1
|
Madhukaran S, Fomina YY, Mahendroo M. Cervical function in pregnancy and disease: new insights from single-cell analysis. Am J Obstet Gynecol 2025; 232:S81-S94. [PMID: 40253084 DOI: 10.1016/j.ajog.2024.07.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 04/21/2025]
Abstract
The uterine cervix plays an essential role in regulating fertility, maintaining pregnancy, remodeling in preparation for parturition, and protecting the reproductive tract from infection. A compromise in cervical function contributes to adverse clinical outcomes. Understanding molecular events that drive the multifunctional and temporally defined roles of the cervix is necessary to effectively treat infertility, reproductive tract infections, preterm birth, labor dystocia, and cervical cancer. The application of single-cell technologies to study cervical pathophysiology, while in its infancy, underscores the potential of these approaches in developing clinically relevant biomarkers of disease and preventative therapies. This review focuses on insights gained from single-cell transcriptomic studies in human and mouse cervical tissue and highlights outstanding questions in the field. One collective advance from single-cell analysis is the dynamic plasticity of cervical epithelial cells during the reproductive cycle in health and disease. Single-cell comparisons between upper and lower regions of the reproductive tract also highlight the distinct and divergent immunological responses elicited in the cervix during the reproductive lifespan. These findings may reconcile prior controversies in the role of proinflammatory mediators during parturition. In addition to providing obstetric insights, single-cell technologies elucidate the molecular pathways that drive cervical cancer progression. Thus far, these technologies have uncovered cellular heterogeneity in the tumor microenvironment and have identified potential cancer stem cells. While single-cell technology alone will not uncover all the molecular underpinnings contributing to preterm birth or cervical cancer, the insights derived from this valuable technology will accelerate our understanding of cervical biology in health and disease, which ultimately will help develop biomarkers for disease prediction and prevention therapies.
Collapse
Affiliation(s)
- ShanmugaPriyaa Madhukaran
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX; Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Yevgenia Y Fomina
- Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Mala Mahendroo
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX; Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX.
| |
Collapse
|
2
|
Franzén Boger M, Hasselrot T, Kaldhusdal V, Miranda GHB, Czarnewski P, Edfeldt G, Bradley F, Rexaj G, Lajoie J, Omollo K, Kimani J, Fowke KR, Broliden K, Tjernlund A. Sustained immune activation and impaired epithelial barrier integrity in the ectocervix of women with chronic HIV infection. PLoS Pathog 2024; 20:e1012709. [PMID: 39561211 PMCID: PMC11614238 DOI: 10.1371/journal.ppat.1012709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 12/03/2024] [Accepted: 10/31/2024] [Indexed: 11/21/2024] Open
Abstract
Chronic systemic immune activation significantly influences human immunodeficiency virus (HIV) disease progression. Despite evidence of a pro-inflammatory environment in the genital tract of HIV-infected women, comprehensive investigations into cervical tissue from this region remain limited. Similarly, the consequences of chronic HIV infection on the integrity of the female genital epithelium are poorly understood, despite its importance in HIV transmission and replication. Ectocervical biopsies were obtained from HIV-seropositive (n = 14) and HIV-seronegative (n = 47) female Kenyan sex workers. RNA sequencing and bioimage analysis of epithelial junction proteins (E-cadherin, desmoglein-1, claudin-1, and zonula occludens-1) were conducted, along with CD4 staining. RNA sequencing revealed upregulation of immunoregulatory genes in HIV-seropositive women, primarily associated with heightened T cell activity and interferon signaling, which further correlated with plasma viral load. Transcription factor analysis confirmed the upregulation of pro-inflammatory transcription factors, such as RELA, NFKB1, and IKZF3, which facilitates HIV persistence in T cells. Conversely, genes and pathways associated with epithelial barrier function and structure were downregulated in the context of HIV. Digital bioimage analysis corroborated these findings, revealing significant disruption of various epithelial junction proteins in ectocervical tissues of the HIV-seropositive women. Thus, chronic HIV infection associated with ectocervical inflammation, characterized by induced T cell responses and interferon signaling, coupled with epithelial disruption. These alterations may influence HIV transmission and heighten susceptibility to other sexually transmitted infections. These findings prompt exploration of therapeutic interventions to address HIV-related complications and mitigate the risk of sexually transmitted infection transmission.
Collapse
Affiliation(s)
- Mathias Franzén Boger
- Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Center for Molecular Medicine, Stockholm, Sweden
| | - Tyra Hasselrot
- Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Center for Molecular Medicine, Stockholm, Sweden
| | - Vilde Kaldhusdal
- Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Center for Molecular Medicine, Stockholm, Sweden
| | - Gisele H. B. Miranda
- Division of Computational Science and Technology, KTH Royal Institute of Technology, Stockholm, Sweden
- BioImage Informatics Facility, Science for Life Laboratory, Solna, Sweden
| | - Paulo Czarnewski
- Science for Life Laboratory, Department of Biochemistry and Biophysics and National Bioinformatics Infrastructure Sweden, Stockholm University, Stockholm, Sweden
| | - Gabriella Edfeldt
- Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Center for Molecular Medicine, Stockholm, Sweden
| | - Frideborg Bradley
- Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Center for Molecular Medicine, Stockholm, Sweden
| | - Genta Rexaj
- Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Center for Molecular Medicine, Stockholm, Sweden
| | - Julie Lajoie
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Canada
| | - Kenneth Omollo
- Department of Medical Microbiology and Immunology, University of Nairobi, Nairobi, Kenya
| | - Joshua Kimani
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Canada
- Department of Medical Microbiology and Immunology, University of Nairobi, Nairobi, Kenya
- Partners for Health and Development in Africa, Nairobi, Kenya
| | - Keith R. Fowke
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Canada
- Department of Medical Microbiology and Immunology, University of Nairobi, Nairobi, Kenya
- Partners for Health and Development in Africa, Nairobi, Kenya
- Department of Community Health Sciences, University of Manitoba, Winnipeg, Canada
| | - Kristina Broliden
- Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Center for Molecular Medicine, Stockholm, Sweden
| | - Annelie Tjernlund
- Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Center for Molecular Medicine, Stockholm, Sweden
| |
Collapse
|
3
|
Gibbs A, Healy K, Kaldhusdal V, Sundling C, Franzén-Boger M, Edfeldt G, Buggert M, Lajoie J, Fowke KR, Kimani J, Kwon DS, Andersson S, Sandberg JK, Broliden K, Davanian H, Chen MS, Tjernlund A. OUP accepted manuscript. J Infect Dis 2022; 226:1428-1440. [PMID: 35511032 PMCID: PMC9574661 DOI: 10.1093/infdis/jiac171] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 04/29/2022] [Indexed: 11/24/2022] Open
Abstract
Background Mucosa-associated invariant T (MAIT) cells are innate-like T cells with specialized antimicrobial functions. Circulating MAIT cells are depleted in chronic human immunodeficiency virus (HIV) infection, but studies examining this effect in peripheral tissues, such as the female genital tract, are lacking. Methods Flow cytometry was used to investigate circulating MAIT cells in a cohort of HIV-seropositive (HIV+) and HIV-seronegative (HIV−) female sex workers (FSWs), and HIV− lower-risk women (LRW). In situ staining and quantitative polymerase chain reaction were performed to explore the phenotype of MAIT cells residing in paired cervicovaginal tissue. The cervicovaginal microbiome was assessed by means of 16S ribosomal RNA gene sequencing. Results MAIT cells in the HIV+ FSW group were low in frequency in the circulation but preserved in the ectocervix. MAIT cell T-cell receptor gene segment usage differed between the HIV+ and HIV− FSW groups. The TRAV1-2–TRAJ20 transcript was the most highly expressed MAIT TRAJ gene detected in the ectocervix in the HIV+ FSW group. MAIT TRAVJ usage was not associated with specific genera in the vaginal microbiome. Conclusions MAIT cells residing in the ectocervix are numerically preserved irrespective of HIV infection status and displayed dominant expression of TRAV1-2–TRAJ20. These findings have implications for understanding the role of cervical MAIT cells in health and disease.
Collapse
Affiliation(s)
| | | | - Vilde Kaldhusdal
- Department of Medicine Solna, Division of Infectious Diseases, Karolinska Institutet, Department of Infectious Diseases, Karolinska University Hospital, Center for Molecular Medicine, Stockholm, Sweden
| | - Christopher Sundling
- Department of Medicine Solna, Division of Infectious Diseases, Karolinska Institutet, Department of Infectious Diseases, Karolinska University Hospital, Center for Molecular Medicine, Stockholm, Sweden
| | - Mathias Franzén-Boger
- Department of Medicine Solna, Division of Infectious Diseases, Karolinska Institutet, Department of Infectious Diseases, Karolinska University Hospital, Center for Molecular Medicine, Stockholm, Sweden
| | - Gabriella Edfeldt
- Department of Medicine Solna, Division of Infectious Diseases, Karolinska Institutet, Department of Infectious Diseases, Karolinska University Hospital, Center for Molecular Medicine, Stockholm, Sweden
| | - Marcus Buggert
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Julie Lajoie
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Canada
- Department of Medical Microbiology, University of Nairobi, Nairobi, Kenya
| | - Keith R Fowke
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Canada
- Department of Medical Microbiology, University of Nairobi, Nairobi, Kenya
- Partners for Health and Development in Africa, Nairobi, Kenya
- Department of Community Health Sciences, University of Manitoba, Winnipeg, Canada
| | - Joshua Kimani
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Canada
- Department of Medical Microbiology, University of Nairobi, Nairobi, Kenya
- Partners for Health and Development in Africa, Nairobi, Kenya
| | - Douglas S Kwon
- Ragon Institute of MGH, MIT, and Harvard, Massachusetts General Hospital, Cambridge, Massachusetts, USA
| | - Sonia Andersson
- Department of Women’s and Children’s Health, Division of Obstetrics and Gynecology, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Johan K Sandberg
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Kristina Broliden
- Department of Medicine Solna, Division of Infectious Diseases, Karolinska Institutet, Department of Infectious Diseases, Karolinska University Hospital, Center for Molecular Medicine, Stockholm, Sweden
| | - Haleh Davanian
- Department of Dental Medicine, Division of Oral Diagnostics and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Margaret Sällberg Chen
- Department of Dental Medicine, Division of Oral Diagnostics and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Annelie Tjernlund
- Correspondence: Annelie Tjernlund, Department of Medicine Solna, Division of Infectious Diseases, Karolinska University Hospital, J7:20, S-171 76 Stockholm, Sweden ()
| |
Collapse
|
4
|
Rodriguez-Garcia M, Connors K, Ghosh M. HIV Pathogenesis in the Human Female Reproductive Tract. Curr HIV/AIDS Rep 2021; 18:139-156. [PMID: 33721260 PMCID: PMC9273024 DOI: 10.1007/s11904-021-00546-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/25/2021] [Indexed: 01/05/2023]
Abstract
PURPOSE OF REVIEW Women remain disproportionately affected by the HIV/AIDS pandemic. The primary mechanism for HIV acquisition in women is sexual transmission, yet the immunobiological factors that contribute to HIV susceptibility remain poorly characterized. Here, we review current knowledge on HIV pathogenesis in women, focusing on infection and immune responses in the female reproductive tract (FRT). RECENT FINDINGS We describe recent findings on innate immune protection and HIV target cell distribution in the FRT. We also review multiple factors that modify susceptibility to infection, including sex hormones, microbiome, trauma, and how HIV risk changes during women's life cycle. Finally, we review current strategies for HIV prevention and identify barriers for research in HIV infection and pathogenesis in women. A complex network of interrelated biological and sociocultural factors contributes to HIV risk in women and impairs prevention and cure strategies. Understanding how HIV establishes infection in the FRT can provide clues to develop novel interventions to prevent HIV acquisition in women.
Collapse
Affiliation(s)
- Marta Rodriguez-Garcia
- Department of Immunology, Tufts University School of Medicine, 150 Harrison Ave, Boston, MA, 02111, USA
| | - Kaleigh Connors
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, 130 De Soto Street, Pittsburgh, PA, 15261, USA
| | - Mimi Ghosh
- Department of Epidemiology, Milken Institute School of Public Health and Health Services, The George Washington University, 800 22nd St NW, Washington, DC, 20052, USA.
| |
Collapse
|
5
|
Abstract
PURPOSE OF REVIEW This review summarizes our current understanding of HIV-1-specific T-cell responses in mucosal tissues, emphasizing recent work and specifically highlighting papers published over the past 18 months. RECENT FINDINGS Recent work has improved the standardization of tissue sampling approaches and provided new insights on the abundance, phenotype and distribution of HIV-1-specific T-cell populations in mucosal tissues. In addition, it has recently been established that some lymphocytes exist in tissues as "permanent resident" memory cells that differ from their counterparts in blood. SUMMARY HIV-1-specific T-cell responses have been extensively characterized; however, the vast majority of reports have focused on T-cells isolated from peripheral blood. Mucosal tissues of the genitourinary and gastrointestinal tracts serve as the primary sites of HIV-1 transmission, and provide "front line" barrier defenses against HIV-1 and other pathogens. In addition, the gastrointestinal tract remains a significant viral reservoir throughout the chronic phase of infection. Tissue-based immune responses may be critical in fighting infection, and understanding these defenses may lead to improved vaccines and immunotherapeutic strategies.
Collapse
|
6
|
Cantero-Pérez J, Grau-Expósito J, Serra-Peinado C, Rosero DA, Luque-Ballesteros L, Astorga-Gamaza A, Castellví J, Sanhueza T, Tapia G, Lloveras B, Fernández MA, Prado JG, Solé-Sedeno JM, Tarrats A, Lecumberri C, Mañalich-Barrachina L, Centeno-Mediavilla C, Falcó V, Buzon MJ, Genescà M. Resident memory T cells are a cellular reservoir for HIV in the cervical mucosa. Nat Commun 2019; 10:4739. [PMID: 31628331 PMCID: PMC6802119 DOI: 10.1038/s41467-019-12732-2] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 09/30/2019] [Indexed: 11/09/2022] Open
Abstract
HIV viral reservoirs are established very early during infection. Resident memory T cells (TRM) are present in tissues such as the lower female genital tract, but the contribution of this subset of cells to the pathogenesis and persistence of HIV remains unclear. Here, we show that cervical CD4+TRM display a unique repertoire of clusters of differentiation, with enrichment of several molecules associated with HIV infection susceptibility, longevity and self-renewing capacities. These protein profiles are enriched in a fraction of CD4+TRM expressing CD32. Cervical explant models show that CD4+TRM preferentially support HIV infection and harbor more viral DNA and protein than non-TRM. Importantly, cervical tissue from ART-suppressed HIV+ women contain high levels of viral DNA and RNA, being the TRM fraction the principal contributor. These results recognize the lower female genital tract as an HIV sanctuary and identify CD4+TRM as primary targets of HIV infection and viral persistence. Thus, strategies towards an HIV cure will need to consider TRM phenotypes, which are widely distributed in tissues.
Collapse
Affiliation(s)
- Jon Cantero-Pérez
- Infectious Diseases Department, Hospital Universitari Vall d'Hebron, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Judith Grau-Expósito
- Infectious Diseases Department, Hospital Universitari Vall d'Hebron, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Carla Serra-Peinado
- Infectious Diseases Department, Hospital Universitari Vall d'Hebron, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Daniela A Rosero
- Infectious Diseases Department, Hospital Universitari Vall d'Hebron, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Laura Luque-Ballesteros
- Infectious Diseases Department, Hospital Universitari Vall d'Hebron, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Antonio Astorga-Gamaza
- Infectious Diseases Department, Hospital Universitari Vall d'Hebron, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Josep Castellví
- Pathology Department, Hospital Universitari Vall d'Hebron, UAB, Barcelona, Spain
| | - Tamara Sanhueza
- Pathology Department, Hospital Universitari Germans Trias i Pujol, Badalona, Barcelona, Spain
| | - Gustavo Tapia
- Pathology Department, Hospital Universitari Germans Trias i Pujol, Badalona, Barcelona, Spain
| | - Belen Lloveras
- Pathology Department, Hospital del Mar, Parc de Salut Mar, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Marco A Fernández
- Flow Cytometry Facility, Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Badalona, Spain
| | - Julia G Prado
- AIDS Research Institute IrsiCaixa, Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Josep M Solé-Sedeno
- Obstetrics and Gynecology Department, Hospital del Mar, Parc de Salut Mar, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Antoni Tarrats
- Department of Obstetrics and Gynecology, Hospital Universitari Germans Trias i Pujol, Badalona, Barcelona, Spain
| | - Carla Lecumberri
- Department of Obstetrics and Gynecology, Hospital Universitari Germans Trias i Pujol, Badalona, Barcelona, Spain
| | - Laura Mañalich-Barrachina
- Department of Obstetrics and Gynecology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Cristina Centeno-Mediavilla
- Department of Obstetrics and Gynecology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Vicenç Falcó
- Infectious Diseases Department, Hospital Universitari Vall d'Hebron, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Maria J Buzon
- Infectious Diseases Department, Hospital Universitari Vall d'Hebron, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain.
| | - Meritxell Genescà
- Infectious Diseases Department, Hospital Universitari Vall d'Hebron, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain.
| |
Collapse
|
7
|
Gibbs A, Buggert M, Edfeldt G, Ranefall P, Introini A, Cheuk S, Martini E, Eidsmo L, Ball TB, Kimani J, Kaul R, Karlsson AC, Wählby C, Broliden K, Tjernlund A. Human Immunodeficiency Virus-Infected Women Have High Numbers of CD103-CD8+ T Cells Residing Close to the Basal Membrane of the Ectocervical Epithelium. J Infect Dis 2019; 218:453-465. [PMID: 29272532 DOI: 10.1093/infdis/jix661] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 12/18/2017] [Indexed: 12/22/2022] Open
Abstract
Background Genital mucosa is the main portal of entry for various incoming pathogens, including human immunodeficiency virus (HIV), hence it is an important site for host immune defenses. Tissue-resident memory T (TRM) cells defend tissue barriers against infections and are characterized by expression of CD103 and CD69. In this study, we describe the composition of CD8+ TRM cells in the ectocervix of healthy and HIV-infected women. Methods Study samples were collected from healthy Swedish and Kenyan HIV-infected and uninfected women. Customized computerized image-based in situ analysis was developed to assess the ectocervical biopsies. Genital mucosa and blood samples were assessed by flow cytometry. Results Although the ectocervical epithelium of healthy women was populated with bona fide CD8+ TRM cells (CD103+CD69+), women infected with HIV displayed a high frequency of CD103-CD8+ cells residing close to their epithelial basal membrane. Accumulation of CD103-CD8+ cells was associated with chemokine expression in the ectocervix and HIV viral load. CD103+CD8+ and CD103-CD8+ T cells expressed cytotoxic effector molecules in the ectocervical epithelium of healthy and HIV-infected women. In addition, women infected with HIV had decreased frequencies of circulating CD103+CD8+ T cells. Conclusions Our data provide insight into the distribution of CD8+ TRM cells in human genital mucosa, a critically important location for immune defense against pathogens, including HIV.
Collapse
Affiliation(s)
- Anna Gibbs
- Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Marcus Buggert
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia.,Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia.,Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Gabriella Edfeldt
- Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Petter Ranefall
- Department of Information Technology, Centre for Image Analysis, Uppsala University, Science for Life Laboratory, Sweden
| | - Andrea Introini
- Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Stanley Cheuk
- Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Elisa Martini
- Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Liv Eidsmo
- Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Terry B Ball
- Department of Medical Microbiology, University of Manitoba, Winnipeg, Canada.,National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg
| | - Joshua Kimani
- Department of Medical Microbiology, Kenyatta National Hospital, University of Nairobi, Kenya
| | - Rupert Kaul
- Department of Medicine and Immunology, University of Toronto, Canada
| | - Annika C Karlsson
- Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Carolina Wählby
- Department of Information Technology, Centre for Image Analysis, Uppsala University, Science for Life Laboratory, Sweden
| | - Kristina Broliden
- Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Annelie Tjernlund
- Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden
| |
Collapse
|
8
|
An S, Raju I, Surenkhuu B, Kwon JE, Gulati S, Karaman M, Pradeep A, Sinha S, Mun C, Jain S. Neutrophil extracellular traps (NETs) contribute to pathological changes of ocular graft-vs.-host disease (oGVHD) dry eye: Implications for novel biomarkers and therapeutic strategies. Ocul Surf 2019; 17:589-614. [PMID: 30965123 PMCID: PMC6721977 DOI: 10.1016/j.jtos.2019.03.010] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 03/27/2019] [Accepted: 03/28/2019] [Indexed: 12/18/2022]
Abstract
PURPOSE To investigate the role of neutrophil extracellular traps (NETs) and NET-associated proteins in the pathogenesis of oGVHD and whether dismantling of NETs with heparin reduces those changes. METHODS Ocular surface washings from oGVHD patients and healthy subjects were analyzed. Isolated peripheral blood human neutrophils were stimulated to generate NETs and heparinized NETs. We performed in vitro experiments using cell lines (corneal epithelial, conjunctival fibroblast, meibomian gland (MG) epithelial and T cells), and in vivo experiments using murine models, and compared the effects of NETs, heparinized NETs, NET-associated proteins and neutralizing antibodies to NET-associated proteins. RESULTS Neutrophils, exfoliated epithelial cells, NETs and NET-associated proteins (extracellular DNA, Neutrophil Elastase, Myeloperoxidase, Oncostatin M (OSM), Neutrophil gelatinase-associated lipocalin (NGAL) and LIGHT/TNFSF14) are present in ocular surface washings (OSW) and mucocellular aggregates (MCA). Eyes with high number of neutrophils in OSW have more severe signs and symptoms of oGVHD. NETs (and OSM) cause epitheliopathy in murine corneas. NETs (and LIGHT/TNFSF14) increase proliferation of T cells. NETs (and NGAL) inhibit proliferation and differentiation of MG epithelial cells. NETs enhance proliferation and myofibroblast transformation of conjunctival fibroblasts. Sub-anticoagulant dose Heparin (100 IU/mL) dismantles NETs and reduces epithelial, fibroblast, T cell and MG cell changes induced by NETs. CONCLUSION NETs and NET-associated proteins contribute to the pathological changes of oGVHD (corneal epitheliopathy, conjunctival cicatrization, ocular surface inflammation and meibomian gland disease). Our data points to the potential of NET-associated proteins (OSM or LIGHT/TNFSF14) to serve as biomarkers and NET-dismantling biologics (heparin eye drops) as treatment for oGVHD.
Collapse
Affiliation(s)
- Seungwon An
- Cornea Translational Biology Laboratory, Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Ilangovan Raju
- Cornea Translational Biology Laboratory, Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Bayasgalan Surenkhuu
- Cornea Translational Biology Laboratory, Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Ji-Eun Kwon
- Cornea Translational Biology Laboratory, Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Shilpa Gulati
- Cornea Translational Biology Laboratory, Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Muge Karaman
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Anubhav Pradeep
- Cornea Translational Biology Laboratory, Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | | | - Christine Mun
- Cornea Translational Biology Laboratory, Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Sandeep Jain
- Cornea Translational Biology Laboratory, Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, 60612, USA.
| |
Collapse
|
9
|
Lajoie J, Tjernlund A, Omollo K, Edfeldt G, Röhl M, Boily-Larouche G, Cheruiyot J, Kimani M, Kimani J, Oyugi J, Broliden K, Fowke KR. Increased Cervical CD4 +CCR5 + T Cells Among Kenyan Sex Working Women Using Depot Medroxyprogesterone Acetate. AIDS Res Hum Retroviruses 2019; 35:236-246. [PMID: 30585733 PMCID: PMC6434599 DOI: 10.1089/aid.2018.0188] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Depot medroxyprogesterone acetate (DMPA) is the most common hormonal contraceptive used by women in sub-Saharan Africa, however, it has been epidemiologically associated with HIV infections. To assess whether DMPA has an effect on the number and activation of HIV target cells, this study assessed the levels and phenotype of blood- and mucosal-derived HIV target cells among women using DMPA. Thirty-five HIV uninfected women from the Pumwani Sex Worker cohort from Nairobi, Kenya were enrolled in the study (15 using DMPA and 20 not using hormonal contraception). Blood (plasma and peripheral blood mononuclear cells) and cervicovaginal (lavage, cervical cells, and ectocervical biopsies) samples were collected. Cellular phenotype and activation status were determined by flow cytometry, cytokine levels were assessed by bead array and image analysis assessed cell number and phenotype in situ. In blood, the proportion of HIV target cells and activated T cells was lower in DMPA users versus those not using hormonal contraceptives. However, analysis of cervical mononuclear cells showed that DMPA users had elevated levels of activated T cells (CD4+CD69+) and expressed lower levels of the HIV co-receptor CCR5 on a per cell basis, while tissue samples showed that in the ectocervix, DMPA users had a higher proportion of CD4+CCR5+ T cells. This study demonstrates that DMPA users had higher levels of activated T cells and HIV target cells in the genital tract. The increased pool of mucosal HIV target cells provides new biological information about the potential impact of DMPA on HIV susceptibility.
Collapse
Affiliation(s)
- Julie Lajoie
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Canada
- Department Medical Microbiology, University of Nairobi, Nairobi, Kenya
| | - Annelie Tjernlund
- Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Kenneth Omollo
- Department Medical Microbiology, University of Nairobi, Nairobi, Kenya
| | - Gabriella Edfeldt
- Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Maria Röhl
- Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Geneviève Boily-Larouche
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Canada
| | | | - Makubo Kimani
- Partners for Health and Development in Africa, Nairobi, Kenya
| | - Joshua Kimani
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Canada
- Department Medical Microbiology, University of Nairobi, Nairobi, Kenya
- Partners for Health and Development in Africa, Nairobi, Kenya
| | - Julius Oyugi
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Canada
- Department Medical Microbiology, University of Nairobi, Nairobi, Kenya
- Partners for Health and Development in Africa, Nairobi, Kenya
| | - Kristina Broliden
- Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Keith R. Fowke
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Canada
- Department Medical Microbiology, University of Nairobi, Nairobi, Kenya
- Partners for Health and Development in Africa, Nairobi, Kenya
- Department of Community Health Science, University of Manitoba, Winnipeg, Canada
| |
Collapse
|
10
|
Increased degranulation of immune cells is associated with higher cervical viral load in HIV-infected women. AIDS 2018; 32:1939-1949. [PMID: 29912065 DOI: 10.1097/qad.0000000000001925] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE The activation of effector immune cells at the cervicovaginal mucosa (CVM) might influence the cervical HIV load and thus the secondary transmission; however, limited information is available about the innate effector cells at CVM during HIV infection. In this study, we quantified and assessed the activation of the effector immune cells at the CVM of HIV-infected women with different disease outcomes: nonprogressive HIV disease (LTNPs) and chronic HIV-infected (CHI) and their relationship with cervical viral shedding. METHOD The phenotype and frequency of cytobrush-derived effector immune cells like natural killer cells, T cells, and dendritic cells and their degranulation status (CD107a expression as a surrogate marker of activation) was determined using flow cytometry in age-matched HIV- infected and uninfected women and their association with cervical HIV load was determined. RESULT The frequencies of dendritic cells, CD56, CD56 natural killer cell subsets were similar in both the study groups and also within the HIV-infected women with and without progressive disease. The frequencies of CD56CD16 natural killer cells (P = 0.04) and degranulating CD56 natural killer cells were significantly higher among HIV-infected women (P < 0.05). Among HIV-infected women, LTNP women showed reduced degranulation of natural killer and CD8 T cells than seen in the CHI women, which was also associated with lower cervical viral load (P < 0.05). CONCLUSION The present study showed that increased degranulation of natural killer and T cells is associated with higher HIV shedding at the CVM of HIV-infected women. Hence reduction of the local immune activation at CVM could be an effective strategy to reduce the cervical viral load.
Collapse
|
11
|
Paquin-Proulx D, Gibbs A, Bächle SM, Checa A, Introini A, Leeansyah E, Wheelock CE, Nixon DF, Broliden K, Tjernlund A, Moll M, Sandberg JK. Innate Invariant NKT Cell Recognition of HIV-1-Infected Dendritic Cells Is an Early Detection Mechanism Targeted by Viral Immune Evasion. THE JOURNAL OF IMMUNOLOGY 2016; 197:1843-51. [PMID: 27481843 DOI: 10.4049/jimmunol.1600556] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 07/01/2016] [Indexed: 12/21/2022]
Abstract
Invariant NKT (iNKT) cells are innate-like T cells that respond rapidly with a broad range of effector functions upon recognition of glycolipid Ags presented by CD1d. HIV-1 carries Nef- and Vpu-dependent mechanisms to interfere with CD1d surface expression, indirectly suggesting a role for iNKT cells in control of HIV-1 infection. In this study, we investigated whether iNKT cells can participate in the innate cell-mediated immune response to HIV-1. Infection of dendritic cells (DCs) with Nef- and Vpu-deficient HIV-1 induced upregulation of CD1d in a TLR7-dependent manner. Infection of DCs caused modulation of enzymes in the sphingolipid pathway and enhanced expression of the endogenous glucosylceramide Ag. Importantly, iNKT cells responded specifically to rare DCs productively infected with Nef- and Vpu-defective HIV-1. Transmitted founder viral isolates differed in their CD1d downregulation capacity, suggesting that diverse strains may be differentially successful in inhibiting this pathway. Furthermore, both iNKT cells and DCs expressing CD1d and HIV receptors resided in the female genital mucosa, a site where HIV-1 transmission occurs. Taken together, these findings suggest that innate iNKT cell sensing of HIV-1 infection in DCs is an early immune detection mechanism, which is independent of priming and adaptive recognition of viral Ag, and is actively targeted by Nef- and Vpu-dependent viral immune evasion mechanisms.
Collapse
Affiliation(s)
- Dominic Paquin-Proulx
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, 14186 Stockholm, Sweden
| | - Anna Gibbs
- Center for Molecular Medicine, Department of Medicine Solna, Karolinska Institutet, 17176 Stockholm, Sweden
| | - Susanna M Bächle
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, 14186 Stockholm, Sweden
| | - Antonio Checa
- Division of Physiological Chemistry II, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17177 Stockholm, Sweden; and
| | - Andrea Introini
- Center for Molecular Medicine, Department of Medicine Solna, Karolinska Institutet, 17176 Stockholm, Sweden
| | - Edwin Leeansyah
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, 14186 Stockholm, Sweden
| | - Craig E Wheelock
- Division of Physiological Chemistry II, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17177 Stockholm, Sweden; and
| | - Douglas F Nixon
- Department of Microbiology, Immunology and Tropical Medicine, George Washington University, Washington, DC 20037
| | - Kristina Broliden
- Center for Molecular Medicine, Department of Medicine Solna, Karolinska Institutet, 17176 Stockholm, Sweden
| | - Annelie Tjernlund
- Center for Molecular Medicine, Department of Medicine Solna, Karolinska Institutet, 17176 Stockholm, Sweden
| | - Markus Moll
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, 14186 Stockholm, Sweden
| | - Johan K Sandberg
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, 14186 Stockholm, Sweden;
| |
Collapse
|
12
|
Mucosal Blood Group Antigen Expression Profiles and HIV Infections: A Study among Female Sex Workers in Kenya. PLoS One 2015; 10:e0133049. [PMID: 26186209 PMCID: PMC4505875 DOI: 10.1371/journal.pone.0133049] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 06/22/2015] [Indexed: 11/19/2022] Open
Abstract
Background The ABO blood group antigens are carbohydrate moieties expressed on human red blood cells however; these antigens can also be expressed on some other cells particularly the surface of epithelial cells and may be found in mucosal secretions. In many human populations 80% secrete ABO antigens (termed ‘secretors’) while 20% do not (termed ‘non-secretors’). Furthermore, there are disease conditions that are associated with secretor status. Objective To investigate correlations between secretor status and HIV infection among female sex workers in Nairobi, Kenya. Methodology This cross-sectional study recruited 280 female sex workers aged 18–65 years from the Pumwani Majengo cohort, Kenya. Blood typing was determined by serological techniques using monoclonal antibodies to the ABO blood group antigens. Secretor phenotyping was determined using anti-H specific lectins specific to salivary, vaginal and cervical blood group H antigen using the agglutination inhibition technique and correlated to individual HIV sero-status. Participants were additionally screened for Bacterial vaginosis, Neisseria gonorrhoea and Trichomonas vaginalis. Results Out of the 280 participants, 212 (75.7%) were secretors and 68 (24.3%) were non-secretors. The incidence of all infections: HIV, Bacterial vaginosis, Neisseria gonorrhoea and Trichomonas vaginalis was higher among secretors compared to non-secretors. However, this difference was only statistically significant for HIV infection incidence rates: HIV infected secretors (83.7%) versus HIV un-infected secretors (71.8%) (p = 0.029) Based on ABO phenotype stratification, the incidence of HIV infection was higher among blood group A secretors (26/52 = 50%), in comparison to B (12/39 = 33.3%: p = 0.066), AB (3/9 = 33.3%: p = 0.355), and O secretors (36/112 = 32.1%: p = 0.028). Conclusion This is the first report to document the variable expression of the ABH blood group antigens profiling secretor and non-secretor phenotypes in the female genital tract among a high-risk population in a Kenyan population. These findings suggest the non-secretor phenotype may confer a certain degree of protection against HIV infection.
Collapse
|
13
|
HIV-1 shedding from the female genital tract is associated with increased Th1 cytokines/chemokines that maintain tissue homeostasis and proportions of CD8+FOXP3+ T cells. J Acquir Immune Defic Syndr 2015; 67:357-64. [PMID: 25202922 DOI: 10.1097/qai.0000000000000336] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
BACKGROUND HIV-1 shedding from the female genital tract is associated with increased sexual and perinatal transmission and has been broadly evaluated in cross-sectional studies. However, few longitudinal studies have evaluated how the immune microenvironment effects shedding. METHODS Thirty-nine HIV-1-infected women had blood, cervicovaginal lavage, and biopsies of the uterine cervix taken quarterly for up to 5 years. Cytokines/chemokines were quantified by Luminex assay in cervicovaginal lavage, and cellular phenotypes were characterized using immunohistochemistry in cervical biopsies. Comparisons of cytokine/chemokine concentrations and the percent of tissue staining positive for T cells were compared using generalized estimating equations between non-shedding and shedding visits across all women and within a subgroup of women who intermittently shed HIV-1. RESULTS Genital HIV-1 shedding was more common when plasma HIV-1 was detected. Cytokines associated with cell growth (interleukin-7), Th1 cells/inflammation (interleukin-12p70), and fractalkine were significantly increased at shedding visits compared with non-shedding visits within intermittent shedders and across all subjects. Within intermittent shedders and across all subjects, FOXP3 T cells were significantly decreased at shedding visits. However, there were significant increases in CD8 cells and proportions of CD8FOXP3 T cells associated with HIV-1 shedding. CONCLUSIONS Within intermittent HIV-1 shedders, decreases in FOXP3 T cells at the shedding visit suggests that local HIV-1 replication leads to CD4 T-cell depletion, with increases in the proportion of CD8FOXP3 cells. HIV-1-infected cell loss may promote a cytokine milieu that maintains cellular homeostasis and increases immune suppressor cells in response to HIV-1 replication in the cervical tissues.
Collapse
|