1
|
Cembellin-Prieto A, Luo Z, Kulaga H, Baumgarth N. B cells modulate lung antiviral inflammatory responses via the neurotransmitter acetylcholine. Nat Immunol 2025; 26:775-789. [PMID: 40263611 DOI: 10.1038/s41590-025-02124-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 03/11/2025] [Indexed: 04/24/2025]
Abstract
The rapid onset of innate immune defenses is critical for early control of viral replication in an infected host and yet it can also lead to irreversible tissue damage, especially in the respiratory tract. Sensitive regulators must exist that modulate inflammation, while controlling the infection. In the present study, we identified acetylcholine (ACh)-producing B cells as such early regulators. B cells are the most prevalent ACh-producing leukocyte population in the respiratory tract demonstrated with choline acetyltransferase (ChAT)-green fluorescent protein (GFP) reporter mice, both before and after infection with influenza A virus. Mice lacking ChAT in B cells, disabling their ability to generate ACh (ChatBKO), but not those lacking ChAT in T cells, significantly, selectively and directly suppressed α7-nicotinic-ACh receptor-expressing interstitial, but not alveolar, macrophage activation and their ability to secrete tumor necrosis factor (TNF), while better controlling virus replication at 1 d postinfection. Conversely, TNF blockade via monoclonal antibody treatment increased viral loads at that time. By day 10 of infection, ChatBKO mice showed increased local and systemic inflammation and reduced signs of lung epithelial repair despite similar viral loads and viral clearance. Thus, B cells are key participants of an immediate early regulatory cascade that controls lung tissue damage after viral infection, shifting the balance toward reduced inflammation at the cost of enhanced early viral replication.
Collapse
Affiliation(s)
- Antonio Cembellin-Prieto
- Graduate Group in Immunology, University of California Davis, Davis, CA, USA
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Lyme and Tickborne Diseases Research and Education Institute, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Zheng Luo
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California Davis, Davis, CA, USA
| | - Heather Kulaga
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Lyme and Tickborne Diseases Research and Education Institute, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Nicole Baumgarth
- Graduate Group in Immunology, University of California Davis, Davis, CA, USA.
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Lyme and Tickborne Diseases Research and Education Institute, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA.
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California Davis, Davis, CA, USA.
- Department of Molecular and Comparative Pathobiology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
2
|
Ou Y, Lin D, Ni X, Feng C, Rong J, Gao X, Yu Y, Liu X, Zhang Z, Xiao W, Tang Z, Zhao L. Acupuncture and moxibustion as adjunctive therapy for postoperative gastrointestinal dysfunction in gastric cancer: a systematic review and network meta-analysis. Front Med (Lausanne) 2024; 11:1464749. [PMID: 39722829 PMCID: PMC11668611 DOI: 10.3389/fmed.2024.1464749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 11/25/2024] [Indexed: 12/28/2024] Open
Abstract
Objectives This study aimed to evaluate and compare the efficacy and safety of different acupuncture and moxibustion techniques as adjunctive therapy in addressing Postoperative gastrointestinal dysfunction (PGD) associated with gastric cancer (GC). Methods Eight medical databases were comprehensively searched for relevant randomized controlled trials (RCTs) as of October 2024. A network meta-analysis (NMA) was performed using frequency models, combining all available direct and indirect evidence from RCTs. Time of first bowel sounds (TFBS) was set as the primary outcome, and time to first defecation (TFD) and time to first flatus (TFF) were set as the secondary outcomes. All outcomes were ranked using surface under the cumulative ranking curve (SUCRA) probabilities to determine a hierarchy of treatments, and the probability that the intervention will be in one of the top ranks increases with a higher SUCRA value. Results With 28 randomized controlled trials (RCTs) and 2,459 patients, 18 of which involved adjuvant acupuncture treatments. NMA based on SUCRA rankings showed that routine care (RC) with acupuncture (ACU), with acupressure (ACUP), with moxibustion (MOX) and acupoint injection (AI) were the top-ranked therapies for shortening TFBS and TFF in patients with GC compared with RC; additionally, RC + MOX + CUP and RC + MOX were the relatively best therapies for TFD. No serious adverse events were reported in the studies assessing the safety of adjunctive acupuncture therapy. Our study found that ST36, ST37, ST39, and PC6 were the most commonly used acupoints for adjuvant acupuncture treatments in treating PGD associated with GC. Conclusion Acupuncture and moxibustion, when used as supplementary therapies, demonstrated efficacy and relative safety in managing PGD associated with GC. The recommended order for adjunctive acupuncture- and moxibustion-related therapies for PGD in patients with GC, in terms of conservativeness, is as follows: RC + ACU, RC + MOX + AI, RC + ACUP, RC + MOX + CUP and RC + MOX. Despite their inclusion, the overall methodological quality of the studies was poor, which need for further high-quality randomized controlled trials to support existing results. Systematic review registration https://www.crd.york.ac.uk/PROSPERO.
Collapse
Affiliation(s)
- Yangxu Ou
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Dezhi Lin
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Xixiu Ni
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Chengzhi Feng
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jing Rong
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Xiaoyu Gao
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yang Yu
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Xinrui Liu
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Zhiyang Zhang
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Wang Xiao
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Sichuan Clinical Medical Research Centre for Acupuncture and Moxibustion, Chengdu, China
| | - Zili Tang
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Ling Zhao
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Sichuan Clinical Medical Research Centre for Acupuncture and Moxibustion, Chengdu, China
- Key Laboratory of Acupuncture for Senile Disease, Chengdu University of TCM, Ministry of Education, Chengdu, China
| |
Collapse
|
3
|
Yu C, Mao X, Zhou C. Influence of acupuncture and moxibustion on gastrointestinal function and adverse events in gastric cancer patients after surgery and chemotherapy: a meta-analysis. Support Care Cancer 2024; 32:524. [PMID: 39023776 DOI: 10.1007/s00520-024-08740-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 07/13/2024] [Indexed: 07/20/2024]
Abstract
OBJECTIVE The impact of acupuncture and moxibustion on postoperative complications and adverse events (AEs) of chemotherapy in patients with gastric cancer (GC) has been investigated. Through a meta-analysis of existing randomized controlled trials (RCTs), this study sought to strengthen the evidentiary basis to help investigators further understand the effects of moxibustion and acupuncture on postoperative complications and AEs of chemotherapy among GC patients. METHODS Embase, Web of Science, PubMed, The Cochrane Library, China National Knowledge Infrastructure (CNKI), Wanfang Database, and VIP Database for Chinese Technical Periodicals were searched to collect RCTs on effects of acupuncture and moxibustion on gastrointestinal function and AEs among GC patients undergoing surgery and chemotherapy. Outcome measures included postoperative gastrointestinal recovery (bowel sound recovery time, time to first flatus/defecation/feeding), the incidence of AEs (nausea and vomiting, abdominal distension, and diarrhea), myelosuppression (white blood cells, hemoglobin, and platelet), and immune function indicators (CD3+ and CD4+). To assess quality, the Cochrane Risk of Bias Tool was utilized. Review Manager 5.4 was implemented to do the meta-analysis. RESULTS Fifteen eligible RCTs involved 1259 patients. Meta-analysis results showed that the experimental group had a significantly shorter bowel sound recovery time (MD = - 14.57, 95% CI = [- 18.97, - 10.18], P < 0.00001), time to first flatus (MD = - 17.56, 95% CI = [- 22.23, - 12.88], P < 0.00001), time to first defecation (MD = - 17.05, 95% CI = [- 21.02, - 13.09], P < 0.00001), and time to first feeding (MD = - 23.49, 95% CI = [- 28.81, - 18.17], P < 0.00001) than the control group. There were significant decreases in the incidence of nausea and vomiting (RR = 0.46, 95% CI = [0.21, 1.02], P = 0.05) and abdominal distension (RR = 0.45, 95% CI = [0.27, 0.75], P = 0.002) observed in the experimental group in comparison with the control group. The experimental group demonstrated a significant increase in white blood cell counts in comparison with to the control group (MD = 0.89, 95% CI = [0.23, 1.55], P = 0.008). The experimental group showed significantly higher levels of CD3+ (MD = 7.30, 95% CI = [1.86, 12.74], P = 0.009) and CD4+ (MD = 2.75, 95% CI = [1.61, 3.90], P < 0.00001) than the control group. CONCLUSION Among GC patients, acupuncture and moxibustion can aid in gastrointestinal function recovery, reduce the incidence of AEs of surgery and chemotherapy, and improve immune function.
Collapse
Affiliation(s)
- Chun Yu
- Department of Gastrointestinal Surgery, Quzhou People's Hospital (Quzhou Hospital Affiliated to Wenzhou Medical University), Zhejiang Province, Quzhou City, 324000, China
| | - Xinglong Mao
- Department of Gastrointestinal Surgery, Quzhou People's Hospital (Quzhou Hospital Affiliated to Wenzhou Medical University), Zhejiang Province, Quzhou City, 324000, China
| | - Chun Zhou
- Department of Rehabilitation Medicine, Quzhou People's Hospital (Quzhou Hospital Affiliated to Wenzhou Medical University), Zhejiang Province, Quzhou City, 324000, China.
| |
Collapse
|
4
|
Baumgarth N, Prieto AC, Luo Z, Kulaga H. B cells modulate lung antiviral inflammatory responses via the neurotransmitter acetylcholine. RESEARCH SQUARE 2024:rs.3.rs-4421566. [PMID: 38978583 PMCID: PMC11230464 DOI: 10.21203/rs.3.rs-4421566/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
The rapid onset of innate immune defenses is critical for early control of viral replication in an infected host, yet it can also lead to irreversible tissue damage, especially in the respiratory tract. Intricate regulatory mechanisms must exist that modulate inflammation, while controlling the infection. Here, B cells expressing choline acetyl transferase (ChAT), an enzyme required for production of the metabolite and neurotransmitter acetylcholine (ACh) are identified as such regulators of the immediate early response to influenza A virus. Lung tissue ChAT + B cells are shown to interact with a7 nicotinic Ach receptor-expressing lung interstitial macrophages in mice within 24h of infection to control their production of TNFa, shifting the balance towards reduced inflammation at the cost of enhanced viral replication. Thus, innate-stimulated B cells are key participants of an immediate-early regulatory cascade that controls lung tissue damage after viral infection.
Collapse
|
5
|
Wang Y, Wang L, Ni X, Jiang M, Zhao L. Effect of acupuncture therapy for postoperative gastrointestinal dysfunction in gastric and colorectal cancers: an umbrella review. Front Oncol 2024; 14:1291524. [PMID: 38375156 PMCID: PMC10876295 DOI: 10.3389/fonc.2024.1291524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 01/16/2024] [Indexed: 02/21/2024] Open
Abstract
Background Gastrointestinal dysfunction is a prevalent postoperative complication in patients undergoing surgery for gastric cancer and colorectal cancer. Acupuncture holds promise as a great potential therapeutic intervention. The efficacy of acupuncture therapy for postoperative gastrointestinal dysfunction has been assessed in some studies, however, the variability in results and study quality influences practical clinical application. Therefore, it is necessary to summarize and analyze the published clinical research data in this field. Objective This study aimed to synthesize evidence from systematic reviews and meta-analyses in order to assess the efficacy of acupuncture therapy for postoperative gastrointestinal dysfunction in patients with gastric and colorectal cancer. Design Umbrella review of systematic reviews and meta-analyses. Methods We searched China National Knowledge Infrastructure (CNKI), Wanfang Data Knowledge Service Platform (Wanfang), China Science and Technology Journal Database (VIP), Chinese biomedical literature service system (SinoMed), PubMed, Embase, Cochrane Library, and Web of Science for all systematic review/meta-analysis of acupuncture for postoperative gastrointestinal dysfunction in gastric and colorectal cancers. From the establishment of the database to July 8, 2023. Two independent reviewers conducted literature extraction and evaluation. The quality of included studies was assessed using The preferred reporting items for systematic reviews and meta-analysis statements 2020 (PRISMA2020), the quality of the methods was assessed using a measuring tool to assess systematic reviews 2 (AMSTAR 2), and the level of evidence was assessed using the grading of recommendations assessment, development, and evaluation (GRADE). The statistical analysis was conducted using RevMan 5.4, and the effect size was expressed as Odds Ratio (OR), Mean Difference (MD), and 95% confidence interval (CI) based on the extracted data type (test level α= 0.05). The heterogeneity was assessed using the I 2 statistic and Q-test (χ2). The outcome indicators such as time to first defecation and time to first flatus were utilized as endpoints to assess the efficacy of different acupuncture therapies. Results A total of six systematic reviews/meta-analyses were included in this study, involving 12 different acupuncture therapies. PRISMA 2020 indicated that the studies all scored between 13-20.5. There were deficiencies in protocol and registration, assessment of the quality of evidence for outcome indicators, risk of bias, and declaration of conflict of interest. The AMSTAR 2 evaluations showed that five studies were very low quality and one was low quality. The level of evidence for various acupuncture interventions varied from very low to moderate.For patients with gastrointestinal dysfunction after gastric cancer surgery, ear acupressure [MD=-11.92, 95% (-14.39,-9.44), P<0.00001], moxibustion [MD=-19.16, 95% (-23.00,-16.22), P<0.00001], warm needling [MD=-12.81, 95% (-17.61,-8.01), P<0.00001], acupoint application [MD=-6.40, 95% (-10.26,-2.54), P=0.001], manual acupuncture [MD=-18.32, 95% (-26.31,-10.39), P<0.00001] and transcutaneous electrical acupoint stimulation (TEAS) [MD=-5.17, 95% (-9.59,-0.74), P=0.02] could promote the recovery of gastrointestinal function after surgery.For postoperative colorectal cancer patients, electroacupuncture [MD=-15.17, 95% (-28.81,-1.54), P<0.05], manual acupuncture [MD=-20.51, 95% (-39.19,-1.84), P<0.05], warm needling [MD=-18.55, 95% (-23.86,-13.24), P<0.05], ear acupressure [MD=-5.38, 95% (-9.80,-0.97), P<0.05], acupoint application [MD=-26.30, 95% (-32.81,-19.79), P<0.05], ear acupressure+acupressure [MD=-9.67, 95% (-13.58,-5.76), P<0.05], ear acupressure+manual acupuncture [MD=-18.70, 95% (-21.01,-16.39), P<0.05], ear acupressure+moxibustion [MD=-22.90, 95% (-30.10,-15.70), P<0.05], moxibustion+acupressure [MD=-14.77, 95% (-20.59,-8.95), P<0.05] improved postoperative gastrointestinal function. In addition, the efficacy of acupressure [MD=-12.00, 95% (-31.60,7.60), P>0.05] needed to be further demonstrated. Conclusion Acupuncture therapy has a positive therapeutic impact on postoperative gastrointestinal dysfunction in gastric and colorectal cancers, but this finding should still be taken with caution.
Collapse
Affiliation(s)
- Yuhan Wang
- Acupuncture and Moxibustion College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Linjia Wang
- Acupuncture and Moxibustion College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Xixiu Ni
- Acupuncture and Moxibustion College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Minjiao Jiang
- Acupuncture and Moxibustion College, Nanjing University of Traditional Chinese Medicine, Nanjing, Jiangsu, China
| | - Ling Zhao
- Acupuncture and Moxibustion College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Acupuncture Clinical Research Center of Sichuan Province, Chengdu, China
- Key Laboratory of Acupuncture for Senile Disease (Chengdu University of TCM), Ministry of Education, Chengdu, China
| |
Collapse
|
6
|
Brembach TC, Sabat R, Witte K, Schwerdtle T, Wolk K. Molecular and functional changes in neutrophilic granulocytes induced by nicotine: a systematic review and critical evaluation. Front Immunol 2023; 14:1281685. [PMID: 38077313 PMCID: PMC10702484 DOI: 10.3389/fimmu.2023.1281685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 11/08/2023] [Indexed: 12/18/2023] Open
Abstract
Background Over 1.1 billion people smoke worldwide. The alkaloid nicotine is a prominent and addictive component of tobacco. In addition to tumors and cardiovascular disorders, tobacco consumption is associated with a variety of chronic-inflammatory diseases. Although neutrophilic granulocytes (neutrophils) play a role in the pathogenesis of many of these diseases, the impact of nicotine on neutrophils has not been systematically reviewed so far. Objectives The aim of this systematic review was to evaluate the direct influence of nicotine on human neutrophil functions, specifically on cell death/damage, apoptosis, chemotaxis, general motility, adhesion molecule expression, eicosanoid synthesis, cytokine/chemokine expression, formation of neutrophil extracellular traps (NETs), phagocytosis, generation of reactive oxygen species (ROS), net antimicrobial activity, and enzyme release. Material and methods This review was conducted according to the PRISMA guidelines. A literature search was performed in the databases NCBI Pubmed® and Web of Science™ in February 2023. Inclusion criteria comprised English written research articles, showing in vitro studies on the direct impact of nicotine on specified human neutrophil functions. Results Of the 532 originally identified articles, data from 34 articles were finally compiled after several evaluation steps. The considered studies highly varied in methodological aspects. While at high concentrations (>3 mmol/l) nicotine started to be cytotoxic to neutrophils, concentrations typically achieved in blood of smokers (in the nmol/l range) applied for long exposure times (24-72h) supported the survival of neutrophils. Smoking-relevant nicotine concentrations also increased the chemotaxis of neutrophils towards several chemoattractants, elevated their production of elastase, lipocalin-2, CXCL8, leukotriene B4 and prostaglandin E2, and reduced their integrin expression. Moreover, while nicotine impaired the neutrophil phagocytotic and anti-microbial activity, a range of studies demonstrated increased NET formation. However, conflicting effects were found on ROS generation, selectin expression and release of β-glucuronidase and myeloperoxidase. Conclusion Nicotine seems to support the presence in the tissue and the inflammatory and selected tissue-damaging activity of neutrophils and reduces their antimicrobial functions, suggesting a direct contribution of nicotine to the pathogenesis of chronic-inflammatory diseases via influencing the neutrophil biology.
Collapse
Affiliation(s)
- Theresa-Charlotte Brembach
- Psoriasis Research and Treatment Center, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Department of Food Chemistry, Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany
| | - Robert Sabat
- Psoriasis Research and Treatment Center, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Katrin Witte
- Psoriasis Research and Treatment Center, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Tanja Schwerdtle
- Department of Food Chemistry, Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany
- German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Kerstin Wolk
- Psoriasis Research and Treatment Center, Charité – Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
7
|
Wang C, Zhao Y, Qiao H, Gao Z, Yang J, Chuai X. Hold Breath: Autonomic Neural Regulation of Innate Immunity to Defend Against SARS-CoV-2 Infection. Front Microbiol 2022; 12:819638. [PMID: 35310398 PMCID: PMC8929440 DOI: 10.3389/fmicb.2021.819638] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 12/27/2021] [Indexed: 12/29/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a novel member of the genus of betacoronavirus, which caused a pandemic of coronavirus disease 2019 (COVID-19) worldwide. The innate immune system plays a critical role in eliminating the virus, which induces inflammatory cytokine and chemokine secretion, produces different interferons, and activates the adaptive immune system. Interactions between the autonomic nervous system and innate immunity release neurotransmitters or neuropeptides to balance the excess secretion of inflammatory cytokines, control the inflammation, and restore the host homeostasis. However, more neuro-immune mechanisms to defend against viral infection should be elucidated. Here, we mainly review and provide our understanding and viewpoint on the interaction between respiratory viral proteins and host cell receptors, innate immune responses to respiratory viral infection, and the autonomic neural regulation of the innate immune system to control respiratory viruses caused by lungs and airways inflammation.
Collapse
Affiliation(s)
- Changle Wang
- Department of Pathogenic Biology, Hebei Medical University, Shijiazhuang, China
| | - Yan Zhao
- Department of Pathogenic Biology, Hebei Medical University, Shijiazhuang, China
| | - Hongxiu Qiao
- Department of Pathogenic Biology, Hebei Medical University, Shijiazhuang, China
| | - Zhiyun Gao
- Department of Pathogenic Biology, Hebei Medical University, Shijiazhuang, China
| | - Jing Yang
- International Cooperation Laboratory of Stem Cell Research, Hebei Medical University, Shijiazhuang, China
| | - Xia Chuai
- Department of Pathogenic Biology, Hebei Medical University, Shijiazhuang, China
- *Correspondence: Xia Chuai,
| |
Collapse
|
8
|
Girón-Pérez DA, Hermosillo-Escobedo AT, Macias-Garrigos K, Díaz-Resendiz KJG, Toledo-Ibarra GA, Ventura-Ramón GH, Girón-Pérez MI. Altered phagocytic capacity due to acute exposure and long-term post-exposure to pesticides used for vector-borne disease as dengue. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2022; 32:455-462. [PMID: 32490699 DOI: 10.1080/09603123.2020.1773413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 05/20/2020] [Indexed: 06/11/2023]
Abstract
Spinosad and temefos are widely used pesticides for chemical control of dengue vector-borne disease (Aedes aegypti). The aim of this study was to compare the effect of acute exposure (7 days) to spinosad (0.5 mg A.I. L-1) and temefos (10 mg A.I. L-1), concentrations used by the Mexican Ministry of Health, on phagocytic capacity (PC) of mononuclear cells of guppies fish (Poecilia reticulata), as well as to assess PC in fish, at 96 days after exposure to those pesticides. Obtained results indicated that spinosad did not alter PC, while an acute exposure to temefos significantly affected phagocytosis and this parameter was maintained downed even 96 days after the acute exposure, suggesting that the immunotoxic effects of temefos may be chronic.
Collapse
Affiliation(s)
- D A Girón-Pérez
- Laboratorio de Inmunotoxicología, Universidad Autónoma de Nayarit, Tepic Nayarit, México
- Centro Nayarita de Innovación y Transferencia de Tecnología A.C., Unidad Especializada Laboratorio Nacional de Investigación Para la Inocuidad Alimentaria (Laniia)-unidad Nayarit, Tepic, México
| | | | - K Macias-Garrigos
- Laboratorio de Inmunotoxicología, Universidad Autónoma de Nayarit, Tepic Nayarit, México
| | - K J G Díaz-Resendiz
- Laboratorio de Inmunotoxicología, Universidad Autónoma de Nayarit, Tepic Nayarit, México
- Centro Nayarita de Innovación y Transferencia de Tecnología A.C., Unidad Especializada Laboratorio Nacional de Investigación Para la Inocuidad Alimentaria (Laniia)-unidad Nayarit, Tepic, México
| | - G A Toledo-Ibarra
- Laboratorio de Inmunotoxicología, Universidad Autónoma de Nayarit, Tepic Nayarit, México
- Centro Nayarita de Innovación y Transferencia de Tecnología A.C., Unidad Especializada Laboratorio Nacional de Investigación Para la Inocuidad Alimentaria (Laniia)-unidad Nayarit, Tepic, México
| | - G H Ventura-Ramón
- Laboratorio de Inmunotoxicología, Universidad Autónoma de Nayarit, Tepic Nayarit, México
- Centro Nayarita de Innovación y Transferencia de Tecnología A.C., Unidad Especializada Laboratorio Nacional de Investigación Para la Inocuidad Alimentaria (Laniia)-unidad Nayarit, Tepic, México
| | - M I Girón-Pérez
- Laboratorio de Inmunotoxicología, Universidad Autónoma de Nayarit, Tepic Nayarit, México
- Centro Nayarita de Innovación y Transferencia de Tecnología A.C., Unidad Especializada Laboratorio Nacional de Investigación Para la Inocuidad Alimentaria (Laniia)-unidad Nayarit, Tepic, México
| |
Collapse
|
9
|
Kinchen JM, Mohney RP, Pappan KL. Long-Chain Acylcholines Link Butyrylcholinesterase to Regulation of Non-neuronal Cholinergic Signaling. J Proteome Res 2021; 21:599-611. [PMID: 34758617 DOI: 10.1021/acs.jproteome.1c00538] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Acylcholines are comprised of an acyl chain esterified to a choline moiety; acetylcholine is the best-characterized member of this class, functioning as a neurotransmitter in the central and peripheral nervous systems as well as an inhibitor of cytokine production by macrophages and other innate immune cells. Acylcholines are metabolized by a class of cholinesterases, including acetylcholinesterase (a specific regulator of acetylcholine levels) and butyrylcholinesterase (BChE, an enigmatic enzyme whose function has not been resolved by genetic knockout models). BChE provides reserve capacity to hydrolyze acetylcholine, but its importance is arguable given acetylcholinesterase is the most catalytically efficient enzyme characterized to date. While known to be substrates of BChE in vitro, endogenous production of long-chain acylcholines is a recent discovery enabled by untargeted metabolomics. Compared to acetylcholine, long-chain acylcholines show greater stability in circulation with homeostatic levels-dictated by synthesis and clearance-suggested to impact cholinergic receptor sensitivity of acetylcholine with varying levels of antagonism. Acylcholines then provide a link between BChE and non-neuronal acetylcholine signaling, filling a gap in understanding around how imbalances between acylcholines and BChE could modulate inflammatory disease, such as the "cytokine storm" identified in severe COVID-19. Areas for further research, development, and clinical testing are outlined.
Collapse
Affiliation(s)
- Jason M Kinchen
- Owlstone Medical Inc., 600 Park Office Drive, Suite 140, Research Triangle Park, North Carolina 27709, United States
| | - Robert P Mohney
- Owlstone Medical Inc., 600 Park Office Drive, Suite 140, Research Triangle Park, North Carolina 27709, United States
| | - Kirk L Pappan
- Owlstone Medical Inc., 600 Park Office Drive, Suite 140, Research Triangle Park, North Carolina 27709, United States
| |
Collapse
|
10
|
Kizildag S, Hosgorler F, Güvendi G, Koc TB, Kandis S, Argon A, Ates M, Uysal N. Nicotine lowers TNF-α, IL-1b secretion and leukocyte accumulation via nAChR in rat stomach. TOXIN REV 2020. [DOI: 10.1080/15569543.2020.1790604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Servet Kizildag
- Vocational School of Health Services, Dokuz Eylül University, Izmir, Turkey
| | - Ferda Hosgorler
- Department of Physiology, Dokuz Eylül University, Izmir, Turkey
| | - Güven Güvendi
- Department of Physiology, Dokuz Eylül University, Izmir, Turkey
| | - Talha Basar Koc
- Department of Physiology, Dokuz Eylül University, Izmir, Turkey
| | - Sevim Kandis
- Department of Physiology, Dokuz Eylül University, Izmir, Turkey
| | - Asuman Argon
- Department of Pathology, University of Health Sciences Izmir Bozyaka Education and Research Hospital, Izmir, Turkey
| | - Mehmet Ates
- Vocational School of Health Services, Dokuz Eylül University, Izmir, Turkey
| | - Nazan Uysal
- Department of Physiology, Dokuz Eylül University, Izmir, Turkey
| |
Collapse
|
11
|
Yu R, Yang W, Qi D, Gong L, Li C, Li Y, Jiang H. Targeted neurotransmitter metabolomics profiling of oleanolic acid in the treatment of spontaneously hypertensive rats. RSC Adv 2019; 9:23276-23288. [PMID: 35514525 PMCID: PMC9067294 DOI: 10.1039/c9ra02377a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 07/04/2019] [Indexed: 12/12/2022] Open
Abstract
Essential hypertension (EH) is a prevalent chronic medical condition and a major risk factor for cardiovascular morbidity and mortality. Neurotransmitters are involved in the physiological process of blood pressure regulation in the body. Studies have shown that oleanolic acid (OA) can effectively regulate neurotransmitter-related metabolic disorders caused by EH, but the mechanism is still unclear. Here, we studied the neurotransmitter metabolic profiles in five brain regions by targeted metabolomics approaches in spontaneously hypertensive rats (SHRs) treated with OA and vehicle. Samples from five brain regions (hippocampus, striatum, hypothalamus, temporal lobe, and frontal lobe) were collected from the control group, the spontaneously hypertensive rat (SHR) group, and the OA group. Targeted metabolomics based on UPLC-Q-Exactive-MS was employed to characterize the dramatically changed neurotransmitters in the brain regions of SHRs treated with OA and vehicle. The expressions of the key enzymes involved in the neurotransmitter metabolism were detected by the reverse transcription-polymerase chain reaction (RT-PCR). The metabolomic profiles of SHRs pre-protected by OA were significantly different from those of unprotected SHRs. A total of 18 neurotransmitters could be confirmed as significantly altered metabolites, which were involved in tyrosine and glutamate metabolism as well as other pathways. The results showing seven key enzymes in neurotransmitter metabolism further validated the changes in the metabolic pathways. OA could effectively restore tyrosine metabolism in the striatum and hypothalamus, glutamate metabolism in the hippocampus, striatum and temporal lobe, cholinergic metabolism in the striatum, and histidine metabolism in the hypothalamus due to its inhibition of inflammatory reactions, structural damage of the neuronal cells, and increase in sedative activity. This study indicated that brain region-targeted metabolomics can provide a powerful tool to further investigate the possible mechanism of OA in EH.
Collapse
Affiliation(s)
- Ruixue Yu
- School of Pharmaceutical Sciences, College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine Jinan 250355 China
| | - Wenqing Yang
- Experience Center of Shandong University of Traditional Chinese Medicine Jinan 250355 Shandong China
| | - Dongmei Qi
- Experience Center of Shandong University of Traditional Chinese Medicine Jinan 250355 Shandong China
| | - Lili Gong
- Experience Center of Shandong University of Traditional Chinese Medicine Jinan 250355 Shandong China
| | - Chao Li
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine Jinan China
| | - Yunlun Li
- School of Pharmaceutical Sciences, College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine Jinan 250355 China
| | - Haiqiang Jiang
- Experience Center of Shandong University of Traditional Chinese Medicine Jinan 250355 Shandong China
| |
Collapse
|
12
|
Chatterjee PK, Yeboah MM, Solanki MH, Kumar G, Xue X, Pavlov VA, Al-Abed Y, Metz CN. Activation of the cholinergic anti-inflammatory pathway by GTS-21 attenuates cisplatin-induced acute kidney injury in mice. PLoS One 2017; 12:e0188797. [PMID: 29190774 PMCID: PMC5708817 DOI: 10.1371/journal.pone.0188797] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 11/13/2017] [Indexed: 12/23/2022] Open
Abstract
Acute kidney injury (AKI) is the most common side effect of cisplatin, a widely used chemotherapy drug. Although AKI occurs in up to one third of cancer patients receiving cisplatin, effective renal protective strategies are lacking. Cisplatin targets renal proximal tubular epithelial cells leading to inflammation, reactive oxygen species, tubular cell injury, and eventually cell death. The cholinergic anti-inflammatory pathway is a vagus nerve-mediated reflex that suppresses inflammation via α7 nicotinic acetylcholine receptors (α7nAChRs). Our previous studies demonstrated the renoprotective and anti-inflammatory effects of cholinergic agonists, including GTS-21. Therefore, we examined the effect of GTS-21 on cisplatin-induced AKI. Male C57BL/6 mice received either saline or GTS-21 (4mg/kg, i.p.) twice daily for 4 days before cisplatin and treatment continued through euthanasia; 3 days post-cisplatin mice were euthanized and analyzed for markers of renal injury. GTS-21 significantly reduced cisplatin-induced renal dysfunction and injury (p<0.05). GTS-21 significantly attenuated renal Ptgs2/COX-2 mRNA and IL-6, IL-1β, and CXCL1 protein expression, as well as neutrophil infiltration after cisplatin. GTS-21 blunted cisplatin-induced renal ERK1/2 activation, as well as renal ATP depletion and apoptosis (p<0.05). GTS-21 suppressed the expression of CTR1, a cisplatin influx transporter and enhanced the expression of cisplatin efflux transporters MRP2, MRP4, and MRP6 (p<0.05). Using breast, colon, and lung cancer cell lines we showed that GTS-21 did not inhibit cisplatin’s tumor cell killing activity. GTS-21 protects against cisplatin-AKI by attenuating renal inflammation, ATP depletion and apoptosis, as well as by decreasing renal cisplatin influx and increasing efflux, without impairing cisplatin-mediated tumor cell killing. Our results support further exploring the cholinergic anti-inflammatory pathway for preventing cisplatin-induced AKI.
Collapse
Affiliation(s)
- Prodyot K Chatterjee
- Center for Biomedical Sciences, Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, United States of America
| | - Michael M Yeboah
- Department of Medicine, Division of Nephrology, Medical College of Wisconsin, Milwaukee, WI, United States of America
| | - Malvika H Solanki
- Elmezzi Graduate School of Molecular Medicine, Northwell Health, Manhasset, NY, United States of America.,Department of Pathology and Laboratory Medicine, Medical College of Wisconsin, Milwaukee, WI, United States of America
| | - Gopal Kumar
- Elmezzi Graduate School of Molecular Medicine, Northwell Health, Manhasset, NY, United States of America
| | - Xiangying Xue
- Center for Biomedical Sciences, Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, United States of America
| | - Valentin A Pavlov
- Center for Biomedical Sciences, Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, United States of America.,Elmezzi Graduate School of Molecular Medicine, Northwell Health, Manhasset, NY, United States of America.,Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States of America
| | - Yousef Al-Abed
- Elmezzi Graduate School of Molecular Medicine, Northwell Health, Manhasset, NY, United States of America.,Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States of America.,Center for Molecular Innovation, Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, United States of America
| | - Christine N Metz
- Center for Biomedical Sciences, Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, United States of America.,Elmezzi Graduate School of Molecular Medicine, Northwell Health, Manhasset, NY, United States of America.,Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States of America
| |
Collapse
|
13
|
Mulcahy MJ, Lester HA. Granulocytes as models for human protein marker identification following nicotine exposure. J Neurochem 2017; 142 Suppl 2:151-161. [PMID: 28791704 PMCID: PMC6057152 DOI: 10.1111/jnc.14010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 02/28/2017] [Accepted: 03/01/2017] [Indexed: 12/23/2022]
Abstract
Nicotinic acetylcholine receptors (nAChRs) are pentameric cation channels expressed in the mammalian CNS, in the peripheral nervous system, and in skeletal muscle. Neuronal-type nAChRs are also found in several non-neuronal cell types, including leukocytes. Granulocytes are a subtype of leukocytes that include basophils, eosinophils, and neutrophils. Granulocytes, also known as polymorphonuclear leukocytes, are characterized by their ability to produce, store, and release compounds from intracellular granules. Granulocytes are the most abundant type of leukocyte circulating in the peripheral blood. Granulocyte abundance, nAChR expression, and nAChR upregulation following chronic nicotine administration makes granulocytes interesting models for identifying protein markers of nicotine exposure. Nicotinic receptor subunits and several non-nAChR proteins have been identified as protein markers of granulocyte nicotine exposure. We review methods to isolate granulocytes from human tissue, summarize present data about the expression of nAChRs in the three granulocyte cell types (basophils, eosinophils, and neutrophils), describe current knowledge of the effects of nicotine exposure on human granulocyte protein expression, and highlight areas of interest for future investigation. This is an article for the special issue XVth International Symposium on Cholinergic Mechanisms.
Collapse
Affiliation(s)
- Matthew J Mulcahy
- Department of Biology, California Institute of Technology, Pasadena, California, USA
| | - Henry A Lester
- Department of Biology, California Institute of Technology, Pasadena, California, USA
| |
Collapse
|
14
|
Shields PG, Berman M, Brasky TM, Freudenheim JL, Mathe E, McElroy JP, Song MA, Wewers MD. A Review of Pulmonary Toxicity of Electronic Cigarettes in the Context of Smoking: A Focus on Inflammation. Cancer Epidemiol Biomarkers Prev 2017; 26:1175-1191. [PMID: 28642230 PMCID: PMC5614602 DOI: 10.1158/1055-9965.epi-17-0358] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Revised: 05/22/2017] [Accepted: 05/24/2017] [Indexed: 12/30/2022] Open
Abstract
The use of electronic cigarettes (e-cigs) is increasing rapidly, but their effects on lung toxicity are largely unknown. Smoking is a well-established cause of lung cancer and respiratory disease, in part through inflammation. It is plausible that e-cig use might affect similar inflammatory pathways. E-cigs are used by some smokers as an aid for quitting or smoking reduction, and by never smokers (e.g., adolescents and young adults). The relative effects for impacting disease risk may differ for these groups. Cell culture and experimental animal data indicate that e-cigs have the potential for inducing inflammation, albeit much less than smoking. Human studies show that e-cig use in smokers is associated with substantial reductions in blood or urinary biomarkers of tobacco toxicants when completely switching and somewhat for dual use. However, the extent to which these biomarkers are surrogates for potential lung toxicity remains unclear. The FDA now has regulatory authority over e-cigs and can regulate product and e-liquid design features, such as nicotine content and delivery, voltage, e-liquid formulations, and flavors. All of these factors may impact pulmonary toxicity. This review summarizes current data on pulmonary inflammation related to both smoking and e-cig use, with a focus on human lung biomarkers. Cancer Epidemiol Biomarkers Prev; 26(8); 1175-91. ©2017 AACR.
Collapse
Affiliation(s)
- Peter G Shields
- Comprehensive Cancer Center, The Ohio State University and James Cancer Hospital, and College of Medicine, Columbus, Ohio.
| | - Micah Berman
- Comprehensive Cancer Center, The Ohio State University and James Cancer Hospital, and College of Public Health, Ohio
| | - Theodore M Brasky
- Comprehensive Cancer Center, The Ohio State University and James Cancer Hospital, and College of Medicine, Columbus, Ohio
| | - Jo L Freudenheim
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, University at Buffalo, Buffalo, New York
| | - Ewy Mathe
- Department of Biomedical Informatics, The Ohio State University, Columbus, Ohio
| | - Joseph P McElroy
- Center for Biostatistics, Department of Biomedical Informatics, The Ohio State University, Columbus, Ohio
| | - Min-Ae Song
- Comprehensive Cancer Center, The Ohio State University and James Cancer Hospital, and College of Medicine, Columbus, Ohio
| | - Mark D Wewers
- Department of Internal Medicine, The Ohio State University, Columbus, Ohio
| |
Collapse
|
15
|
Kaczanowska K, Camacho Hernandez GA, Bendiks L, Kohs L, Cornejo-Bravo JM, Harel M, Finn MG, Taylor P. Substituted 2-Aminopyrimidines Selective for α7-Nicotinic Acetylcholine Receptor Activation and Association with Acetylcholine Binding Proteins. J Am Chem Soc 2017; 139:3676-3684. [DOI: 10.1021/jacs.6b10746] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Katarzyna Kaczanowska
- Department of Pharmacology, Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093-0650, United States,
| | - Gisela Andrea Camacho Hernandez
- Department of Pharmacology, Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093-0650, United States,
- Facultad
de Ciencias Químicas e Ingeniería, Universidad Autónoma de Baja California, Calzada Universidad 14418, Tijuana, Baja California 22390, Mexico
| | - Larissa Bendiks
- Department of Pharmacology, Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093-0650, United States,
| | - Larissa Kohs
- Department of Pharmacology, Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093-0650, United States,
| | - Jose Manuel Cornejo-Bravo
- Facultad
de Ciencias Químicas e Ingeniería, Universidad Autónoma de Baja California, Calzada Universidad 14418, Tijuana, Baja California 22390, Mexico
| | - Michal Harel
- Department of Pharmacology, Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093-0650, United States,
| | - M. G. Finn
- School
of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Palmer Taylor
- Department of Pharmacology, Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093-0650, United States,
| |
Collapse
|
16
|
Ren C, Tong YL, Li JC, Lu ZQ, Yao YM. The Protective Effect of Alpha 7 Nicotinic Acetylcholine Receptor Activation on Critical Illness and Its Mechanism. Int J Biol Sci 2017; 13:46-56. [PMID: 28123345 PMCID: PMC5264260 DOI: 10.7150/ijbs.16404] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 09/30/2016] [Indexed: 12/15/2022] Open
Abstract
Critical illnesses and injuries are recognized as major threats to human health, and they are usually accompanied by uncontrolled inflammation and dysfunction of immune response. The alpha 7 nicotinic acetylcholine receptor (α7nAchR), which is a primary receptor of cholinergic anti-inflammatory pathway (CAP), exhibits great benefits for critical ill conditions. It is composed of 5 identical α7 subunits that form a central pore with high permeability for calcium. This putative structure is closely associated with its functional states. Activated α7nAChR exhibits extensive anti-inflammatory and immune modulatory reactions, including lowered pro-inflammatory cytokines levels, decreased expressions of chemokines as well as adhesion molecules, and altered differentiation and activation of immune cells, which are important in maintaining immune homeostasis. Well understanding of the effects and mechanisms of α7nAChR will be of great value in exploring effective targets for treating critical diseases.
Collapse
Affiliation(s)
- Chao Ren
- Trauma Research Center, First Hospital Affiliated to the Chinese PLA General Hospital, Beijing 100048, People's Republic of China
| | - Ya-Lin Tong
- Department of Burns and Plastic Surgery, the 181st Hospital of Chinese PLA, Guilin 541002, People's Republic of China
| | - Jun-Cong Li
- Trauma Research Center, First Hospital Affiliated to the Chinese PLA General Hospital, Beijing 100048, People's Republic of China
| | - Zhong-Qiu Lu
- Emergency Department, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, People's Republic of China
| | - Yong-Ming Yao
- Trauma Research Center, First Hospital Affiliated to the Chinese PLA General Hospital, Beijing 100048, People's Republic of China.; State Key Laboratory of Kidney Disease, the Chinese PLA General Hospital, Beijing 100853, People's Republic of China
| |
Collapse
|
17
|
Corradi J, Bouzat C. Understanding the Bases of Function and Modulation of α7 Nicotinic Receptors: Implications for Drug Discovery. Mol Pharmacol 2016; 90:288-99. [PMID: 27190210 DOI: 10.1124/mol.116.104240] [Citation(s) in RCA: 131] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 05/05/2016] [Indexed: 01/01/2023] Open
Abstract
The nicotinic acetylcholine receptor (nAChR) belongs to a superfamily of pentameric ligand-gated ion channels involved in many physiologic and pathologic processes. Among nAChRs, receptors comprising the α7 subunit are unique because of their high Ca(2+) permeability and fast desensitization. nAChR agonists elicit a transient ion flux response that is further sustained by the release of calcium from intracellular sources. Owing to the dual ionotropic/metabotropic nature of α7 receptors, signaling pathways are activated. The α7 subunit is highly expressed in the nervous system, mostly in regions implicated in cognition and memory and has therefore attracted attention as a novel drug target. Additionally, its dysfunction is associated with several neuropsychiatric and neurologic disorders, such as schizophrenia and Alzheimer's disease. α7 is also expressed in non-neuronal cells, particularly immune cells, where it plays a role in immunity, inflammation, and neuroprotection. Thus, α7 potentiation has emerged as a therapeutic strategy for several neurologic and inflammatory disorders. With unique activation properties, the receptor is a sensitive drug target carrying different potential binding sites for chemical modulators, particularly agonists and positive allosteric modulators. Although macroscopic and single-channel recordings have provided significant information about the underlying molecular mechanisms and binding sites of modulatory compounds, we know just the tip of the iceberg. Further concerted efforts are necessary to effectively exploit α7 as a drug target for each pathologic situation. In this article, we focus mainly on the molecular basis of activation and drug modulation of α7, key pillars for rational drug design.
Collapse
Affiliation(s)
- Jeremías Corradi
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Universidad Nacional del Sur, CONICET/UNS, Bahía Blanca, Argentina
| | - Cecilia Bouzat
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Universidad Nacional del Sur, CONICET/UNS, Bahía Blanca, Argentina
| |
Collapse
|
18
|
Ciencewicki JM, Verhein KC, Gerrish K, McCaw ZR, Li J, Bushel PR, Kleeberger SR. Effects of mannose-binding lectin on pulmonary gene expression and innate immune inflammatory response to ozone. Am J Physiol Lung Cell Mol Physiol 2016; 311:L280-91. [PMID: 27106289 DOI: 10.1152/ajplung.00205.2015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 04/20/2016] [Indexed: 02/07/2023] Open
Abstract
Ozone is a common, potent oxidant pollutant in industrialized nations. Ozone exposure causes airway hyperreactivity, lung hyperpermeability, inflammation, and cell damage in humans and laboratory animals, and exposure to ozone has been associated with exacerbation of asthma, altered lung function, and mortality. The mechanisms of ozone-induced lung injury and differential susceptibility are not fully understood. Ozone-induced lung inflammation is mediated, in part, by the innate immune system. We hypothesized that mannose-binding lectin (MBL), an innate immunity serum protein, contributes to the proinflammatory events caused by ozone-mediated activation of the innate immune system. Wild-type (Mbl(+/+)) and MBL-deficient (Mbl(-/-)) mice were exposed to ozone (0.3 ppm) for up to 72 h, and bronchoalveolar lavage fluid was examined for inflammatory markers. Mean numbers of eosinophils and neutrophils and levels of the neutrophil attractants C-X-C motif chemokines 2 [Cxcl2 (major intrinsic protein 2)] and 5 [Cxcl5 (limb expression, LIX)] in the bronchoalveolar lavage fluid were significantly lower in Mbl(-/-) than Mbl(+/+) mice exposed to ozone. Using genome-wide mRNA microarray analyses, we identified significant differences in transcript response profiles and networks at baseline [e.g., nuclear factor erythroid-related factor 2 (NRF2)-mediated oxidative stress response] and after exposure (e.g., humoral immune response) between Mbl(+/+) and Mbl(-/-) mice. The microarray data were further analyzed to discover several informative differential response patterns and subsequent gene sets, including the antimicrobial response and the inflammatory response. We also used the lists of gene transcripts to search the LINCS L1000CDS(2) data sets to identify agents that are predicted to perturb ozone-induced changes in gene transcripts and inflammation. These novel findings demonstrate that targeted deletion of Mbl caused differential levels of inflammation-related gene sets at baseline and after exposure to ozone and significantly reduced pulmonary inflammation, thus indicating an important innate immunomodulatory role of the gene in this model.
Collapse
Affiliation(s)
- Jonathan M Ciencewicki
- Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | - Kirsten C Verhein
- Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | - Kevin Gerrish
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina; and
| | - Zachary R McCaw
- Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | - Jianying Li
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | - Pierre R Bushel
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | - Steven R Kleeberger
- Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina;
| |
Collapse
|
19
|
Abstract
OBJECTIVES The cholinergic anti-inflammatory pathway has been elucidated as a regulator of inflammatory responses in several experimental models of diseases. This regulatory mechanism is mediated by acetylcholine, released from efferent vagus nerve, interacts with α7 nicotinic acetylcholine receptors on immune cells. Experimental evidence indicates that vagus nerve stimulation or α7 nicotinic acetylcholine receptor agonists control proinflammatory cytokine production and protect animals in diverse lethal models. The aim of the study was to investigate effect of the cholinergic anti-inflammatory pathway in acute lung injury in an experimental model of severe acute pancreatitis (SAP). METHODS In taurocholate-induced SAP in rats, pancreatitis was preceded by pretreatment with the nicotinic receptor agonist nicotine or unilateral left cervical vagotomy. RESULTS Pretreatment with nicotine strongly alleviated severity of SAP-associated lung injury through attenuating serum amylase, lipase, and interleukin 6 levels; pancreas and lung pathological injury; lung myeloperoxidase activity; lung tumor necrosis factor-α; and high-mobility group box 1 expression. Inversely, vagotomy pretreatment resulted in an enhanced severity of pancreatitis and lung injury. CONCLUSIONS Our results reveal the role of the cholinergic anti-inflammatory pathway in experimental SAP-associated lung injury; nicotine pretreatment exerts a protective effect and vagotomy pretreatment exerts the opposite effect.
Collapse
|
20
|
Xiang T, Yu F, Fei R, Qian J, Chen W. CHRNA7 inhibits cell invasion and metastasis of LoVo human colorectal cancer cells through PI3K/Akt signaling. Oncol Rep 2015; 35:999-1005. [PMID: 26719016 DOI: 10.3892/or.2015.4462] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Accepted: 10/23/2015] [Indexed: 11/06/2022] Open
Abstract
The α7 neuronal nicotinic receptor gene (CHRNA7) is widely expressed in both the brain and periphery whereas its encoding protein of α7 neuronal acetylcholine receptor (α7nAChR) belongs to the nicotinic acetylcholine receptor family. Considerable evidence suggests that α7nAChR plays an important role in chronic inflammatory and neuropathic pain signaling and thus has been proposed as a potential target for treating cognitive deficits in patients with schizophrenia, attention deficit hyperactivity disorder (ADHD) and Alzheimer's disease. The aim of the present study was to determine the role of endogenous α7nAChR signaling in human colorectal cancer growth and metastasis. pLVX‑CHRNA7 encoding the full length of CHRNA7 was constructed and transfected into LoVo human colorectal cancer cells. Cell proliferation was measured by Cell Counting Kit‑8 (CCK‑8), and cell migration and invasion were detected by Transwell chamber assays. Expression and activity of metastasis‑related metalloproteinases (MMPs) were analyzed by western blotting and gelatin zymography, respectively. Activation of metastasis-related signaling molecules was detected by western blotting. LY294002 was used to specifically block the phosphatidylinositol 3‑kinase/v‑akt murine thymoma viral oncogene homologue (PI3K/Akt) pathway. We showed that concomitantly with an increase in α7nAChR expression after transfection, LoVo cells presented reduced abilities for migration and invasion, which was accompanied by reduced expression levels of MMP‑1 and MMP‑9 as well as activation of the PI3K/Akt signaling pathway. The application of LY294002 restored the migration and invasion abilities of the LoVo cells bearing CHRNA7. Collectively, we conclude that overexpression of CHRNA7 negatively controls colorectal cancer LoVo cell invasion and metastasis via PI3K/Akt pathway activation and may serve as either a diagnostic marker or a therapeutic target for colorectal cancer metastasis.
Collapse
Affiliation(s)
- Tao Xiang
- Department of Colorectal Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, P.R. China
| | - Feng Yu
- Anorectal Department, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang 310012, P.R. China
| | - Rushan Fei
- Department of Colorectal Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, P.R. China
| | - Jing Qian
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Research Center of Infection and Immunity, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China
| | - Wenbin Chen
- Department of Colorectal Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, P.R. China
| |
Collapse
|
21
|
Bertrand D, Lee CHL, Flood D, Marger F, Donnelly-Roberts D. Therapeutic Potential of α7 Nicotinic Acetylcholine Receptors. Pharmacol Rev 2015; 67:1025-73. [PMID: 26419447 DOI: 10.1124/pr.113.008581] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2025] Open
Abstract
Progress in the fields of neuroscience and molecular biology has identified the forebrain cholinergic system as being important in many higher order brain functions. Further analysis of the genes encoding the nicotinic acetylcholine receptors (nAChRs) has highlighted, in particular, the role of α7 nAChRs in these higher order brain functions as evidenced by their peculiar physiologic and pharmacological properties. As this receptor has gained the attention of scientists from academia and industry, our knowledge of its roles in various brain and bodily functions has increased immensely. We have also seen the development of small molecules that have further refined our understanding of the roles of α7 nAChRs, and these molecules have begun to be tested in clinical trials for several indications. Although a large body of data has confirmed a role of α7 nAChRs in cognition, the translation of small molecules affecting α7 nAChRs into therapeutics has to date only progressed to the stage of testing in clinical trials. Notably, however, most recent human genetic and biochemical studies are further underscoring the crucial role of α7 nAChRs and associated genes in multiple organ systems and disease states. The aim of this review is to discuss our current knowledge of α7 nAChRs and their relevance as a target in specific functional systems and disease states.
Collapse
Affiliation(s)
- Daniel Bertrand
- HiQScreen Sàrl, Geneva, Switzerland (D.B., F.M.); AbbVie Inc., North Chicago, Illinois (C-H.L.L., D.D-R.); and FORUM Pharmaceuticals Inc., Waltham, Massachusetts (D.F.)
| | - Chih-Hung L Lee
- HiQScreen Sàrl, Geneva, Switzerland (D.B., F.M.); AbbVie Inc., North Chicago, Illinois (C-H.L.L., D.D-R.); and FORUM Pharmaceuticals Inc., Waltham, Massachusetts (D.F.)
| | - Dorothy Flood
- HiQScreen Sàrl, Geneva, Switzerland (D.B., F.M.); AbbVie Inc., North Chicago, Illinois (C-H.L.L., D.D-R.); and FORUM Pharmaceuticals Inc., Waltham, Massachusetts (D.F.)
| | - Fabrice Marger
- HiQScreen Sàrl, Geneva, Switzerland (D.B., F.M.); AbbVie Inc., North Chicago, Illinois (C-H.L.L., D.D-R.); and FORUM Pharmaceuticals Inc., Waltham, Massachusetts (D.F.)
| | - Diana Donnelly-Roberts
- HiQScreen Sàrl, Geneva, Switzerland (D.B., F.M.); AbbVie Inc., North Chicago, Illinois (C-H.L.L., D.D-R.); and FORUM Pharmaceuticals Inc., Waltham, Massachusetts (D.F.)
| |
Collapse
|
22
|
Copy number variants in attention-deficit hyperactive disorder: identification of the 15q13 deletion and its functional role. Psychiatr Genet 2015; 25:59-70. [PMID: 25370694 DOI: 10.1097/ypg.0000000000000056] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
OBJECTIVES Evidence has supported a role for rare copy number variants in the etiology of attention-deficit hyperactivity disorder (ADHD), in particular, the region 15q13, which is also a hot spot for several neuropsychiatric disorders. This region spans several genes, but their role and the biological implications remain unclear. METHODS We carried out, for the first time, an analysis of the 15q13 region in an Italian cohort of 117 ADHD patients and 77 controls using the MLPA method, confirmed by a genome single-nucleotide polymorphism array. In addition, we probed for downstream effects of the 15q13 deletions on gene expression by carrying out a transcriptomic analysis in blood. RESULTS We found 15q13 deletions in two ADHD patients and identified 129 genes as significantly dysregulated in the blood of the two ADHD patients carrying 15q13 deletions compared with ADHD patients without 15q13 deletions. As expected, genes in the deleted region (KLF13, MTMR10) were downregulated in the two patients with deletions. Moreover, a pathway analysis identified apoptosis, oxidation reduction, and immune response as the mechanisms that were altered most significantly in the ADHD patients with 15q13 deletions. Interestingly, we showed that deletions in KLF13 and CHRNA7 influenced the expression of genes belonging to the same immune/inflammatory and oxidative stress signaling pathways. CONCLUSION Our findings are consistent with the presence of 15q13 deletions in Italian ADHD patients. More interestingly, we show that pathways related to immune/inflammatory response and oxidative stress signaling are affected by the deletion of KFL13 and CHRNA7. Because the phenotypic effects of 15q13 are pleiotropic, our findings suggest that there are shared biologic pathways among multiple neuropsychiatric conditions.
Collapse
|
23
|
Munyaka P, Rabbi MF, Pavlov VA, Tracey KJ, Khafipour E, Ghia JE. Central muscarinic cholinergic activation alters interaction between splenic dendritic cell and CD4+CD25- T cells in experimental colitis. PLoS One 2014; 9:e109272. [PMID: 25295619 PMCID: PMC4190311 DOI: 10.1371/journal.pone.0109272] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 09/01/2014] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND The cholinergic anti-inflammatory pathway (CAP) is based on vagus nerve (VN) activity that regulates macrophage and dendritic cell responses in the spleen through alpha-7 nicotinic acetylcholine receptor (a7nAChR) signaling. Inflammatory bowel disease (IBD) patients present dysautonomia with decreased vagus nerve activity, dendritic cell and T cell over-activation. The aim of this study was to investigate whether central activation of the CAP alters the function of dendritic cells (DCs) and sequential CD4+/CD25-T cell activation in the context of experimental colitis. METHODS The dinitrobenzene sulfonic acid model of experimental colitis in C57BL/6 mice was used. Central, intracerebroventricular infusion of the M1 muscarinic acetylcholine receptor agonist McN-A-343 was used to activate CAP and vagus nerve and/or splenic nerve transection were performed. In addition, the role of α7nAChR signaling and the NF-kB pathway was studied. Serum amyloid protein (SAP)-A, colonic tissue cytokines, IL-12p70 and IL-23 in isolated splenic DCs, and cytokines levels in DC-CD4+CD25-T cell co-culture were determined. RESULTS McN-A-343 treatment reduced colonic inflammation associated with decreased pro-inflammatory Th1/Th17 colonic and splenic cytokine secretion. Splenic DCs cytokine release was modulated through α7nAChR and the NF-kB signaling pathways. Cholinergic activation resulted in decreased CD4+CD25-T cell priming. The anti-inflammatory efficacy of central cholinergic activation was abolished in mice with vagotomy or splenic neurectomy. CONCLUSIONS Suppression of splenic immune cell activation and altered interaction between DCs and T cells are important aspects of the beneficial effect of brain activation of the CAP in experimental colitis. These findings may lead to improved therapeutic strategies in the treatment of IBD.
Collapse
Affiliation(s)
- Peris Munyaka
- University of Manitoba, Department of Immunology and Internal Medicine section of Gastroenterology, Winnipeg, Manitoba, Canada
| | - Mohammad F. Rabbi
- University of Manitoba, Department of Immunology and Internal Medicine section of Gastroenterology, Winnipeg, Manitoba, Canada
| | - Valentin A. Pavlov
- Center for Biomedical Science, The Feinstein Institute for Medical Research, Manhasset, New York, United States of America
| | - Kevin J. Tracey
- Center for Biomedical Science, The Feinstein Institute for Medical Research, Manhasset, New York, United States of America
| | - Ehsan Khafipour
- University of Manitoba, Department of Animal Sciences, Winnipeg, Manitoba, Canada
| | - Jean-Eric Ghia
- University of Manitoba, Department of Immunology and Internal Medicine section of Gastroenterology, Winnipeg, Manitoba, Canada
- University of Manitoba, Inflammatory Bowel Disease Clinical and Research Centre, Winnipeg, Manitoba, Canada
| |
Collapse
|
24
|
Zhang QH, Sheng ZY, Yao YM. Septic encephalopathy: when cytokines interact with acetylcholine in the brain. Mil Med Res 2014; 1:20. [PMID: 25722876 PMCID: PMC4340341 DOI: 10.1186/2054-9369-1-20] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 07/23/2014] [Indexed: 12/25/2022] Open
Abstract
Sepsis-associated encephalopathy (SAE) is a brain dysfunction that occurs secondary to infection in the body, characterized by alteration of consciousness, ranging from delirium to coma, seizure or focal neurological signs. SAE involves a number of mechanisms, including neuroinflammation, in which the interaction between cytokines and acetylcholine results in neuronal loss and alterations in cholinergic signaling. Moreover, the interaction also occurs in the periphery, accelerating a type of immunosuppressive state. Although its diagnosis is not specific in biochemistry and imaging tests, it could potentiate severe outcomes, including increased mortality, cognitive decline, progressive immunosuppression, cholinergic anti-inflammatory deficiency, and even metabolic and hydroelectrolyte imbalance. Therefore, the bilateral communication between SAE and the multiple peripheral organs and especially the immune system should be emphasized in sepsis management.
Collapse
Affiliation(s)
- Qing-Hong Zhang
- Department of Microbiology and Immunology, Burns Institute, First Hospital Affiliated to the Chinese PLA General Hospital, Beijing, 100048 P.R. China
| | - Zhi-Yong Sheng
- Department of Microbiology and Immunology, Burns Institute, First Hospital Affiliated to the Chinese PLA General Hospital, Beijing, 100048 P.R. China
| | - Yong-Ming Yao
- Department of Microbiology and Immunology, Burns Institute, First Hospital Affiliated to the Chinese PLA General Hospital, Beijing, 100048 P.R. China
| |
Collapse
|