1
|
Leong S, Nasser H, Ikeda T. APOBEC3-Related Editing and Non-Editing Determinants of HIV-1 and HTLV-1 Restriction. Int J Mol Sci 2025; 26:1561. [PMID: 40004025 PMCID: PMC11855278 DOI: 10.3390/ijms26041561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/09/2025] [Accepted: 02/11/2025] [Indexed: 02/27/2025] Open
Abstract
The apolipoprotein B mRNA editing enzyme catalytic polypeptide-like 3 (APOBEC3/A3) family of cytosine deaminases serves as a key innate immune barrier against invading retroviruses and endogenous retroelements. The A3 family's restriction activity against these parasites primarily arises from their ability to catalyze cytosine-to-uracil conversions, resulting in genome editing and the accumulation of lethal mutations in viral genomes. Additionally, non-editing mechanisms, including deaminase-independent pathways, such as blocking viral reverse transcription, have been proposed as antiviral strategies employed by A3 family proteins. Although viral factors can influence infection progression, the determinants that govern A3-mediated restriction are critical in shaping retroviral infection outcomes. This review examines the interactions between retroviruses, specifically human immunodeficiency virus type 1 and human T-cell leukemia virus type 1, and A3 proteins to better understand how editing and non-editing activities contribute to the trajectory of these retroviral infections.
Collapse
Affiliation(s)
- Sharee Leong
- Division of Molecular Virology and Genetics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto 860-0811, Japan
- Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Hesham Nasser
- Division of Molecular Virology and Genetics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto 860-0811, Japan
| | - Terumasa Ikeda
- Division of Molecular Virology and Genetics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto 860-0811, Japan
| |
Collapse
|
2
|
Begum MSTM, Bokani A, Rajib SA, Soleimanpour M, Maeda Y, Yoshimura K, Satou Y, Ebrahimi D, Ikeda T. Potential Role of APOBEC3 Family Proteins in SARS-CoV-2 Replication. Viruses 2024; 16:1141. [PMID: 39066304 PMCID: PMC11281575 DOI: 10.3390/v16071141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/12/2024] [Accepted: 07/13/2024] [Indexed: 07/28/2024] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has acquired multiple mutations since its emergence. Analyses of the SARS-CoV-2 genomes from infected patients exhibit a bias toward C-to-U mutations, which are suggested to be caused by the apolipoprotein B mRNA editing enzyme polypeptide-like 3 (APOBEC3, A3) cytosine deaminase proteins. However, the role of A3 enzymes in SARS-CoV-2 replication remains unclear. To address this question, we investigated the effect of A3 family proteins on SARS-CoV-2 replication in the myeloid leukemia cell line THP-1 lacking A3A to A3G genes. The Wuhan, BA.1, and BA.5 variants had comparable viral replication in parent and A3A-to-A3G-null THP-1 cells stably expressing angiotensin-converting enzyme 2 (ACE2) protein. On the other hand, the replication and infectivity of these variants were abolished in A3A-to-A3G-null THP-1-ACE2 cells in a series of passage experiments over 20 days. In contrast to previous reports, we observed no evidence of A3-induced SARS-CoV-2 mutagenesis in the passage experiments. Furthermore, our analysis of a large number of publicly available SARS-CoV-2 genomes did not reveal conclusive evidence for A3-induced mutagenesis. Our studies suggest that A3 family proteins can positively contribute to SARS-CoV-2 replication; however, this effect is deaminase-independent.
Collapse
Affiliation(s)
- MST Monira Begum
- Division of Molecular Virology and Genetics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto 860-0811, Japan
| | - Ayub Bokani
- School of Engineering and Technology, CQ University, Sydney, NSW 2000, Australia
| | - Samiul Alam Rajib
- Division of Genomics and Transcriptomics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto 860-0811, Japan
| | | | - Yosuke Maeda
- Department of Microbiology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
- Department of Nursing, Kibi International University, Takahashi 716-8508, Japan
| | | | - Yorifumi Satou
- Division of Genomics and Transcriptomics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto 860-0811, Japan
| | - Diako Ebrahimi
- Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | - Terumasa Ikeda
- Division of Molecular Virology and Genetics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto 860-0811, Japan
| |
Collapse
|
3
|
Eid MMA, Shimoda M, Singh SK, Almofty SA, Pham P, Goodman MF, Maeda K, Sakaguchi N. Integrity of immunoglobulin variable regions is supported by GANP during AID-induced somatic hypermutation in germinal center B cells. Int Immunol 2017; 29:211-220. [PMID: 28541550 PMCID: PMC5890899 DOI: 10.1093/intimm/dxx032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 05/22/2017] [Indexed: 11/13/2022] Open
Abstract
Immunoglobulin affinity maturation depends on somatic hypermutation (SHM) in immunoglobulin variable (IgV) regions initiated by activation-induced cytidine deaminase (AID). AID induces transition mutations by C→U deamination on both strands, causing C:G→T:A. Error-prone repairs of U by base excision and mismatch repairs (MMRs) create transversion mutations at C/G and mutations at A/T sites. In Neuberger’s model, it remained to be clarified how transition/transversion repair is regulated. We investigate the role of AID-interacting GANP (germinal center-associated nuclear protein) in the IgV SHM profile. GANP enhances transition mutation of the non-transcribed strand G and reduces mutation at A, restricted to GYW of the AID hotspot motif. It reduces DNA polymerase η hotspot mutations associated with MMRs followed by uracil-DNA glycosylase. Mutation comparison between IgV complementary and framework regions (FWRs) by Bayesian statistical estimation demonstrates that GANP supports the preservation of IgV FWR genomic sequences. GANP works to maintain antibody structure by reducing drastic changes in the IgV FWR in affinity maturation.
Collapse
Affiliation(s)
| | - Mayuko Shimoda
- Department of Immunology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto 860-8556, Japan.,Laboratory of Host Defense, World Premier International Research Center Initiative (WPI) Immunology Frontier Research Center (IFReC).,Department of Host Defense, Research Institute for Microbial Diseases (RIMD), Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Shailendra Kumar Singh
- Laboratory of Host Defense, World Premier International Research Center Initiative (WPI) Immunology Frontier Research Center (IFReC)
| | - Sarah Ameen Almofty
- Laboratory of Immunology, Institute for Research and Medical Consultations (IRMC), University Of Dammam (UOD), PO Box 1982, Dammam 31441, Saudi Arabia
| | - Phuong Pham
- Departments of Biological Sciences and Chemistry, University of Southern California, 1050 Childs Way, University Park, Los Angeles, CA 90089-2910, USA
| | - Myron F Goodman
- Departments of Biological Sciences and Chemistry, University of Southern California, 1050 Childs Way, University Park, Los Angeles, CA 90089-2910, USA
| | - Kazuhiko Maeda
- Laboratory of Host Defense, World Premier International Research Center Initiative (WPI) Immunology Frontier Research Center (IFReC).,Department of Host Defense, Research Institute for Microbial Diseases (RIMD), Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Nobuo Sakaguchi
- World Premier International Research Center Initiative (WPI) Immunology Frontier Research Center, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan.,Tokyo Metropolitan Institute of Medical Science, 2-1-6, Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| |
Collapse
|
4
|
King JJ, Larijani M. A Novel Regulator of Activation-Induced Cytidine Deaminase/APOBECs in Immunity and Cancer: Schrödinger's CATalytic Pocket. Front Immunol 2017; 8:351. [PMID: 28439266 PMCID: PMC5382155 DOI: 10.3389/fimmu.2017.00351] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 03/10/2017] [Indexed: 12/20/2022] Open
Abstract
Activation-induced cytidine deaminase (AID) and its relative APOBEC3 cytidine deaminases boost immune response by mutating immune or viral genes. Because of their genome-mutating activities, AID/APOBECs are also drivers of tumorigenesis. Due to highly charged surfaces, extensive non-specific protein-protein/nucleic acid interactions, formation of polydisperse oligomers, and general insolubility, structure elucidation of these proteins by X-ray crystallography and NMR has been challenging. Hence, almost all available AID/APOBEC structures are of mutated and/or truncated versions. In 2015, we reported a functional structure for AID using a combined computational-biochemical approach. In so doing, we described a new regulatory mechanism that is a first for human DNA/RNA-editing enzymes. This mechanism involves dynamic closure of the catalytic pocket. Subsequent X-ray and NMR studies confirmed our discovery by showing that other APOBEC3s also close their catalytic pockets. Here, we highlight catalytic pocket closure as an emerging and important regulatory mechanism of AID/APOBEC3s. We focus on three sub-topics: first, we propose that variable pocket closure rates across AID/APOBEC3s underlie differential activity in immunity and cancer and review supporting evidence. Second, we discuss dynamic pocket closure as an ever-present internal regulator, in contrast to other proposed regulatory mechanisms that involve extrinsic binding partners. Third, we compare the merits of classical approaches of X-ray and NMR, with that of emerging computational-biochemical approaches, for structural elucidation specifically for AID/APOBEC3s.
Collapse
Affiliation(s)
- Justin J. King
- Immunology and Infectious Diseases Program, Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Mani Larijani
- Immunology and Infectious Diseases Program, Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, NL, Canada
| |
Collapse
|
5
|
Sakaguchi N, Maeda K. Germinal Center B-Cell-Associated Nuclear Protein (GANP) Involved in RNA Metabolism for B Cell Maturation. Adv Immunol 2016; 131:135-86. [PMID: 27235683 DOI: 10.1016/bs.ai.2016.02.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Germinal center B-cell-associated nuclear protein (GANP) is upregulated in germinal center B cells against T-cell-dependent antigens in mice and humans. In mice, GANP depletion in B cells impairs antibody affinity maturation. Conversely, its transgenic overexpression augments the generation of high-affinity antigen-specific B cells. GANP associates with AID in the cytoplasm, shepherds AID into the nucleus, and augments its access to the rearranged immunoglobulin (Ig) variable (V) region of the genome in B cells, thereby precipitating the somatic hypermutation of V region genes. GANP is also upregulated in human CD4(+) T cells and is associated with APOBEC3G (A3G). GANP interacts with A3G and escorts it to the virion cores to potentiate its antiretroviral activity by inactivating HIV-1 genomic cDNA. Thus, GANP is characterized as a cofactor associated with AID/APOBEC cytidine deaminase family molecules in generating diversity of the IgV region of the genome and genetic alterations of exogenously introduced viral targets. GANP, encoded by human chromosome 21, as well as its mouse equivalent on chromosome 10, contains a region homologous to Saccharomyces Sac3 that was characterized as a component of the transcription/export 2 (TREX-2) complex and was predicted to be involved in RNA export and metabolism in mammalian cells. The metabolism of RNA during its maturation, from the transcription site at the chromosome within the nucleus to the cytoplasmic translation apparatus, needs to be elaborated with regard to acquired and innate immunity. In this review, we summarize the current knowledge on GANP as a component of TREX-2 in mammalian cells.
Collapse
Affiliation(s)
- N Sakaguchi
- WPI Immunology Frontier Research Center (IFReC), Osaka University, Suita, Osaka, Japan; Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan.
| | - K Maeda
- WPI Immunology Frontier Research Center (IFReC), Osaka University, Suita, Osaka, Japan; Laboratory of Host Defense, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| |
Collapse
|
6
|
Eid MMA, Maeda K, Almofty SA, Singh SK, Shimoda M, Sakaguchi N. GANP regulates the choice of DNA repair pathway by DNA-PKcs interaction in AID-dependent IgV region diversification. THE JOURNAL OF IMMUNOLOGY 2014; 192:5529-39. [PMID: 24808370 DOI: 10.4049/jimmunol.1400021] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
RNA export factor germinal center-associated nuclear protein (GANP) interacts with activation-induced cytidine deaminase (AID) and shepherds it from the cytoplasm to the nucleus and toward the IgV region loci in B cells. In this study, we demonstrate a role for GANP in the repair of AID-initiated DNA damage in chicken DT40 B cells to generate IgV region diversity by gene conversion and somatic hypermutation. GANP plays a positive role in IgV region diversification of DT40 B cells in a nonhomologous end joining-proficient state. DNA-PKcs physically interacts with GANP, and this interaction is dissociated by dsDNA breaks induced by a topoisomerase II inhibitor, etoposide, or AID overexpression. GANP affects the choice of DNA repair mechanism in B cells toward homologous recombination rather than nonhomologous end joining repair. Thus, GANP presumably plays a critical role in protection of the rearranged IgV loci by favoring homologous recombination of the DNA breaks under accelerated AID recruitment.
Collapse
Affiliation(s)
- Mohammed Mansour Abbas Eid
- Department of Immunology, Graduate School of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Kazuhiko Maeda
- Department of Immunology, Graduate School of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Sarah Ameen Almofty
- Department of Immunology, Graduate School of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Shailendra Kumar Singh
- Department of Immunology, Graduate School of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Mayuko Shimoda
- Department of Immunology, Graduate School of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Nobuo Sakaguchi
- Department of Immunology, Graduate School of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| |
Collapse
|