1
|
Yang M, Zhu L. Osteoimmunology: The Crosstalk between T Cells, B Cells, and Osteoclasts in Rheumatoid Arthritis. Int J Mol Sci 2024; 25:2688. [PMID: 38473934 DOI: 10.3390/ijms25052688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 02/22/2024] [Accepted: 02/24/2024] [Indexed: 03/14/2024] Open
Abstract
Rheumatoid arthritis (RA) is an ongoing inflammatory condition that affects the joints and can lead to severe damage to cartilage and bones, resulting in significant disability. This condition occurs when the immune system becomes overactive, causing osteoclasts, cells responsible for breaking down bone, to become more active than necessary, leading to bone breakdown. RA disrupts the equilibrium between osteoclasts and osteoblasts, resulting in serious complications such as localized bone erosion, weakened bones surrounding the joints, and even widespread osteoporosis. Antibodies against the receptor activator of nuclear factor-κB ligand (RANKL), a crucial stimulator of osteoclast differentiation, have shown great effectiveness both in laboratory settings and actual patient cases. Researchers are increasingly focusing on osteoclasts as significant contributors to bone erosion in RA. Given that RA involves an overactive immune system, T cells and B cells play a pivotal role by intensifying the immune response. The imbalance between Th17 cells and Treg cells, premature aging of T cells, and excessive production of antibodies by B cells not only exacerbate inflammation but also accelerate bone destruction. Understanding the connection between the immune system and osteoclasts is crucial for comprehending the impact of RA on bone health. By delving into the immune mechanisms that lead to joint damage, exploring the interactions between the immune system and osteoclasts, and investigating new biomarkers for RA, we can significantly improve early diagnosis, treatment, and prognosis of this condition.
Collapse
Affiliation(s)
- Mei Yang
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
- Medical Epigenetics Research Center, Chinese Academy of Medical Sciences, Beijing 100005, China
| | - Lei Zhu
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
- Medical Epigenetics Research Center, Chinese Academy of Medical Sciences, Beijing 100005, China
| |
Collapse
|
2
|
Transgenic inhibition of interleukin-6 trans-signaling does not prevent skeletal pathologies in mucolipidosis type II mice. Sci Rep 2021; 11:3556. [PMID: 33574442 PMCID: PMC7878873 DOI: 10.1038/s41598-021-82802-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 01/25/2021] [Indexed: 01/30/2023] Open
Abstract
Severe skeletal alterations are common symptoms in patients with mucolipidosis type II (MLII), a rare lysosomal storage disorder of childhood. We have previously reported that progressive bone loss in a mouse model for MLII is caused by an increased number of bone-resorbing osteoclasts, which is accompanied by elevated expression of the cytokine interleukin-6 (IL-6) in the bone microenvironment. In the present study we addressed the question, if pharmacological blockade of IL-6 can prevent the low bone mass phenotype of MLII mice. Since the cellular IL-6 response can be mediated by either the membrane-bound (classic signaling) or the soluble IL-6 receptor (trans-signaling), we first performed cell culture assays and found that both pathways can increase osteoclastogenesis. We then crossed MLII mice with transgenic mice expressing the recombinant soluble fusion protein sgp130Fc, which represents a natural inhibitor of IL-6 trans-signaling. By undecalcified histology and bone-specific histomorphometry we found that high circulating sgp130Fc levels do not affect skeletal growth or remodeling in wild-type mice. Most importantly, blockade of IL-6 trans-signaling did neither reduce osteoclastogenesis, nor increase bone mass in MLII mice. Therefore, our data clearly demonstrate that the bone phenotype of MLII mice cannot be corrected by blocking the IL-6 trans-signaling.
Collapse
|
3
|
Abstract
Antibody-secreting plasma cells are the central pillars of humoral immunity. They are generated in a fundamental cellular restructuring process from naive B cells upon contact with antigen. This outstanding process is guided and controlled by a complex transcriptional network accompanied by a fascinating morphological metamorphosis, governed by the combined action of Blimp-1, Xbp-1 and IRF-4. The survival of plasma cells requires the intimate interaction with a specific microenvironment, consisting of stromal cells and cells of hematopoietic origin. Cell-cell contacts, cytokines and availability of metabolites such as glucose and amino acids modulate the survival abilities of plasma cells in their niches. Moreover, plasma cells have been shown to regulate immune responses by releasing cytokines. Furthermore, plasma cells are central players in autoimmune diseases and malignant transformation of plasma cells can result in the generation of multiple myeloma. Hence, the development of sophisticated strategies to deplete autoreactive plasma cells and myeloma cells represents a challenge for current and future research.
Collapse
Affiliation(s)
- Wolfgang Schuh
- Division of Molecular Immunology, Department of Internal Medicine III, Nikolaus-Fiebiger Center, University Hospital Erlangen, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany.
| | - Dirk Mielenz
- Division of Molecular Immunology, Department of Internal Medicine III, Nikolaus-Fiebiger Center, University Hospital Erlangen, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany
| | - Hans-Martin Jäck
- Division of Molecular Immunology, Department of Internal Medicine III, Nikolaus-Fiebiger Center, University Hospital Erlangen, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
4
|
Luther J, Yorgan TA, Rolvien T, Ulsamer L, Koehne T, Liao N, Keller D, Vollersen N, Teufel S, Neven M, Peters S, Schweizer M, Trumpp A, Rosigkeit S, Bockamp E, Mundlos S, Kornak U, Oheim R, Amling M, Schinke T, David JP. Wnt1 is an Lrp5-independent bone-anabolic Wnt ligand. Sci Transl Med 2019; 10:10/466/eaau7137. [PMID: 30404864 DOI: 10.1126/scitranslmed.aau7137] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 10/15/2018] [Indexed: 12/14/2022]
Abstract
WNT1 mutations in humans are associated with a new form of osteogenesis imperfecta and with early-onset osteoporosis, suggesting a key role of WNT1 in bone mass regulation. However, the general mode of action and the therapeutic potential of Wnt1 in clinically relevant situations such as aging remain to be established. Here, we report the high prevalence of heterozygous WNT1 mutations in patients with early-onset osteoporosis. We show that inactivation of Wnt1 in osteoblasts causes severe osteoporosis and spontaneous bone fractures in mice. In contrast, conditional Wnt1 expression in osteoblasts promoted rapid bone mass increase in developing young, adult, and aged mice by rapidly increasing osteoblast numbers and function. Contrary to current mechanistic models, loss of Lrp5, the co-receptor thought to transmit extracellular WNT signals during bone mass regulation, did not reduce the bone-anabolic effect of Wnt1, providing direct evidence that Wnt1 function does not require the LRP5 co-receptor. The identification of Wnt1 as a regulator of bone formation and remodeling provides the basis for development of Wnt1-targeting drugs for the treatment of osteoporosis.
Collapse
Affiliation(s)
- Julia Luther
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Timur Alexander Yorgan
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Tim Rolvien
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Lorenz Ulsamer
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Till Koehne
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.,Department of Orthodontics, University Medical Center Hamburg-Eppendorf, D 20246 Hamburg, Germany
| | - Nannan Liao
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Daniela Keller
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Nele Vollersen
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Stefan Teufel
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Mona Neven
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Stephanie Peters
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Michaela Schweizer
- Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, D 20251 Hamburg, Germany
| | - Andreas Trumpp
- Division of Stem Cells and Cancer, Deutsches Krebsforschungszentrum (DKFZ), D 69120 Heidelberg, Germany
| | - Sebastian Rosigkeit
- Institute for Translational Immunology and Research Center for Immunotherapy, University Medical Center, Johannes Gutenberg University, D 55131 Mainz, Germany
| | - Ernesto Bockamp
- Institute for Translational Immunology and Research Center for Immunotherapy, University Medical Center, Johannes Gutenberg University, D 55131 Mainz, Germany
| | - Stefan Mundlos
- Institute of Medical Genetics and Human Genetics, Charité-Universitätsmedizin Berlin, D 13353 Berlin, Germany.,Berlin-Brandenburg Center for Regenerative Therapies, Charité-Universitätsmedizin Berlin, D 13353 Berlin, Germany.,Max Planck Institute for Molecular Genetics, D 14195 Berlin, Germany
| | - Uwe Kornak
- Institute of Medical Genetics and Human Genetics, Charité-Universitätsmedizin Berlin, D 13353 Berlin, Germany.,Berlin-Brandenburg Center for Regenerative Therapies, Charité-Universitätsmedizin Berlin, D 13353 Berlin, Germany.,Max Planck Institute for Molecular Genetics, D 14195 Berlin, Germany
| | - Ralf Oheim
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Michael Amling
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
| | - Thorsten Schinke
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
| | - Jean-Pierre David
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
| |
Collapse
|
5
|
Osteoimmunology: evolving concepts in bone-immune interactions in health and disease. Nat Rev Immunol 2019; 19:626-642. [PMID: 31186549 DOI: 10.1038/s41577-019-0178-8] [Citation(s) in RCA: 469] [Impact Index Per Article: 78.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/13/2019] [Indexed: 12/14/2022]
Abstract
In terrestrial vertebrates, bone tissue constitutes the 'osteoimmune' system, which functions as a locomotor organ and a mineral reservoir as well as a primary lymphoid organ where haematopoietic stem cells are maintained. Bone and mineral metabolism is maintained by the balanced action of bone cells such as osteoclasts, osteoblasts and osteocytes, yet subverted by aberrant and/or prolonged immune responses under pathological conditions. However, osteoimmune interactions are not restricted to the unidirectional effect of the immune system on bone metabolism. In recent years, we have witnessed the discovery of effects of bone cells on immune regulation, including the function of osteoprogenitor cells in haematopoietic stem cell regulation and osteoblast-mediated suppression of haematopoietic malignancies. Moreover, the dynamic reciprocal interactions between bone and malignancies in remote organs have attracted attention, extending the horizon of osteoimmunology. Here, we discuss emerging concepts in the osteoimmune dialogue in health and disease.
Collapse
|
6
|
Schett G, Bozec A, Bekeredjian-Ding I, Chang HD, David JP, Dörner T, Grässel S, Gunzer M, Manz R, Mei H, Mielenz D, Müller-Ladner U, Neumann E, Radbruch A, Richter W, Straub RH. [New insights into the function of bone marrow]. Z Rheumatol 2018; 77:4-7. [PMID: 29691692 DOI: 10.1007/s00393-018-0456-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- G Schett
- Universitätsklinikum Erlangen, Medizinische Klinik 3 - Rheumatologie und Immunologie, Friedrich-Alexander Universität Erlangen - Nürnberg, Ulmenweg 18, 91054, Erlangen, Deutschland.
| | - A Bozec
- Universitätsklinikum Erlangen, Medizinische Klinik 3 - Rheumatologie und Immunologie, Friedrich-Alexander Universität Erlangen - Nürnberg, Ulmenweg 18, 91054, Erlangen, Deutschland
| | - I Bekeredjian-Ding
- Bundesinstitut für Impfstoffe und biomedizinische Arzneimittel, Paul-Ehrlich-Institut, Paul-Ehrlich-Str. 51-59, 63225, Langen, Deutschland
| | - H-D Chang
- Deutsches Rheuma-Forschungszentrum Berlin (DRFZ), Leibniz Gemeinschaft, Charitéplatz 1, 10117, Berlin, Deutschland
| | - J-P David
- Institut für Osteologie und Biomechanik, Universitätsklinikum Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Deutschland
| | - T Dörner
- Med. Klinik mit Schwerpunkt Rheumatologie und Klinische Immunologie, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Deutschland
| | - S Grässel
- Orthopädische Klinik, Exp. Orthopädie, Universität Regensburg, ZMB im Biopark 1, 93053, Regensburg, Deutschland
| | - M Gunzer
- Universitätsklinikum Essen, Institut für Experimentelle Immunologie und Bildgebung, Universität Duisburg-Essen, Hufelandstr. 55, 45147, Essen, Deutschland
| | - R Manz
- Institut für Systemische Entzündungsforschung, Universität Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Deutschland
| | - H Mei
- Deutsches Rheuma-Forschungszentrum Berlin (DRFZ), Leibniz Gemeinschaft, Charitéplatz 1, 10117, Berlin, Deutschland
| | - D Mielenz
- Molekular-Immunologische Abteilung in der Medizinischen Klinik 3, Universitätsklinikum Erlangen, Glückstr. 6, 91054, Erlangen, Deutschland
| | - U Müller-Ladner
- Abt. Rheumatologie und Klinische Immunologie, Justus-Liebig-Universität Gießen, Campus Kerckhoff, Benekestr. 2, 61231, Bad Nauheim, Deutschland
| | - E Neumann
- Abt. Rheumatologie und Klinische Immunologie, Justus-Liebig-Universität Gießen, Campus Kerckhoff, Benekestr. 2, 61231, Bad Nauheim, Deutschland
| | - A Radbruch
- Deutsches Rheuma-Forschungszentrum Berlin (DRFZ), Leibniz Gemeinschaft, Charitéplatz 1, 10117, Berlin, Deutschland
| | - W Richter
- Forschungszentrum für Experimentelle Orthopädie, Universitätsklinikum Heidelberg, Schlierbacher Landstr. 200a, 69118, Heidelberg, Deutschland
| | - R H Straub
- Labor für Exp. Rheumatologie und Neuroendokrinimmunologie, Klinik für Innere Medizin, Universitätsklinikum, 93053, Regensburg, Deutschland
| |
Collapse
|
7
|
Yorgan T, David JP, Amling M, Schinke T. The high bone mass phenotype of Lrp5-mutant mice is not affected by megakaryocyte depletion. Biochem Biophys Res Commun 2018; 497:659-666. [PMID: 29454962 DOI: 10.1016/j.bbrc.2018.02.127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 02/14/2018] [Indexed: 11/18/2022]
Abstract
Bone remodeling is a continuously ongoing process mediated by bone-resorbing osteoclasts and bone-forming osteoblasts. One key regulator of bone formation is the putative Wnt co-receptor Lrp5, where activating mutations in the extracellular domain cause increased bone formation in mice and humans. We have previously reported that megakaryocyte numbers are increased the bone marrow of mice carrying a high bone mass mutation (HBM) of Lrp5 (Lrp5G170V). Since megakaryocytes can promote bone formation, we addressed the question, if the bone remodeling phenotype of Lrp5G170V mice is affected by megakaryocyte depletion. For that purpose we took advantage of a mouse model carrying a mutation of the Mpl gene, encoding the thrombopoietin receptor. These mice (Mplhlb219) were crossed with Lrp5G170V mice to generate animals carrying both mutations in a homozygous state. Using μCT, undecalcified histology and bone-specific histomorphometry of 12 weeks old littermates we observed that megakaryocyte number was remarkably decreased in Mplhlb219/Lrp5G170V mice, yet the high bone mass phenotype of Lrp5G170V mice was not significantly affected by the homozygous Mpl mutation. Finally, when we analyzed 24 weeks old wildtype and Mplhlb219 mice we did not observe a statistically significant alteration of bone remodeling in the latter ones. Taken together, our results demonstrate that an increased number of bone marrow megakaryocytes does not contribute to the increased bone formation caused by Lrp5 activation.
Collapse
Affiliation(s)
- Timur Yorgan
- Department of Osteology and Biomechanics, University Medical Center Hamburg Eppendorf, Hamburg 20246, Germany
| | - Jean-Pierre David
- Department of Osteology and Biomechanics, University Medical Center Hamburg Eppendorf, Hamburg 20246, Germany
| | - Michael Amling
- Department of Osteology and Biomechanics, University Medical Center Hamburg Eppendorf, Hamburg 20246, Germany
| | - Thorsten Schinke
- Department of Osteology and Biomechanics, University Medical Center Hamburg Eppendorf, Hamburg 20246, Germany.
| |
Collapse
|
8
|
Vollersen N, Hermans-Borgmeyer I, Cornils K, Fehse B, Rolvien T, Triviai I, Jeschke A, Oheim R, Amling M, Schinke T, Yorgan TA. High Bone Turnover in Mice Carrying a Pathogenic Notch2 Mutation Causing Hajdu-Cheney Syndrome. J Bone Miner Res 2018; 33:70-83. [PMID: 28856714 DOI: 10.1002/jbmr.3283] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 08/09/2017] [Accepted: 08/27/2017] [Indexed: 01/08/2023]
Abstract
Hajdu-Cheney syndrome (HCS) is a rare autosomal-dominant disorder primarily characterized by acro-osteolysis and early-onset osteoporosis. Genetically, HCS is caused by nonsense or deletion mutations within exon 34 of the NOTCH2 gene, resulting in premature translational termination and production of C-terminally truncated NOTCH2 proteins that are predicted to activate NOTCH2-dependent signaling. To understand the role of Notch2 in bone remodeling, we developed a mouse model of HCS by introducing a pathogenic mutation (6272delT) into the murine Notch2 gene. By μCT and undecalcified histology, we observed generalized osteopenia in two independent mouse lines derived by injection of different targeted embryonic stem (ES) cell clones, yet acro-osteolysis did not occur until the age of 52 weeks. Cellular and dynamic histomorphometry revealed a high bone turnover situation in Notch2+/HCS mice, since osteoblast and osteoclast indices were significantly increased compared with wild-type littermates. Whereas ex vivo cultures failed to uncover cell-autonomous gain-of-functions within the osteoclast or osteoblast lineage, an unbiased RNA sequencing approach identified Tnfsf11 and Il6 as Notch-signaling target genes in bone marrow cells cultured under osteogenic conditions. Because we further observed that the high-turnover pathology of Notch2+/HCS mice was fully normalized by alendronate treatment, our results demonstrate that mutational activation of Notch2 does not directly control osteoblast activity but favors a pro-osteoclastic gene expression pattern, which in turn triggers high bone turnover. © 2017 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Nele Vollersen
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Irm Hermans-Borgmeyer
- Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Kerstin Cornils
- Research Department Cell and Gene Therapy, Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Boris Fehse
- Research Department Cell and Gene Therapy, Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tim Rolvien
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ioanna Triviai
- Clinic for Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anke Jeschke
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ralf Oheim
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Michael Amling
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thorsten Schinke
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Timur Alexander Yorgan
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
9
|
Wilmore JR, Allman D. Here, There, and Anywhere? Arguments for and against the Physical Plasma Cell Survival Niche. THE JOURNAL OF IMMUNOLOGY 2017; 199:839-845. [PMID: 28739594 DOI: 10.4049/jimmunol.1700461] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 05/18/2017] [Indexed: 12/25/2022]
Abstract
To maintain Ab titers, individual plasma cells must survive for extended periods, perhaps even for the life of the host. Although it is clear that plasma cell survival requires cell extrinsic signals, the nature and source of these signals remains open for debate. It is commonly postulated that plasma cells only gain access to these signals within specialized regulatory microenvironments, or niches, in the bone marrow or in the gut. In this review we discuss current concepts and information surrounding plasma cell survival niches, and consider two opposing models to explain long-term serologic immunity.
Collapse
Affiliation(s)
- Joel R Wilmore
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
| | - David Allman
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
| |
Collapse
|
10
|
Mansour A, Wakkach A, Blin-Wakkach C. Emerging Roles of Osteoclasts in the Modulation of Bone Microenvironment and Immune Suppression in Multiple Myeloma. Front Immunol 2017; 8:954. [PMID: 28848556 PMCID: PMC5554508 DOI: 10.3389/fimmu.2017.00954] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Accepted: 07/26/2017] [Indexed: 12/26/2022] Open
Abstract
Multiple myeloma (MM) is one of the most common forms of hematologic malignancy resulting from cancerous proliferation of mature malignant plasma cells (MPCs). But despite the real improvement in therapeutics in the past years, it remains largely incurable. MM is the most frequent cancer to involve bone due to the stimulation of osteoclast (OCL) differentiation and activity. OCLs have a unique capacity to resorb bone. However, recent studies reveal that they are not restrained to this sole function. They participate in the control of angiogenesis, medullary niches, and immune responses, including in MM. Therefore, therapeutic approaches targeting OCLs probably affect not only bone resorption but also many other functions, and OCLs should not be considered anymore only as targets to improve the bone phenotype but also to modulate bone microenvironment. In this review, we explore these novel contributions of OCLs to MM which reveal their strong implication in the MM physiopathology. We also underline the therapeutic interest of targeting OCLs not only to overcome bone lesions, but also to improve bone microenvironment and anti-tumoral immune responses.
Collapse
Affiliation(s)
- Anna Mansour
- CNRS, UMR7370, LP2M, Faculté de Médecine, Nice, France.,Université Nice Sophia Antipolis, Nice, France.,Faculté de Médecine, Université Aix-Marseille, Marseille, France
| | - Abdelilah Wakkach
- CNRS, UMR7370, LP2M, Faculté de Médecine, Nice, France.,Université Nice Sophia Antipolis, Nice, France
| | - Claudine Blin-Wakkach
- CNRS, UMR7370, LP2M, Faculté de Médecine, Nice, France.,Université Nice Sophia Antipolis, Nice, France
| |
Collapse
|
11
|
Fujiwara Y, Piemontese M, Liu Y, Thostenson JD, Xiong J, O'Brien CA. RANKL (Receptor Activator of NFκB Ligand) Produced by Osteocytes Is Required for the Increase in B Cells and Bone Loss Caused by Estrogen Deficiency in Mice. J Biol Chem 2016; 291:24838-24850. [PMID: 27733688 DOI: 10.1074/jbc.m116.742452] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 09/25/2016] [Indexed: 12/20/2022] Open
Abstract
The cytokine receptor activator of NFκB ligand (RANKL) produced by osteocytes is essential for osteoclast formation in cancellous bone under physiological conditions, and RANKL production by B lymphocytes is required for the bone loss caused by estrogen deficiency. Here, we examined whether RANKL produced by osteocytes is also required for the bone loss caused by estrogen deficiency. Mice lacking RANKL in osteocytes were protected from the increase in osteoclast number and the bone loss caused by ovariectomy. Moreover, these mice did not exhibit the increase in bone marrow B lymphocytes caused by ovariectomy that occurred in control littermates. Deletion of estrogen receptor α from B cells did not alter B cell number or bone mass and did not alter the response to ovariectomy. In addition, lineage-tracing studies demonstrated that B cells do not act as osteoclast progenitors in estrogen-replete or estrogen-deficient mice. Taken together, these results demonstrate that RANKL expressed by osteocytes is required for the bone loss as well as the increase in B cell number caused by estrogen deficiency. Moreover, they suggest that estrogen control of B cell number is indirect via osteocytes and that the increase in bone marrow B cells may be a necessary component of the cascade of events that lead to cancellous bone loss during estrogen deficiency. However, the role of B cells is not to act as osteoclast progenitors but may be to act as osteoclast support cells.
Collapse
Affiliation(s)
- Yuko Fujiwara
- From the Center for Osteoporosis and Metabolic Bone Diseases and.,Central Arkansas Veterans Healthcare System, Little Rock, Arkansas 72205
| | - Marilina Piemontese
- From the Center for Osteoporosis and Metabolic Bone Diseases and.,Central Arkansas Veterans Healthcare System, Little Rock, Arkansas 72205
| | - Yu Liu
- From the Center for Osteoporosis and Metabolic Bone Diseases and.,Central Arkansas Veterans Healthcare System, Little Rock, Arkansas 72205
| | - Jeff D Thostenson
- Department of Biostatistics, University of Arkansas for Medical Sciences and
| | - Jinhu Xiong
- From the Center for Osteoporosis and Metabolic Bone Diseases and.,Central Arkansas Veterans Healthcare System, Little Rock, Arkansas 72205
| | - Charles A O'Brien
- From the Center for Osteoporosis and Metabolic Bone Diseases and .,Central Arkansas Veterans Healthcare System, Little Rock, Arkansas 72205
| |
Collapse
|
12
|
Flores-Figueroa E, Gratzinger D. Beyond the Niche: Myelodysplastic Syndrome Topobiology in the Laboratory and in the Clinic. Int J Mol Sci 2016; 17:553. [PMID: 27089321 PMCID: PMC4849009 DOI: 10.3390/ijms17040553] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 03/26/2016] [Accepted: 04/07/2016] [Indexed: 12/18/2022] Open
Abstract
We review the murine and human microenvironment and hematopoietic stem cell niche in the context of intact bone marrow architecture in man and mouse, both in normal and in myelodysplastic syndrome marrow. We propose that the complexity of the hematopoietic stem cell niche can usefully be approached in the context of its topobiology, and we provide a model that incorporates in vitro and in vivo models as well as in situ findings from intact human marrow to explain the changes seen in myelodysplastic syndrome patients. We highlight the clinical application of the study of the bone marrow microenvironment and its topobiology in myelodysplastic syndromes.
Collapse
Affiliation(s)
- Eugenia Flores-Figueroa
- Oncology Research Unit, Oncology Hospital, National Medical Center, IMSS, Avenida Cuauhtémoc 330, Colonia Doctores, c.p. 06720 Mexico City, Mexico.
| | - Dita Gratzinger
- Department of Pathology, Stanford University School of Medicine 300 Pasteur Dr., L235, Stanford, CA 94305, USA.
| |
Collapse
|
13
|
Thaler R, Maurizi A, Roschger P, Sturmlechner I, Khani F, Spitzer S, Rumpler M, Zwerina J, Karlic H, Dudakovic A, Klaushofer K, Teti A, Rucci N, Varga F, van Wijnen AJ. Anabolic and Antiresorptive Modulation of Bone Homeostasis by the Epigenetic Modulator Sulforaphane, a Naturally Occurring Isothiocyanate. J Biol Chem 2016; 291:6754-71. [PMID: 26757819 DOI: 10.1074/jbc.m115.678235] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Indexed: 11/06/2022] Open
Abstract
Bone degenerative pathologies like osteoporosis may be initiated by age-related shifts in anabolic and catabolic responses that control bone homeostasis. Here we show that sulforaphane (SFN), a naturally occurring isothiocyanate, promotes osteoblast differentiation by epigenetic mechanisms. SFN enhances active DNA demethylation viaTet1andTet2and promotes preosteoblast differentiation by enhancing extracellular matrix mineralization and the expression of osteoblastic markers (Runx2,Col1a1,Bglap2,Sp7,Atf4, andAlpl). SFN decreases the expression of the osteoclast activator receptor activator of nuclear factor-κB ligand (RANKL) in osteocytes and mouse calvarial explants and preferentially induces apoptosis in preosteoclastic cells via up-regulation of theTet1/Fas/Caspase 8 and Caspase 3/7 pathway. These mechanistic effects correlate with higher bone volume (∼20%) in both normal and ovariectomized mice treated with SFN for 5 weeks compared with untreated mice as determined by microcomputed tomography. This effect is due to a higher trabecular number in these mice. Importantly, no shifts in mineral density distribution are observed upon SFN treatment as measured by quantitative backscattered electron imaging. Our data indicate that the food-derived compound SFN epigenetically stimulates osteoblast activity and diminishes osteoclast bone resorption, shifting the balance of bone homeostasis and favoring bone acquisition and/or mitigation of bone resorptionin vivo Thus, SFN is a member of a new class of epigenetic compounds that could be considered for novel strategies to counteract osteoporosis.
Collapse
Affiliation(s)
- Roman Thaler
- From the Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of Social Health Insurance Vienna (WGKK) and Austrian Social Insurance for Occupational Risks (AUVA) Trauma Center Meidling, First Medical Department, Hanusch Hospital, 1140 Vienna, Austria, Department of Orthopedic Surgery and Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota 55905, and
| | - Antonio Maurizi
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Paul Roschger
- From the Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of Social Health Insurance Vienna (WGKK) and Austrian Social Insurance for Occupational Risks (AUVA) Trauma Center Meidling, First Medical Department, Hanusch Hospital, 1140 Vienna, Austria
| | - Ines Sturmlechner
- From the Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of Social Health Insurance Vienna (WGKK) and Austrian Social Insurance for Occupational Risks (AUVA) Trauma Center Meidling, First Medical Department, Hanusch Hospital, 1140 Vienna, Austria
| | - Farzaneh Khani
- Department of Orthopedic Surgery and Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota 55905, and
| | - Silvia Spitzer
- From the Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of Social Health Insurance Vienna (WGKK) and Austrian Social Insurance for Occupational Risks (AUVA) Trauma Center Meidling, First Medical Department, Hanusch Hospital, 1140 Vienna, Austria
| | - Monika Rumpler
- From the Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of Social Health Insurance Vienna (WGKK) and Austrian Social Insurance for Occupational Risks (AUVA) Trauma Center Meidling, First Medical Department, Hanusch Hospital, 1140 Vienna, Austria
| | - Jochen Zwerina
- From the Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of Social Health Insurance Vienna (WGKK) and Austrian Social Insurance for Occupational Risks (AUVA) Trauma Center Meidling, First Medical Department, Hanusch Hospital, 1140 Vienna, Austria
| | - Heidrun Karlic
- From the Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of Social Health Insurance Vienna (WGKK) and Austrian Social Insurance for Occupational Risks (AUVA) Trauma Center Meidling, First Medical Department, Hanusch Hospital, 1140 Vienna, Austria
| | - Amel Dudakovic
- Department of Orthopedic Surgery and Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota 55905, and
| | - Klaus Klaushofer
- From the Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of Social Health Insurance Vienna (WGKK) and Austrian Social Insurance for Occupational Risks (AUVA) Trauma Center Meidling, First Medical Department, Hanusch Hospital, 1140 Vienna, Austria
| | - Anna Teti
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Nadia Rucci
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Franz Varga
- From the Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of Social Health Insurance Vienna (WGKK) and Austrian Social Insurance for Occupational Risks (AUVA) Trauma Center Meidling, First Medical Department, Hanusch Hospital, 1140 Vienna, Austria,
| | - Andre J van Wijnen
- Department of Orthopedic Surgery and Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota 55905, and
| |
Collapse
|
14
|
Winter O, Musiol S, Schablowsky M, Cheng Q, Khodadadi L, Hiepe F. Analyzing pathogenic (double-stranded (ds) DNA-specific) plasma cells via immunofluorescence microscopy. Arthritis Res Ther 2015; 17:293. [PMID: 26490351 PMCID: PMC4618946 DOI: 10.1186/s13075-015-0811-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2015] [Accepted: 09/30/2015] [Indexed: 12/21/2022] Open
Abstract
Introduction While protective plasma cells (PCs) are an important part of the individual’s immune defense, autoreactive plasma cells such as dsDNA-specific plasma cells contribute to the pathogenesis of autoimmune diseases like systemic lupus erythematosus (SLE). However, the research on dsDNA-specific plasma cells was restricted to the ELISpot technique, with its limitations, as no other attempt for identification of dsDNA-reactive plasma cells had been successful. Methods With improved fluorochrome labeling of dsDNA, removal of DNA aggregates, and enhanced blocking of unspecific binding, we were able to specifically detect dsDNA-reactive plasma cells by immunofluorescence microscopy. Results Via this novel technique we were able to distinguish short-lived (SLPCs) and long-lived (LLPCs) autoreactive plasma cells, discriminate dsDNA-specific plasma cells according to their immunoglobulin class (IgG, IgM, and IgA) and investigate autoreactive (dsDNA) and vaccine-induced ovalbumin (Ova) plasma cells in parallel. Conclusions The detection of autoreactive dsDNA-specific plasma cells via immunofluorescence microscopy allows specific studies on pathogenic and protective plasma cell subsets and their niches, detailed evaluation of therapeutic treatments and therefore offers new possibilities for basic and clinical research. Electronic supplementary material The online version of this article (doi:10.1186/s13075-015-0811-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Oliver Winter
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany. .,Department of Neonatology, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany.
| | - Stephanie Musiol
- Department of Autoimmunology, Deutsches Rheuma-Forschungszentrum, Charitéplatz 1, 10117, Berlin, Germany.
| | - Melissa Schablowsky
- Department of Autoimmunology, Deutsches Rheuma-Forschungszentrum, Charitéplatz 1, 10117, Berlin, Germany.
| | - Qingyu Cheng
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany. .,Department of Autoimmunology, Deutsches Rheuma-Forschungszentrum, Charitéplatz 1, 10117, Berlin, Germany.
| | - Laleh Khodadadi
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany. .,Department of Autoimmunology, Deutsches Rheuma-Forschungszentrum, Charitéplatz 1, 10117, Berlin, Germany.
| | - Falk Hiepe
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany.
| |
Collapse
|
15
|
Yoon SH, Sugamori KS, Grynpas MD, Mitchell J. Positive effects of bisphosphonates on bone and muscle in a mouse model of Duchenne muscular dystrophy. Neuromuscul Disord 2015; 26:73-84. [PMID: 26494410 DOI: 10.1016/j.nmd.2015.09.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2015] [Revised: 09/25/2015] [Accepted: 09/26/2015] [Indexed: 11/17/2022]
Abstract
Patients with Duchenne muscular dystrophy are at increased risk of decreased bone mineral density and bone fracture as a result of inactivity. To determine if antiresorptive bisphosphonates could improve bone quality and their effects on muscle we studied the Mdx mouse, treated with pamidronate during peak bone growth at 5 and 6 weeks of age, and examined the outcome at 13 weeks of age. Pamidronate increased cortical bone architecture and strength in femurs with increased resistance to fracture. While overall long bone growth was not affected by pamidronate, there was significant inhibition of remodeling in metaphyseal trabecular bone with evidence of residual calcified cartilage. Pamidronate treatment had positive effects on skeletal muscle in the Mdx mice with decreased serum and muscle creatine kinase and evidence of improved muscle histology and grip strength.
Collapse
Affiliation(s)
- Sung-Hee Yoon
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada; Canada and Lunenfeld-Tanenbaum Research Institute, Toronto, Ontario, Canada
| | - Kim S Sugamori
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Marc D Grynpas
- Canada and Lunenfeld-Tanenbaum Research Institute, Toronto, Ontario, Canada
| | - Jane Mitchell
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
16
|
Fu HJ, Zhao Y, Zhou YR, Bao BH, Du Y, Li JX. Ursolic acid derivatives as bone anabolic agents targeted to tryptophan hydroxylase 1 (Tph-1). Eur J Pharm Sci 2015; 76:33-47. [PMID: 25930119 DOI: 10.1016/j.ejps.2015.04.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 04/15/2015] [Accepted: 04/26/2015] [Indexed: 01/28/2023]
Abstract
Tryptophan hydroxylase 1 (Tph-1) initiates the biosynthesis of peripheral serotonin. As peripheral serotonin suppresses bone formation, inhibitor of Tph-1 provides a useful tool to discover anabolic agents for osteoporosis. In the present study, series of ursolic acid (UA) derivatives were synthesized, and their inhibitory activity on serotonin biosynthesis and cytotoxicity were evaluated. Among the derivatives, 8d with potent inhibitory activity on serotonin was applied for further research. The data revealed that 8d significantly inhibited protein and mRNA expressions of Tph-1, and an SPR study indicated that 8d directly interacted to Tph-1 with a binding affinity of KD=15.09μM. Oral administration of 8d significantly prevented bone loss via suppressing serotonin biosynthesis without estrogenic side-effects in ovariectomized (OVX) rats.
Collapse
Affiliation(s)
- Hai-Jian Fu
- State Key Lab of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210093, PR China
| | - Yang Zhao
- State Key Lab of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210093, PR China
| | - Yu-Ren Zhou
- State Key Lab of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210093, PR China
| | - Bei-Hua Bao
- State Key Lab of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210093, PR China
| | - Yun Du
- State Key Lab of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210093, PR China
| | - Jian-Xin Li
- State Key Lab of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210093, PR China.
| |
Collapse
|