovirus dissemination but not reactivation in donor-positive/recipient-negative allogeneic kidney transplantation can be effectively prevented by transplant immune tolerance. Kidney Int 2020; 98:147-158. [PMID: 32471635 PMCID: PMC7311252 DOI: 10.1016/j.kint.2020.01.034] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 12/17/2019] [Accepted: 01/24/2020] [Indexed: 12/12/2022]
Abstract
Cytomegalovirus (CMV) reactivation from latently infected donor organs post-transplantation and its dissemination cause significant comorbidities in transplant recipients. Transplant-induced inflammation combined with chronic immunosuppression has been thought to provoke CMV reactivation and dissemination, although sequential events in this process have not been studied. Here, we investigated this process in a high-risk donor CMV-positive to recipient CMV-negative allogeneic murine kidney transplantation model. Recipients were either treated with indefinite immunosuppression or tolerized in a donor-specific manner. Untreated recipients served as controls. Kidney allografts from both immunosuppressed and tolerized recipients showed minimal alloimmunity-mediated graft inflammation and normal function for up to day 60 post-transplantation. However, despite the absence of such inflammation in the immunosuppressed and tolerized groups, CMV reactivation in the donor positive kidney allograft was readily observed. Interestingly, subsequent CMV replication and dissemination to distant organs only occurred in immunosuppressed recipients in which CMV-specific CD8 T cells were functionally impaired; whereas in tolerized recipients, host anti-viral immunity was well-preserved and CMV dissemination was effectively prevented. Thus, our studies uncoupled CMV reactivation from its dissemination, and underscore the potential role of robust transplantation tolerance in preventing CMV diseases following allogeneic kidney transplantation.
Collapse
Affiliation(s)
- Anil Dangi
- Nephrology, Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA
| | - Shuangjin Yu
- Nephrology, Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA; Division of Organ Transplantation, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Frances T Lee
- Comprehensive Transplant Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Melanie Burnette
- Nephrology, Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA
| | - Jiao-Jing Wang
- Comprehensive Transplant Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Yashpal S Kanwar
- Comprehensive Transplant Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA; Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA; Nephrology and Hypertension, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Zheng J Zhang
- Comprehensive Transplant Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Michael Abecassis
- Comprehensive Transplant Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Edward B Thorp
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Xunrong Luo
- Nephrology, Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA; Duke Transplant Center, Duke University Medical Center, Durham, North Carolina, USA.
| |
Collapse
|
26
|
Canavero S, Ren X. Advancing the technology for head transplants: From immunology to peripheral nerve fusion. Surg Neurol Int 2019; 10:240. [PMID: 31893141 PMCID: PMC6911682 DOI: 10.25259/sni_495_2019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 11/21/2019] [Indexed: 12/15/2022] Open
|
27
|
Yu S, Su C, Luo X. Impact of infection on transplantation tolerance. Immunol Rev 2019; 292:243-263. [PMID: 31538351 PMCID: PMC6961566 DOI: 10.1111/imr.12803] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 08/29/2019] [Accepted: 09/03/2019] [Indexed: 12/12/2022]
Abstract
Allograft tolerance is the ultimate goal of organ transplantation. Current strategies for tolerance induction mainly focus on inhibiting alloreactive T cells while promoting regulatory immune cells. Pathogenic infections may have direct impact on both effector and regulatory cell populations, therefore can alter host susceptibility to transplantation tolerance induction as well as impair the quality and stability of tolerance once induced. In this review, we will discuss existing data demonstrating the effect of infections on transplantation tolerance, with particular emphasis on the role of the stage of infection (acute, chronic, or latent) and the stage of tolerance (induction or maintenance) in this infection-tolerance interaction. While the deleterious effect of acute infection on tolerance is mainly driven by proinflammatory cytokines induced shortly after the infection, chronic infection may generate exhausted T cells that could in fact facilitate transplantation tolerance. In addition to pathogenic infections, commensal intestinal microbiota also has numerous significant immunomodulatory effects that can shape the host alloimmunity following transplantation. A comprehensive understanding of these mechanisms is crucial for the development of therapeutic strategies for robustly inducing and stably maintaining transplantation tolerance while preserving host anti-pathogen immunity in clinically relevant scenarios.
Collapse
Affiliation(s)
- Shuangjin Yu
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, NC 27710, United States
- Division of Organ transplantation, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Chang Su
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, NC 27710, United States
| | - Xunrong Luo
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, NC 27710, United States
- Duke Transplant Center, Duke University School of Medicine, Durham, NC 27710, United States
| |
Collapse
|
28
|
Zhou B, Zhang Y, Zhang D, Zhang Y, Xie J, Zhang X, Ding J, Su Y, Guo S, Zhuang R. ECDI-fixed donor splenocytes prolong skin allograft survival by promoting M2 macrophage polarization and inducing regulatory T cells. FASEB Bioadv 2019; 1:706-718. [PMID: 32123816 PMCID: PMC6996306 DOI: 10.1096/fba.2019-00029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 03/29/2019] [Accepted: 09/30/2019] [Indexed: 11/27/2022] Open
Abstract
Rejection is a common complication of allogeneic tissue transplantation. Fixation of splenocytes (SP) with 1-ethyl-3-(3'-dimethylaminopropyl)-carbodiimide (ECDI) induces immune tolerance in recipients post-transplantation; however, the mechanism underlying this effect remains unclear. Here, we determined the mechanisms of ECDI-fixed donor SP (ECDI-SP) in inducing tolerance in skin allograft transplantation. C57BL/6-recipient mice that received Balb/c full-thickness skin transplants with two infusions of donor-derived ECDI-SP, along with rapamycin showed superior skin allograft survival and lower inflammatory cell infiltration than mice that received rapamycin-only treatment. In ECDI-SP-treated mice, the levels of anti-inflammatory cytokines such as interleukin (IL)-10 in sera were markedly increased, whereas the expression of inflammatory cytokines was significantly suppressed. Splenic macrophages were significantly polarized to the alternative activated macrophage (M2) phenotype, with expansion of CD4+Foxp3+ regulatory T cells (Tregs) in the spleen and draining lymph nodes. Allostimulatory activity of ECDI-SP in vitro and donor-specific ex vivo hyporesponsiveness were observed. C57BL/6 macrophages engulfed allogeneic Balb/c-derived ECDI-SP, polarized to the M2 phenotype, with pronounced cAMP response element-binding (CREB) protein phosphorylation. By facilitating increased IL-10 expression, ECDI-SP induced M2 polarization and Treg production, inhibiting effector T-cell proliferation. Thus, ECDI-SP modulates macrophage M2 polarization by increasing CREB phosphorylation and promoting Treg production to suppress allogeneic skin graft rejection.
Collapse
Affiliation(s)
- Bo Zhou
- Department of ImmunologyFourth Military Medical UniversityXi'anChina
- Department of Plastic and Reconstructive SurgeryXijing HospitalFourth Military Medical UniversityXi'anChina
| | - Yuan Zhang
- Transplant Immunology LaboratoryFourth Military Medical UniversityXi'anChina
| | - Dongliang Zhang
- Department of Plastic and Reconstructive SurgeryXijing HospitalFourth Military Medical UniversityXi'anChina
| | - Yun Zhang
- Department of ImmunologyFourth Military Medical UniversityXi'anChina
| | - Jiangang Xie
- Transplant Immunology LaboratoryFourth Military Medical UniversityXi'anChina
| | - Xuexin Zhang
- Transplant Immunology LaboratoryFourth Military Medical UniversityXi'anChina
| | - Jianke Ding
- Department of Plastic and Reconstructive SurgeryXijing HospitalFourth Military Medical UniversityXi'anChina
| | - Yingjun Su
- Department of Plastic and Reconstructive SurgeryXijing HospitalFourth Military Medical UniversityXi'anChina
| | - Shuzhong Guo
- Department of Plastic and Reconstructive SurgeryXijing HospitalFourth Military Medical UniversityXi'anChina
| | - Ran Zhuang
- Department of ImmunologyFourth Military Medical UniversityXi'anChina
- Transplant Immunology LaboratoryFourth Military Medical UniversityXi'anChina
| |
Collapse
|
29
|
Ethylene carbodiimide-fixed donor splenocytes combined with cordycepin induce long-term protection to mice cardiac allografts. Transpl Immunol 2019; 56:101196. [DOI: 10.1016/j.trim.2019.02.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 02/05/2019] [Accepted: 02/07/2019] [Indexed: 11/17/2022]
|
30
|
Dangi A, Yu S, Luo X. Apoptotic cell-based therapies for promoting transplantation tolerance. Curr Opin Organ Transplant 2019; 23:552-558. [PMID: 30024416 DOI: 10.1097/mot.0000000000000562] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
PURPOSE OF REVIEW This article is aimed to provide readers with an updated review on the applicability, efficacy, and challenges of employing donor apoptotic cell-based therapies to promote transplantation tolerance in various experimental and clinical settings. RECENT FINDINGS Recently, donor apoptotic cell-based therapies have been employed in various models of cell (including pancreatic islets and bone marrow hematopoietic stem cells) and solid organ (heart and kidney) transplantation to promote donor-specific tolerance. Published data, thus far, have revealed a high potential of this approach in inducing robust transplantation tolerance. Recent clinical trials have also underscored the safety and potential efficacy of this approach in alleviating graft-versus-host disease (GVHD) in bone marrow transplantation (BMT). Host factors including prior allo-sensitization and opportunistic infections pose major obstacles in establishing transplantation tolerance employing this strategy. However, emerging data provide strategies for overcoming such obstacles in these clinically relevant settings. SUMMARY Donor apoptotic cell therapy is an emerging strategy in promoting transplantation tolerance, with recent data emphasizing its efficacy and applicability for transplantation tolerance in the clinic.
Collapse
Affiliation(s)
- Anil Dangi
- Center for Kidney Research and Therapeutics, Feinberg Cardiovascular Research Institute.,Division of Nephrology and Hypertension, Department of Medicine
| | - Shuangjin Yu
- Division of Nephrology and Hypertension, Department of Medicine
| | - Xunrong Luo
- Center for Kidney Research and Therapeutics, Feinberg Cardiovascular Research Institute.,Division of Nephrology and Hypertension, Department of Medicine.,Comprehensive Transplant Center, Northwestern University Feinberg School of Medicine, Chicago, Ilinois, USA
| |
Collapse
|
31
|
Singh A, Ramachandran S, Graham ML, Daneshmandi S, Heller D, Suarez-Pinzon WL, Balamurugan AN, Ansite JD, Wilhelm JJ, Yang A, Zhang Y, Palani NP, Abrahante JE, Burlak C, Miller SD, Luo X, Hering BJ. Long-term tolerance of islet allografts in nonhuman primates induced by apoptotic donor leukocytes. Nat Commun 2019; 10:3495. [PMID: 31375697 PMCID: PMC6677762 DOI: 10.1038/s41467-019-11338-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 07/09/2019] [Indexed: 02/06/2023] Open
Abstract
Immune tolerance to allografts has been pursued for decades as an important goal in transplantation. Administration of apoptotic donor splenocytes effectively induces antigen-specific tolerance to allografts in murine studies. Here we show that two peritransplant infusions of apoptotic donor leukocytes under short-term immunotherapy with antagonistic anti-CD40 antibody 2C10R4, rapamycin, soluble tumor necrosis factor receptor and anti-interleukin 6 receptor antibody induce long-term (≥1 year) tolerance to islet allografts in 5 of 5 nonsensitized, MHC class I-disparate, and one MHC class II DRB allele-matched rhesus macaques. Tolerance in our preclinical model is associated with a regulatory network, involving antigen-specific Tr1 cells exhibiting a distinct transcriptome and indirect specificity for matched MHC class II and mismatched class I peptides. Apoptotic donor leukocyte infusions warrant continued investigation as a cellular, nonchimeric and translatable method for inducing antigen-specific tolerance in transplantation. Injection of donor apoptotic cells induces graft tolerance in mice. Here the authors combine this approach with short immunosuppressive therapy to achieve long-term tolerance to allogeneic islets and restoration of normoglycemia in diabetic nonhuman primates, and delineate cellular and molecular correlates of tolerance induction.
Collapse
Affiliation(s)
- Amar Singh
- Schulze Diabetes Institute, Department of Surgery, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Sabarinathan Ramachandran
- Schulze Diabetes Institute, Department of Surgery, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Melanie L Graham
- Preclinical Research Center, Department of Surgery, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Saeed Daneshmandi
- Division of Nephrology and Hypertension, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - David Heller
- Schulze Diabetes Institute, Department of Surgery, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Wilma Lucia Suarez-Pinzon
- Schulze Diabetes Institute, Department of Surgery, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Appakalai N Balamurugan
- Schulze Diabetes Institute, Department of Surgery, University of Minnesota, Minneapolis, MN, 55455, USA.,Center for Cellular Transplantation, Cardiovascular Innovation Institute, Department of Surgery, University of Louisville, Louisville, KY, 40202, USA
| | - Jeffrey D Ansite
- Schulze Diabetes Institute, Department of Surgery, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Joshua J Wilhelm
- Schulze Diabetes Institute, Department of Surgery, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Amy Yang
- Biostatistics Collaboration Center, Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Ying Zhang
- Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Nagendra P Palani
- University of Minnesota Genomics Center, Minneapolis, MN, 55455, USA
| | - Juan E Abrahante
- University of Minnesota Informatics Institute, Minneapolis, MN, 55455, USA
| | - Christopher Burlak
- Schulze Diabetes Institute, Department of Surgery, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Stephen D Miller
- Department of Microbiology-Immunology and Interdepartmental Immunology Center, Northwestern University, Chicago, IL, 60611, USA.
| | - Xunrong Luo
- Division of Nephrology and Hypertension, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA. .,Biostatistics Collaboration Center, Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA. .,Duke Transplant Center, Department of Medicine, Duke University School of Medicine, Durham, NC, 27710, USA.
| | - Bernhard J Hering
- Schulze Diabetes Institute, Department of Surgery, University of Minnesota, Minneapolis, MN, 55455, USA.
| |
Collapse
|
32
|
Fitch Z, Schmitz R, Kwun J, Hering B, Madsen J, Knechtle SJ. Transplant research in nonhuman primates to evaluate clinically relevant immune strategies in organ transplantation. Transplant Rev (Orlando) 2019; 33:115-129. [PMID: 31027947 PMCID: PMC6599548 DOI: 10.1016/j.trre.2019.03.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 03/08/2019] [Accepted: 03/26/2019] [Indexed: 12/27/2022]
Abstract
Research in transplant immunology using non-human primate (NHP) species to evaluate immunologic strategies to prevent rejection and prolong allograft survival has yielded results that have translated successfully into human organ transplant patient management. Other therapies have not proceeded to human translation due to failure in NHP testing, arguably sparing humans the futility and risk of such testing. The NHP transplant models are ethically necessary for drug development in this field and provide the closest analogue to human transplant patients available. The refinement of this resource with respect to colony MHC typing, reagent and assay development, and availability to the research community has greatly enhanced knowledge about transplant immunology and drug development.
Collapse
Affiliation(s)
- Zachary Fitch
- Department of Surgery, Duke Transplant Center, Durham, NC 27710, USA; Center for Transplantation Sciences, Division of Cardiac Surgery, Department of Surgery, Massachusetts General Hospital, White 510c, 55 Fruit Street, Boston, MA, USA
| | - Robin Schmitz
- Department of Surgery, Duke Transplant Center, Durham, NC 27710, USA
| | - Jean Kwun
- Department of Surgery, Duke Transplant Center, Durham, NC 27710, USA
| | - Bernhard Hering
- Schulze Diabetes Institute, Department of Surgery, University of Minnesota, Minneapolis, MN, USA
| | - Joren Madsen
- Department of Surgery, Duke Transplant Center, Durham, NC 27710, USA
| | - Stuart J Knechtle
- Department of Surgery, Duke Transplant Center, Durham, NC 27710, USA.
| |
Collapse
|
33
|
Optimizing PLG nanoparticle-peptide delivery platforms for transplantation tolerance using an allogeneic skin transplant model. Biomaterials 2019; 210:70-82. [PMID: 31077862 DOI: 10.1016/j.biomaterials.2019.04.030] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 04/22/2019] [Accepted: 04/25/2019] [Indexed: 12/19/2022]
Abstract
A robust regimen for inducing allogeneic transplantation tolerance involves pre-emptive recipient treatment with donor splenocytes (SP) rendered apoptotic by 1-ethyl-3-(3'-dimethylaminopropyl)-carbodiimide(ECDI) treatment. However, such a regimen is limited by availability of donor cells, cost of cell procurement, and regulatory hurdles associated with cell-based therapies. Nanoparticles (NP) delivering donor antigens are a promising alternative for promoting transplantation tolerance. Here, we used a B6.C-H-2bm12(bm12) to C57BL/6(B6) skin transplant model involving a defined major histocompatibility antigen mismatch to investigate design parameters of poly(lactide-co-glycolide) (PLG) NPs delivering peptides containing the donor antigen for optimizing skin allograft survival. We showed that an epitope-containing short peptide (P1) was more effective than a longer peptide (P2) at providing graft protection. Importantly, the NP and P1 complex (NP-ECDI-P1) resulted in a significant expansion of graft-infiltrating Tregs. Interestingly, in comparison to donor ECDI-SP that provided indefinite graft protection, NP-ECDI-P1 targeted different splenic phagocytes and skin allografts in these recipients harbored significantly more graft-infiltrating CD8+IFN-γ+ cells. Collectively, the current study provides initial engineering parameters for a cell-free and biocompatible NP-peptide platform for transplant immunoregulation. Moreover, it also provides guidance to future NP engineering endeavors to recapitulate the effects of donor ECDI-SP as a goal for maximizing tolerance efficacy of NP formulations.
Collapse
|
34
|
Zhang L, DeBerge M, Wang J, Dangi A, Zhang X, Schroth S, Zhang Z, Thorp E, Luo X. Receptor tyrosine kinase MerTK suppresses an allogenic type I IFN response to promote transplant tolerance. Am J Transplant 2019; 19:674-685. [PMID: 30133807 PMCID: PMC6393931 DOI: 10.1111/ajt.15087] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 07/27/2018] [Accepted: 08/15/2018] [Indexed: 01/25/2023]
Abstract
Recipient infusion of donor apoptotic cells is an emerging strategy for inducing robust transplantation tolerance. Daily clearance of billions of self-apoptotic cells relies on homeostatic engagement of phagocytic receptors, in particular, receptors of the tyrosine kinase family TAM (Tyro3, Axl, and MerTK), to maintain self-tolerance. However, an outstanding question is if allogeneic apoptotic cells trigger the same receptor system for inducing allogeneic tolerance. Here, we employed allogeneic apoptotic splenocytes and discovered that the efferocytic receptor MerTK on recipient phagocytes is a critical mediator for transplantation tolerance induced by this strategy. Our findings indicate that the tolerogenic properties of allogeneic apoptotic splenocytes require MerTK transmission of intracellular signaling to suppress the production of inflammatory cytokine interferon α (IFN-α). We further demonstrate that MerTK is crucial for subsequent expansion of myeloid-derived suppressor cells and for promoting their immunomodulatory function, including maintaining graft-infiltrating CD4+ CD25+ Foxp3+ regulatory T cells. Consequently, recipient MerTK deficiency resulted in failure of tolerance by donor apoptotic cells, and this failure could be effectively rescued by IFN-α receptor blockade. These findings underscore the importance of the efferocytic receptor MerTK in mediating transplantation tolerance by donor apoptotic cells and implicate MerTK agonism as a promising target for promoting transplantation tolerance.
Collapse
Affiliation(s)
- Lei Zhang
- Center for Kidney Research and Therapeutics, Feinberg
Cardiovascular Research Institute, Northwestern University Feinberg School of
Medicine, Chicago, IL, United States,Northwestern University Feinberg School of Medicine,
Division of Nephrology and Hypertension, Chicago, IL, United States
| | - Mathew DeBerge
- Northwestern University Feinberg School of Medicine,
Department of Pathology & Feinberg Cardiovascular and Renal Research Institute,
Chicago, IL, United States
| | - Jiaojin Wang
- Comprehensive Transplant Center, Northwestern University
Feinberg School of Medicine, Chicago, IL, United States
| | - Anil Dangi
- Center for Kidney Research and Therapeutics, Feinberg
Cardiovascular Research Institute, Northwestern University Feinberg School of
Medicine, Chicago, IL, United States,Northwestern University Feinberg School of Medicine,
Division of Nephrology and Hypertension, Chicago, IL, United States
| | - Xiaomin Zhang
- Comprehensive Transplant Center, Northwestern University
Feinberg School of Medicine, Chicago, IL, United States
| | - Samantha Schroth
- Northwestern University Feinberg School of Medicine,
Department of Pathology & Feinberg Cardiovascular and Renal Research Institute,
Chicago, IL, United States
| | - Zheng Zhang
- Comprehensive Transplant Center, Northwestern University
Feinberg School of Medicine, Chicago, IL, United States
| | - Edward Thorp
- Northwestern University Feinberg School of Medicine,
Department of Pathology & Feinberg Cardiovascular and Renal Research Institute,
Chicago, IL, United States
| | - Xunrong Luo
- Center for Kidney Research and Therapeutics, Feinberg
Cardiovascular Research Institute, Northwestern University Feinberg School of
Medicine, Chicago, IL, United States,Northwestern University Feinberg School of Medicine,
Division of Nephrology and Hypertension, Chicago, IL, United States,Comprehensive Transplant Center, Northwestern University
Feinberg School of Medicine, Chicago, IL, United States
| |
Collapse
|
35
|
Abstract
PURPOSE OF REVIEW To evaluate role of the lymph node in immune regulation and tolerance in transplantation and recent advances in the delivery of antigen and immune modulatory signals to the lymph node. RECENT FINDINGS Lymph nodes are a primary site of immune cell priming, activation, and modulation, and changes within the lymph node microenvironment have the potential to induce specific regulation, suppression, and potentially tolerance. Antigen enters the lymph node either from tissues via lymphatics, from blood via high endothelial venules, or directly via injection. Here we review different techniques and materials to deliver antigen to the lymph node including microparticles or nanoparticles, ex-vivo antigen presenting cell manipulation, and use of receptor conjugation for specific intralymph node targeting locations. SUMMARY The promising results point to powerful techniques to harness the lymph node microenvironment and direct systemic immune regulation. The materials, techniques, and approaches suggest that translational and clinical trials in nonhuman primate and patients may soon be possible.
Collapse
|
36
|
Gammon JM, Jewell CM. Engineering Immune Tolerance with Biomaterials. Adv Healthc Mater 2019; 8:e1801419. [PMID: 30605264 PMCID: PMC6384133 DOI: 10.1002/adhm.201801419] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 12/05/2018] [Indexed: 12/28/2022]
Abstract
Autoimmune diseases, rejection of transplanted organs and grafts, chronic inflammatory diseases, and immune-mediated rejection of biologic drugs impact a large number of people across the globe. New understanding of immune function is revealing exciting opportunities to help tackle these challenges by harnessing-or correcting-the specificity of immune function. However, realizing this potential requires precision control over the interaction between regulatory immune cues, antigens attacked during inflammation, and the tissues where these processes occur. Engineered materials-such as polymeric and lipid particles, scaffolds, and inorganic materials-offer powerful features that can help to selectively regulate immune function during disease without compromising healthy immune functions. This review highlights some of the exciting developments to leverage biomaterials as carriers, depots, scaffolds-and even as agents with intrinsic immunomodulatory features-to promote immunological tolerance.
Collapse
Affiliation(s)
- Joshua M. Gammon
- Fischell Department of Bioengineering, University of Maryland, 8278 Paint Branch Drive RM 5110, College Park, MD 20742, USA
| | - Christopher M. Jewell
- Fischell Department of Bioengineering, University of Maryland, 8278 Paint Branch Drive RM 5110, College Park, MD 20742, USA ; Robert E. Fischell Institute for Biomedical Devices, 8278 Paint Branch Drive, College Park, MD 20742, USA; United States Department of Veterans Affairs, Baltimore VA Medical center, 10. N Green Street, Baltimore, Maryland 21201, USA; Department of Microbiology and Immunology, University of Maryland Medical School, 685 West Baltimore Street, HSF-I Suite 380, Baltimore, MD, 21201, USA; Marlene and Stewart Greenebaum Cancer Center, 22 South Greene Street, Baltimore, MD 21201, USA
| |
Collapse
|
37
|
Murine CMV induces type 1 IFN that impairs differentiation of MDSCs critical for transplantation tolerance. Blood Adv 2019; 2:669-680. [PMID: 29563123 DOI: 10.1182/bloodadvances.2017012187] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 03/01/2018] [Indexed: 01/03/2023] Open
Abstract
Clinical tolerance without immunosuppression has now been achieved for organ transplantation, and its scope will likely continue to expand. In this context, a previously understudied and now increasingly relevant area is how microbial infections might affect the efficacy of tolerance. A highly prevalent and clinically relevant posttransplant pathogen is cytomegalovirus (CMV). Its impact on transplantation tolerance and graft outcomes is not well defined. Employing a mouse model of CMV (MCMV) infection and allogeneic pancreatic islet transplantation in which donor-specific tolerance was induced by infusing donor splenocytes rendered apoptotic by treatment with ethylenecarbodiimide, we investigated the effect of CMV infection on transplantation tolerance induction. We found that acute MCMV infection abrogated tolerance induction and that this abrogation correlated with an alteration in the differentiation and function of myeloid-derived suppressor cells (MDSCs). These effects on MDSCs were mediated in part through MCMV induced type 1 interferon (IFN) production. During MCMV infection, the highly immunosuppressive Gr1HI-granulocytic MDSCs were markedly reduced in numbers, and the accumulating Ly6CHI-monocytic cells lost their MDSC-like function but instead acquired an immunostimulatory phenotype to cross-present alloantigens and prime alloreactive CD8 T cells. Consequently, the islet allograft exhibited an altered effector to regulatory T-cell ratio that correlated with the ultimate graft demise. Blocking type 1 IFN signaling during MCMV infection rescued MDSC populations and partially restored transplantation tolerance. Our mechanistic studies now provide a solid foundation for seeking effective therapies for promoting transplantation tolerance in settings of CMV infection.
Collapse
|
38
|
Zou J, Gao X, Liu T, Liang R, Liu Y, Wang G, Wang L, Liu N, Sun P, Wang Z, Wang S, Shen Z. Ethylenecarbodiimide-fixed splenocytes carrying whole islet antigens decrease the incidence of diabetes in NOD mice via down-regulation of effector memory T cells and autoantibodies. Endocr J 2018; 65:943-952. [PMID: 29998909 DOI: 10.1507/endocrj.ej18-0158] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Type 1 diabetes mellitus (T1DM) is a syndrome of loss of glucose homeostasis caused by the loss of β cell chronic autoimmunity against islet cells. Islet-specific epitopes coupled antigen presenting cells by Ethylenecarbodiimide (ECDI) is a promising strategy to induce antigen-specific tolerance. However, single epitope induced tolerance is insufficient to prevent the onset of T1DM. The aim of this study is to evaluate the efficacy of whole islet antigens in preventing the onset and progression of T1DM and identify the underlying immune mechanism in NOD mice. In this study, the whole islet antigens, derived from islet lysate isolated from BALB/c mice, were coupled to splenocytes of BALB/c mice by ECDI fixation (SP-Islet lysate), and then intravenously administrated to NOD mice. The results showed that, compared with control group, SP-Islet lysate group significantly decreased T1DM incidence and improved the survival of NOD mice. SP-Islet lysate treated mice had reduced insulitis score and autoantibody levels, and improved glucose tolerance and insulin/glucagon production. Furthermore, the effector memory T cells (TEMs) were downregulated and regulatory T cells (Tregs) were upregulated by the SP-Islet lysate treatment, with reduced populations of Th1&Th17 cells. In conclusion, ECDI-fixed splenocytes carrying whole islet antigens effectively prevented the onset of T1DM in NOD mice, via suppressing the production of autoantibodies and inducing anergy of autoreactive T cells.
Collapse
Affiliation(s)
- Jiaqi Zou
- Key Laboratory for Critical Care Medicine of the Ministry of Health, Tianjin First Center Hospital, Tianjin, China
- State Key Laboratory of Medicinal Chemical Biology, Tianjin, China
| | - Xinpu Gao
- Tianjin Medical University, Tianjin, China
- Organ Transplant Center, Tianjin First Central Hospital, Tianjin, China
| | - Tengli Liu
- Key Laboratory for Critical Care Medicine of the Ministry of Health, Tianjin First Center Hospital, Tianjin, China
| | - Rui Liang
- Key Laboratory for Critical Care Medicine of the Ministry of Health, Tianjin First Center Hospital, Tianjin, China
| | - Yaojuan Liu
- Key Laboratory for Critical Care Medicine of the Ministry of Health, Tianjin First Center Hospital, Tianjin, China
| | - Guanqiao Wang
- Key Laboratory for Critical Care Medicine of the Ministry of Health, Tianjin First Center Hospital, Tianjin, China
| | - Le Wang
- Key Laboratory for Critical Care Medicine of the Ministry of Health, Tianjin First Center Hospital, Tianjin, China
| | - Na Liu
- Key Laboratory for Critical Care Medicine of the Ministry of Health, Tianjin First Center Hospital, Tianjin, China
| | - Peng Sun
- Key Laboratory for Critical Care Medicine of the Ministry of Health, Tianjin First Center Hospital, Tianjin, China
| | - Zhiping Wang
- Key Laboratory for Critical Care Medicine of the Ministry of Health, Tianjin First Center Hospital, Tianjin, China
- Organ Transplant Center, Tianjin First Central Hospital, Tianjin, China
- Tianjin Clinical Research Center for Organ Transplantation, Tianjin First Center Hospital, Tianjin, China
| | - Shusen Wang
- Key Laboratory for Critical Care Medicine of the Ministry of Health, Tianjin First Center Hospital, Tianjin, China
- Organ Transplant Center, Tianjin First Central Hospital, Tianjin, China
- Tianjin Clinical Research Center for Organ Transplantation, Tianjin First Center Hospital, Tianjin, China
| | - Zhongyang Shen
- Key Laboratory for Critical Care Medicine of the Ministry of Health, Tianjin First Center Hospital, Tianjin, China
- Organ Transplant Center, Tianjin First Central Hospital, Tianjin, China
- Tianjin Clinical Research Center for Organ Transplantation, Tianjin First Center Hospital, Tianjin, China
| |
Collapse
|
39
|
Ding J, Liu S, Zhang D, Song Y, Ma X, Yi C, Song B, Xiao B, Su Y, Guo S. Transfusion of ethylene carbodiimide–fixed donor splenocytes prolongs survival of vascularized skin allografts. J Surg Res 2018; 221:343-352. [DOI: 10.1016/j.jss.2017.06.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 05/24/2017] [Accepted: 06/06/2017] [Indexed: 10/18/2022]
|
40
|
Dangi A, Luo X. Harnessing Apoptotic Cells for Transplantation Tolerance: Current Status and Future Perspectives. CURRENT TRANSPLANTATION REPORTS 2017; 4:270-279. [PMID: 29177124 PMCID: PMC5697727 DOI: 10.1007/s40472-017-0167-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
PURPOSE OF REVIEW The use of donor apoptotic cells is an emerging therapy for inducing transplantation tolerance. In this review, we will discuss current understanding of mechanisms of this approach, as well as crucial aspects necessary for successful translation of this approach to clinical transplantation. RECENT FINDINGS Transplantation tolerance by donor apoptotic cells is mediated by their homeostatic interaction with recipient phagocytes, and subsequent expansion of suppressor cell populations as well as inhibition of effector T cells via deletion and anergy. To ensure their tolerogenicity, it is critical to procure non-stressed donor cells, and to induce and arrest their apoptosis at the appropriate stage prior to their administration. Equally important is the monitoring of dynamics of recipient immunological status, and its influences on tolerance efficacy and longevity. Emerging concepts and technologies may significantly streamline tolerogen manufacture and delivery of this approach, and smooth its transition to clinical application. SUMMARY Hijacking homeostatic clearance of donor apoptotic cells is a promising strategy for transplantation tolerance. Timing is now mature for concerted efforts for transitioning this strategy to clinical transplantation.
Collapse
Affiliation(s)
- Anil Dangi
- Center for Kidney Research and Therapeutics, Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Division of Nephrology and Hypertension, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Xunrong Luo
- Center for Kidney Research and Therapeutics, Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Division of Nephrology and Hypertension, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Comprehensive Transplant Center, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| |
Collapse
|
41
|
Differential Role of B Cells and IL-17 Versus IFN-γ During Early and Late Rejection of Pig Islet Xenografts in Mice. Transplantation 2017; 101:1801-1810. [PMID: 27893617 DOI: 10.1097/tp.0000000000001489] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Xenogeneic islet transplantation is an emerging therapeutic option for diabetic patients. However, immunological tolerance to xenogeneic islets remains a challenge. METHODS The current study used a pig-to-mouse discordant xenogeneic islet transplant model to examine antidonor xenogeneic immune responses during early and late rejection and to determine experimental therapeutic interventions that promote durable pig islet xenograft survival. RESULTS We found that during early acute rejection of pig islet xenografts, the rejecting hosts exhibited a heavy graft infiltration with B220 B cells and a robust antipig antibody production. In addition, early donor-stimulated IL-17 production, but not IFN-γ production, dominated during early acute rejection. Recipient treatment with donor apoptotic 1-ethyl-3-(3'-dimethylaminopropyl)-carbodiimide-treated splenocytes significantly inhibited antidonor IL-17 response, and when combined with B cell depletion and a short course of rapamycin led to survival of pig islet xenografts beyond 100 days in approximately 65% recipients. Interestingly, treated recipients in this model experienced late rejection between 100 and 200 days posttransplant, which coincided with B cell reconstitution and an ensuing emergence of a robust antidonor IFN-γ, but not IL-17, response. CONCLUSIONS These findings reveal that early and late rejection of pig islet xenografts may be dominated by different immune responses and that maintenance of long-term xenogeneic tolerance will require strategies that target the temporal sequence of antixenogeneic immune responses.
Collapse
|
42
|
Lai X, Qiu L, Zhao Y, Yu S, Wang C, Zhang J, Ning F, Chen L, Chen G. Ethylene carbodiimide-fixed donor splenocytes combined with α-1 antitrypsin induce indefinite donor-specific protection to mice cardiac allografts. Transpl Int 2017; 30:305-317. [PMID: 27957767 DOI: 10.1111/tri.12903] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 10/07/2016] [Accepted: 12/02/2016] [Indexed: 12/17/2022]
Abstract
Peritransplant infusion of ethylene carbodiimide-fixed donor splenocytes (ECDI-SPs) induces protection of islet and cardiac allografts. However, pro-inflammatory cytokine production during the peritransplantation period may negate the effect of ECDI-SPs. Therefore, we hypothesized that blocking pro-inflammatory cytokine secretion while increasing levels of anti-inflammatory cytokines would enhance the tolerance-induced efficacy of ECDI-SPs. The objective of this study was to determine the effectiveness of using ECDI-SPs combined with a short course of α1-antitrypsin (AAT) for induction of tolerance. Using a mice cardiac transplant model, we demonstrated that ECDI-SPs + AAT effectively induced indefinite mice cardiac allograft protection in a donor-specific fashion. This effect was accompanied by modulation of cytokines through decreasing levels of pro-inflammatory cytokines (including IFN-γ, TNF-α, IL-1β, IL-6, IL-17, and IL-23) and increasing levels of anti-inflammatory cytokines (including IL-10, IL-13, and TGF-β), and by inhibition of effector T cells (Teff) and expansion of regulatory T cells (Tregs). Therefore, we concluded that combined ECDI-SPs and AAT appeared to modulate the expression of cytokines and regulate the Teff:Treg balance to create a support milieu for graft protection. Our strategy of combining ECDI-SPs and AAT provides a promising approach for inducing donor-specific transplant tolerance.
Collapse
Affiliation(s)
- Xingqiang Lai
- Organ Transplant Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Organ Transplantation Department, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Longhui Qiu
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yi Zhao
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Shuangjin Yu
- Organ Transplant Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Chang Wang
- Organ Transplant Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jin Zhang
- Organ Transplant Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Fen Ning
- Department of Obstetrics, Preterm Birth Prevention and Treatment Research Unit, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Lizhong Chen
- Organ Transplant Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China.,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| | - Guodong Chen
- Organ Transplant Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China.,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| |
Collapse
|
43
|
Pearson RM, Casey LM, Hughes KR, Miller SD, Shea LD. In vivo reprogramming of immune cells: Technologies for induction of antigen-specific tolerance. Adv Drug Deliv Rev 2017; 114:240-255. [PMID: 28414079 PMCID: PMC5582017 DOI: 10.1016/j.addr.2017.04.005] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 04/01/2017] [Accepted: 04/11/2017] [Indexed: 02/07/2023]
Abstract
Technologies that induce antigen-specific immune tolerance by mimicking naturally occurring mechanisms have the potential to revolutionize the treatment of many immune-mediated pathologies such as autoimmunity, allograft rejection, and allergy. The immune system intrinsically has central and peripheral tolerance pathways for eliminating or modulating antigen-specific responses, which are being exploited through emerging technologies. Antigen-specific tolerogenic responses have been achieved through the functional reprogramming of antigen-presenting cells or lymphocytes. Alternatively, immune privileged sites have been mimicked using biomaterial scaffolds to locally suppress immune responses and promote long-term allograft survival. This review describes natural mechanisms of peripheral tolerance induction and the various technologies being developed to achieve antigen-specific immune tolerance in vivo. As currently approved therapies are non-specific and carry significant associated risks, these therapies offer significant progress towards replacing systemic immune suppression with antigen-specific therapies to curb aberrant immune responses.
Collapse
Affiliation(s)
- Ryan M Pearson
- Department of Biomedical Engineering, University of Michigan, 1119 Carl A. Gerstacker Building, 2200 Bonisteel Boulevard, Ann Arbor, MI 48109-2099, USA
| | - Liam M Casey
- Department of Chemical Engineering, University of Michigan, 2300 Hayward Ave., Ann Arbor, MI 48105, USA
| | - Kevin R Hughes
- Department of Biomedical Engineering, University of Michigan, 1119 Carl A. Gerstacker Building, 2200 Bonisteel Boulevard, Ann Arbor, MI 48109-2099, USA
| | - Stephen D Miller
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, 6-713 Tarry Building, 303 E. Chicago Avenue, Chicago, IL 60611, USA; Chemistry of Life Processes Institute (CLP), Northwestern University, Evanston, IL 60208, USA; The Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL 60611, USA.
| | - Lonnie D Shea
- Department of Biomedical Engineering, University of Michigan, 1119 Carl A. Gerstacker Building, 2200 Bonisteel Boulevard, Ann Arbor, MI 48109-2099, USA; Department of Chemical Engineering, University of Michigan, 2300 Hayward Ave., Ann Arbor, MI 48105, USA.
| |
Collapse
|
44
|
Arellano B, Graber DJ, Sentman CL. Regulatory T cell-based therapies for autoimmunity. DISCOVERY MEDICINE 2016; 22:73-80. [PMID: 27585233 PMCID: PMC5573148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Autoimmune disorders are long-term diseases that adversely affect the quality of life for patients, and they are one of the top ten leading causes of death. While each autoimmune disorder is unique, they all are caused by a breakdown of tolerance against endogenous proteins. This leads to auto-inflammatory events that promote the destruction of organs in a humoral and cellular immune mediated manner. Treatment options for autoimmunity can involve the use of chemical and biologic agents that suppress inflammation. While these treatment options for patients have shown to be beneficial in autoimmunity, they can result in patients being vulnerable to opportunistic infections. Newer therapies aim to identify methods to specifically block auto-inflammatory immune cells while allowing for an intact immune response to other antigens. T regulatory (Treg) cells are a subtype of the adoptive immune cell that is capable of suppressing inflammatory events in an antigen-specific manner, but they are often poorly functioning within autoimmune patients. Treg cells have been well characterized for their immune modulating capabilities and preclinical and early clinical studies support their therapeutic potential for antigen-specific immune suppression. This review will examine the current understanding of Treg cell function and the therapeutic potential of enhancing Treg cells in patients with inflammatory disorders.
Collapse
Affiliation(s)
- Benjamine Arellano
- The Center for Synthetic Immunity and the Department of Microbiology and Immunology, The Geisel School of Medicine at Dartmouth, One Medical Center Dr., Lebanon, NH 03756, USA
| | - David J Graber
- The Center for Synthetic Immunity and the Department of Microbiology and Immunology, The Geisel School of Medicine at Dartmouth, One Medical Center Dr., Lebanon, NH 03756, USA
| | - Charles L Sentman
- The Center for Synthetic Immunity and the Department of Microbiology and Immunology, The Geisel School of Medicine at Dartmouth, One Medical Center Dr., Lebanon, NH 03756, USA
| |
Collapse
|
45
|
Morelli AE, Larregina AT. Concise Review: Mechanisms Behind Apoptotic Cell-Based Therapies Against Transplant Rejection and Graft versus Host Disease. Stem Cells 2016; 34:1142-50. [PMID: 26865545 DOI: 10.1002/stem.2326] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 01/10/2016] [Accepted: 01/19/2016] [Indexed: 12/14/2022]
Abstract
The main limitations to the success of transplantation are the antigraft response developed by the recipient immune system, and the adverse side effects of chronic immunosuppression. Graft-versus-host disease (GVHD) triggered by donor-derived T lymphocytes against the recipient tissues is another serious obstacle in the field of hematopoietic stem cell transplantation. Several laboratories have tested the possibility of promoting antigen (Ag)-specific tolerance for therapy of graft rejection, GVHD, and autoimmune disorders, by developing methodologies that mimic the mechanisms by which the immune system maintains peripheral tolerance in the steady state. It has been long recognized that the silent clearance of cells undergoing apoptosis exerts potent immune-regulatory effects and provides apoptotic cell-derived Ags to those Ag-presenting cells (APCs) that internalize them, in particular macrophages and dendritic cells. Therefore, in situ-targeting of recipient APCs by systemic administration of leukocytes in early apoptosis and bearing donor Ags represents a relatively simple approach to control the antidonor response against allografts. Here, we review the mechanisms by which apoptotic cells are silently cleared by phagocytes, and how such phenomenon leads to down-regulation of the innate and adaptive immunity. We discuss the evolution of apoptotic cell-based therapies from murine models of organ/tissue transplantation and GVHD, to clinical trials. We make emphasis on potential limitations and areas of concern of apoptotic cell-based therapies, and on how other immune-suppressive therapies used in the clinics or tested experimentally likely also function through the silent clearance of apoptotic cells by the immune system. Stem Cells 2016;34:1142-1150.
Collapse
Affiliation(s)
- Adrian E Morelli
- T.E. Starzl Transplantation Institute, Department of Surgery.,Departments of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, 15213, USA
| | - Adriana T Larregina
- Departments of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, 15213, USA.,Departments of Dermatology, University of Pittsburgh, Pittsburgh, Pennsylvania, 15213, USA.,McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, 15213, USA
| |
Collapse
|
46
|
Abstract
The undesired destruction of healthy cells, either endogenous or transplanted, by the immune system results in the loss of tissue function or limits strategies to restore tissue function. Current therapies typically involve nonspecific immunosuppression that may prevent the appropriate response to an antigen, thereby decreasing humoral immunity and increasing the risks of patient susceptibility to opportunistic infections, viral reactivation, and neoplasia. The induction of antigen-specific immunological tolerance to block undesired immune responses to self- or allogeneic antigens, while maintaining the integrity of the remaining immune system, has the potential to transform the current treatment of autoimmune disease and serve as a key enabling technology for therapies based on cell transplantation.
Collapse
Affiliation(s)
- Xunrong Luo
- Department of Medicine, Division of Nephrology and Hypertension.,Comprehensive Cancer Center, and
| | - Stephen D Miller
- Department of Microbiology-Immunology and Interdepartmental Immunobiology Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611; ,
| | - Lonnie D Shea
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48109;
| |
Collapse
|
47
|
Chen G, Li J, Chen L, Lai X, Qiu J. α1-Antitrypsin-primed tolerogenic dendritic cells prolong allograft kidney transplants survival in rats. Int Immunopharmacol 2016; 31:216-21. [PMID: 26761724 DOI: 10.1016/j.intimp.2015.12.038] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 12/17/2015] [Accepted: 12/23/2015] [Indexed: 02/03/2023]
Affiliation(s)
- Guodong Chen
- Division of Organ Transplantation, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Jun Li
- Division of Organ Transplantation, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Lizhong Chen
- Division of Organ Transplantation, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Xingqiang Lai
- Division of Organ Transplantation, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Jiang Qiu
- Division of Organ Transplantation, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
48
|
Lei J, Kim JI, Shi S, Zhang X, Machaidze Z, Lee S, Schuetz C, Martins PN, Oura T, Farkash EA, Rosales IA, Smith RN, Stott R, Lee KM, Soohoo J, Boskovic S, Cappetta K, Nadazdin OM, Yamada Y, Yeh H, Kawai T, Sachs DH, Benichou G, Markmann JF. Pilot Study Evaluating Regulatory T Cell-Promoting Immunosuppression and Nonimmunogenic Donor Antigen Delivery in a Nonhuman Primate Islet Allotransplantation Model. Am J Transplant 2015; 15:2739-49. [PMID: 26014796 DOI: 10.1111/ajt.13329] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2014] [Revised: 03/01/2015] [Accepted: 03/20/2015] [Indexed: 01/25/2023]
Abstract
The full potential of islet transplantation will only be realized through the development of tolerogenic regimens that obviate the need for maintenance immunosuppression. Here, we report an immunotherapy regimen that combines 1-ethyl-3-(3'-dimethylaminopropyl)-carbodiimide (ECDI)-treated donor lymphoid cell infusion (ECDI-DLI) with thymoglobulin, anti-interleukin-6 receptor antibody and rapamycin to achieve prolonged allogeneic islet graft survival in a nonhuman primate (NHP) model. Prolonged graft survival is associated with Treg expansion, donor-specific T cell hyporesponsiveness and a transient absence of donor-specific alloantibody production during the period of graft survival. This regimen shows promise for clinical translation.
Collapse
Affiliation(s)
- J Lei
- Center for Transplantation Science, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - J I Kim
- Center for Transplantation Science, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - S Shi
- Center for Transplantation Science, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - X Zhang
- Center for Transplantation Science, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Z Machaidze
- Center for Transplantation Science, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - S Lee
- Center for Transplantation Science, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - C Schuetz
- Center for Transplantation Science, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - P N Martins
- Center for Transplantation Science, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - T Oura
- Center for Transplantation Science, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - E A Farkash
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - I A Rosales
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - R N Smith
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - R Stott
- Center for Transplantation Science, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - K M Lee
- Center for Transplantation Science, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - J Soohoo
- Center for Transplantation Science, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - S Boskovic
- Center for Transplantation Science, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - K Cappetta
- Center for Transplantation Science, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - O M Nadazdin
- Center for Transplantation Science, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Y Yamada
- Center for Transplantation Science, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - H Yeh
- Center for Transplantation Science, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - T Kawai
- Center for Transplantation Science, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - D H Sachs
- Center for Transplantation Science, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - G Benichou
- Center for Transplantation Science, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - J F Markmann
- Center for Transplantation Science, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
49
|
Dumont CM, Park J, Shea LD. Controlled release strategies for modulating immune responses to promote tissue regeneration. J Control Release 2015; 219:155-166. [PMID: 26264833 DOI: 10.1016/j.jconrel.2015.08.014] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Revised: 08/04/2015] [Accepted: 08/05/2015] [Indexed: 01/06/2023]
Abstract
Advances in the field of tissue engineering have enhanced the potential of regenerative medicine, yet the efficacy of these strategies remains incomplete, and is limited by the innate and adaptive immune responses. The immune response associated with injury or disease combined with that mounted to biomaterials, transplanted cells, proteins, and gene therapies vectors can contribute to the inability to fully restore tissue function. Blocking immune responses such as with anti-inflammatory or immunosuppressive agents are either ineffective, as the immune response contributes significantly to regeneration, or have significant side effects. This review describes targeted strategies to modulate the immune response in order to limit tissue damage following injury, promote an anti-inflammatory environment that leads to regeneration, and induce antigen (Ag)-specific tolerance that can target degenerative diseases that destroy tissues and promote engraftment of transplanted cells. Focusing on targeted immuno-modulation, we describe local delivery techniques to sites of inflammation as well as systemic approaches that preferentially target subsets of immune populations.
Collapse
Affiliation(s)
- Courtney M Dumont
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48105, USA
| | - Jonghyuck Park
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48105, USA
| | - Lonnie D Shea
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48105, USA; Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48105, USA.
| |
Collapse
|
50
|
Infusion of Sulfosuccinimidyl-4-[N-maleimidomethyl]cyclohexane-1-carboxylate-Conjugated MOG35-55-Coupled Spleen Cells Effectively Prevents and Reverses Experimental Autoimmune Encephalomyelitis in Mice. J Immunol Res 2015; 2015:129682. [PMID: 26258148 PMCID: PMC4516839 DOI: 10.1155/2015/129682] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 06/12/2015] [Accepted: 06/16/2015] [Indexed: 12/21/2022] Open
Abstract
In this study, we have evaluated our recently developed method for antigen-cell coupling using sulfosuccinimidyl-4-[N-maleimidomethyl]cyclohexane-1-carboxylate (sulfo-SMCC) heterobifunctional crosslinker in prevention and reversal of experimental autoimmune encephalomyelitis (EAE). We demonstrate that infusion of MOG35–55-coupled spleen cells (MOG-SP) significantly prevents and reverses EAE. Further studies show that the protected animals exhibit significantly delayed EAE upon EAE reinduction. Moreover, adoptive transfer of CD4+ T cells from the protected mice to naïve syngeneic mice renders the recipient mice resistant to EAE induction. Unexpectedly, CD4+ T cell proliferation is similar upon ex vivo stimulation by MOG35–55 amongst all groups. However, further analysis of those proliferating CD4+ T cells shows remarkable differences in Foxp3+ regulatory T cells (70% in MOG-SP groups versus 10–25% in control groups) and in IL-17+ cells (2-3% in MOG-SP groups versus 6–9% in control groups). In addition, we discover that MOG-SP treatment also significantly attenuates MOG35–55-responding IFN-γ-producing Th1 cells. These findings suggest that MOG-SP treatment induces EAE protective MOG35–55-specific regulatory T cells and suppresses EAE pathogenic Th17 and Th1 cells. Our study provides a novel approach for antigen-based EAE immunotherapy, which can potentially be translated into clinical application for immunotherapy of multiple sclerosis.
Collapse
|