1
|
Uryu K, Kakei Y, Sendo S, Goto I, Akashi K, Nishimura K, Shirai T, Hirota J, Takeda D, Shigeoka M, Kimoto A, Hasegawa T, Saegusa J, Akashi M. Zymosan-Treated SKG Mice: Assessing Effects of Systemic Inflammation on the Temporomandibular Joint. Oral Dis 2024. [PMID: 39737714 DOI: 10.1111/odi.15242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 10/14/2024] [Accepted: 12/12/2024] [Indexed: 01/01/2025]
Abstract
OBJECTIVES The effects of systemic inflammation on the temporomandibular joint (TMJ) are poorly understood. This study aimed to establish a mouse model to study the effects of systemic inflammation on the TMJ. MATERIALS AND METHODS SKG mice, a BALB/c strain with spontaneous onset of rheumatoid arthritis-like symptoms due to a spontaneous point mutation (W163C) in the gene encoding the SH2 domain of ZAP-70, were treated with zymosan (β-1,3-glucan). Synovitis, bone erosion, and cartilage damage in the TMJ were evaluated using established scores for animal models of inflammatory arthritis. Myeloperoxidase-positive areas and numbers of tartrate-resistant acid phosphatase (TRAP)-positive cells were compared between naive and zymosan-treated SKG mice. Correlations between TMJ inflammation scores and clinical scores for extremities were also assessed. RESULTS There were significant differences in TMJ inflammation scores, including synovitis, bone erosion, and cartilage damage, between naive and high-dose zymosan-treated mice. There were significant differences in myeloperoxidase-positive areas and numbers of TRAP-positive cells between naive and zymosan-treated mice. There were significant correlations between TMJ inflammation scores and clinical scores for extremities. CONCLUSIONS Systemic administration of zymosan efficiently induces TMJ inflammation in SKG mice. Zymosan-treated SKG mice offer a useful tool to investigate the effects of systemic inflammation on the TMJ.
Collapse
Affiliation(s)
- Kaito Uryu
- Department of Oral and Maxillofacial Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yasumasa Kakei
- Department of Oral and Maxillofacial Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Sho Sendo
- Department of Rheumatology and Clinical Immunology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Ikuko Goto
- Department of Oral and Maxillofacial Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Kengo Akashi
- Department of Rheumatology and Clinical Immunology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Keisuke Nishimura
- Department of Rheumatology and Clinical Immunology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Tatsuya Shirai
- Department of Oral and Maxillofacial Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Junya Hirota
- Department of Oral and Maxillofacial Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Daisuke Takeda
- Department of Oral and Maxillofacial Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Manabu Shigeoka
- Department of Oral and Maxillofacial Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Akira Kimoto
- Department of Oral and Maxillofacial Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Takumi Hasegawa
- Department of Oral and Maxillofacial Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Jun Saegusa
- Department of Rheumatology and Clinical Immunology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Masaya Akashi
- Department of Oral and Maxillofacial Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
2
|
Matsuoka S, Fujiwara K, Takigawa Y, Ito S, Mitsumune S, Shiraha K, Goda M, Inoue T, Fujiwara M, Nakamura E, Watanabe H, Kudo K, Sato A, Sato K, Shibayama T. Secondary Pulmonary Alveolar Proteinosis Development during the Treatment for Anti-aminoacyl-tRNA Synthetase Antibody-positive Interstitial Lung Disease. Intern Med 2024; 63:2971-2976. [PMID: 38522908 PMCID: PMC11604386 DOI: 10.2169/internalmedicine.3327-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 02/04/2024] [Indexed: 03/26/2024] Open
Abstract
A 70-year-old woman with anti-aminoacyl-tRNA synthetase (ARS) antibody-positive interstitial lung disease (ARS-ILD) received daily medications and regular cyclophosphamide cycles for recurring exacerbations. Approximately four years after immunosuppression initiation, the patient was admitted for progressive dyspnea on exertion. Chest computed tomography (CT) findings were suggestive of acute exacerbation. Despite intensified immunosuppressive treatment, the radiographic findings worsened, and serum Krebs von den Lungen-6 (KL-6) levels increased. A bronchoalveolar lavage fluid (BALF) examination revealed amorphous globules and alveolar macrophages with eosinophilic granules. Owing to negative anti-granulocyte-macrophage colony-stimulating factor antibody tests, a diagnosis of secondary pulmonary alveolar proteinosis (PAP) was established.
Collapse
Affiliation(s)
- Suzuka Matsuoka
- Department of Respiratory Medicine, NHO Okayama Medical Center, Japan
| | - Keiichi Fujiwara
- Department of Respiratory Medicine, NHO Okayama Medical Center, Japan
| | - Yuki Takigawa
- Department of Respiratory Medicine, NHO Okayama Medical Center, Japan
| | - Saki Ito
- Department of Respiratory Medicine, NHO Okayama Medical Center, Japan
| | - Sho Mitsumune
- Department of Respiratory Medicine, NHO Okayama Medical Center, Japan
| | - Keisuke Shiraha
- Department of Respiratory Medicine, NHO Okayama Medical Center, Japan
| | - Mayu Goda
- Department of Respiratory Medicine, NHO Okayama Medical Center, Japan
| | - Tomoyoshi Inoue
- Department of Respiratory Medicine, NHO Okayama Medical Center, Japan
| | - Miho Fujiwara
- Department of Respiratory Medicine, NHO Okayama Medical Center, Japan
| | - Eri Nakamura
- Department of Respiratory Medicine, NHO Okayama Medical Center, Japan
| | - Hiromi Watanabe
- Department of Respiratory Medicine, NHO Okayama Medical Center, Japan
| | - Kenichiro Kudo
- Department of Respiratory Medicine, NHO Okayama Medical Center, Japan
| | - Akiko Sato
- Department of Respiratory Medicine, NHO Okayama Medical Center, Japan
| | - Ken Sato
- Department of Respiratory Medicine, NHO Okayama Medical Center, Japan
| | - Takuo Shibayama
- Department of Respiratory Medicine, NHO Okayama Medical Center, Japan
| |
Collapse
|
3
|
Chang SH, Jung S, Chae JJ, Kim JY, Kim SU, Choi JY, Han HJ, Kim HT, Kim HJ, Kim HJ, Park WY, Sparks JA, Lee EY, Lee JS. Therapeutic single-cell landscape: methotrexate exacerbates interstitial lung disease by compromising the stemness of alveolar epithelial cells under systemic inflammation. EBioMedicine 2024; 108:105339. [PMID: 39303666 PMCID: PMC11437874 DOI: 10.1016/j.ebiom.2024.105339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 08/21/2024] [Accepted: 08/30/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND Interstitial lung disease (ILD) poses a serious threat in patients with rheumatoid arthritis (RA). However, the impact of cornerstone drugs, including methotrexate (MTX) and TNF inhibitor, on RA-associated ILD (RA-ILD) remains controversial. METHODS Using an SKG mouse model and single-cell transcriptomics, we investigated the effects of MTX and TNF blockade on ILD. FINDINGS Our study revealed that MTX exacerbates pulmonary inflammation by promoting immune cell infiltration, Th17 activation, and fibrosis. In contrast, TNF inhibitor ameliorates these features and inhibits ILD progression. Analysis of data from a human RA-ILD cohort revealed that patients with ILD progression had persistently higher systemic inflammation than those without progression, particularly among the subgroup undergoing MTX treatment. INTERPRETATION These findings highlight the need for personalized therapeutic approaches in RA-ILD, given the divergent outcomes of MTX and TNF inhibitor. FUNDING This work was funded by GENINUS Inc., and the National Research Foundation of Korea, and Seoul National University Hospital.
Collapse
Affiliation(s)
- Sung Hae Chang
- Division of Rheumatology, Department of Internal Medicine, Soonchunhyang University College of Medicine, Cheonan, 31151, South Korea
| | - Seyoung Jung
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Jeong Jun Chae
- Samsung Genome Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Republic of Korea; Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, 06351, South Korea
| | - Jeong Yeon Kim
- Inocras, Inc., San Diego, CA, 92121, USA; Division of Rheumatology, Department of Internal Medicine, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Seon Uk Kim
- Division of Rheumatology, Department of Internal Medicine, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Ji Yong Choi
- Division of Rheumatology, Department of Internal Medicine, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Hye-Jeong Han
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan, 31151, Republic of Korea
| | - Hyun Taek Kim
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan, 31151, Republic of Korea
| | - Hak-Jae Kim
- Department of Clinical Pharmacology, College of Medicine, Soonchunhyang University, Cheonan, 31151, Republic of Korea
| | - Hyun Je Kim
- Department of Biomedical Science, Seoul National University, Seoul, 03080, Republic of Korea
| | - Woong Yang Park
- Samsung Genome Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Republic of Korea
| | - Jeffrey A Sparks
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Eun Young Lee
- Division of Rheumatology, Department of Internal Medicine, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
| | - Jeong Seok Lee
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea; Inocras, Inc., San Diego, CA, 92121, USA.
| |
Collapse
|
4
|
Dai F, He Y, Lei T, Jiang Y, Zhang Q, Qing Y. Identification and functional prediction of long non-coding RNA and mRNA related to connective tissue disease-associated interstitial lung diseases. RHEUMATOLOGY AND IMMUNOLOGY RESEARCH 2023; 4:204-215. [PMID: 38125642 PMCID: PMC10729597 DOI: 10.2478/rir-2023-0030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 05/23/2023] [Indexed: 12/23/2023]
Abstract
Objective Recently, the role of long non-coding RNA (lncRNA) in rheumatic immune diseases has attracted widespread attention. However, knowledge of lncRNA in connective tissue disease-associated interstitial lung disease (CTD-ILD) is limited. This study explored the expression profile and possible mechanisms of lncRNA and mRNA in peripheral blood mononuclear cells (PBMCs) of CTD-ILD patients, especially systemic sclerosis (SSc)-ILD and rheumatoid arthritis (RA)-ILD. Methods LncRNA microarray analysis identified 240 diferentially expressed lncRNAs and 218 diferentially expressed mRNA in the CTD-ILD group and the connective tissue disease without associated interstitial lung disease (CTD-NILD) group. The bioinformatics analysis of diferential genes has identified several important biological processes and signal pathways, including nuclear factor kappa B (NF-kappa B) signaling pathway, interleukin 17 (IL-17) signaling pathway, B cell receptor signaling pathway. Relative expression levels of five diferentially expressed lncRNAs and one mRNA in 120 SSc and RA patients with or without ILD were detected by quantitative reverse-transcription (PCR). Results The ENST00000604692 expression level was significantly higher in the ILD than the without interstitial lung disease (NILD) group; T311354 and arginase-1 were significantly higher in SSc than RA group. Conclusion These data suggest that the specific profile of lncRNA in PBMCs of CTD-ILD patients and the potential signal pathways related to the pathogenesis of CTD-ILD, which may provide newfound insights for the diagnosis and treatment of CTD-ILD patients.
Collapse
Affiliation(s)
- Fei Dai
- Research Center of Hyperuricemia and Gout, the Afiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan Province, China
- Department of Rheumatology and Immunology, the Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan Province, China
| | - Yixi He
- Research Center of Hyperuricemia and Gout, the Afiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan Province, China
- Department of Rheumatology and Immunology, the Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan Province, China
| | - Tianyi Lei
- Research Center of Hyperuricemia and Gout, the Afiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan Province, China
- Department of Rheumatology and Immunology, the Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan Province, China
| | - Yi Jiang
- Research Center of Hyperuricemia and Gout, the Afiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan Province, China
- Department of Rheumatology and Immunology, the Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan Province, China
| | - Quanbo Zhang
- Research Center of Hyperuricemia and Gout, the Afiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan Province, China
- Department of Geriatrics, the Afiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan Province, China
| | - Yufeng Qing
- Research Center of Hyperuricemia and Gout, the Afiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan Province, China
- Department of Rheumatology and Immunology, the Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan Province, China
| |
Collapse
|
5
|
Blanco I, Hernández-González F, García A, Torres-Castro R, Barberà JA. Management of Pulmonary Hypertension Associated with Chronic Lung Disease. Semin Respir Crit Care Med 2023; 44:826-839. [PMID: 37487524 DOI: 10.1055/s-0043-1770121] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
Pulmonary hypertension (PH) is a common complication of chronic lung diseases, particularly in chronic obstructive pulmonary disease (COPD) and interstitial lung diseases (ILD) and especially in advanced disease. It is associated with greater mortality and worse clinical course. Given the high prevalence of some respiratory disorders and because lung parenchymal abnormalities might be present in other PH groups, the appropriate diagnosis of PH associated with respiratory disease represents a clinical challenge. Patients with chronic lung disease presenting symptoms that exceed those expected by the pulmonary disease should be further evaluated by echocardiography. Confirmatory right heart catheterization is indicated in candidates to surgical treatments, suspected severe PH potentially amenable with targeted therapy, and, in general, in those conditions where the result of the hemodynamic assessment will determine treatment options. The treatment of choice for these patients who are hypoxemic is long-term oxygen therapy and pulmonary rehabilitation to improve symptoms. Lung transplant is the only curative therapy and can be considered in appropriate cases. Conventional vasodilators or drugs approved for pulmonary arterial hypertension (PAH) are not recommended in patients with mild-to-moderate PH because they may impair gas exchange and their lack of efficacy shown in randomized controlled trials. Patients with severe PH (as defined by pulmonary vascular resistance >5 Wood units) should be referred to a center with expertise in PH and lung diseases and ideally included in randomized controlled trials. Targeted PAH therapy might be considered in this subset of patients, with careful monitoring of gas exchange. In patients with ILD, inhaled treprostinil has been shown to improve functional ability and to delay clinical worsening.
Collapse
Affiliation(s)
- Isabel Blanco
- Department of Pulmonary Medicine, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic-University of Barcelona, Barcelona, Spain
- Biomedical Research Networking Center on Respiratory Diseases (CIBERES), Madrid, Spain
- European Reference Network on Rare Pulmonary Diseases (ERN-LUNG), Spain
| | - Fernanda Hernández-González
- Department of Pulmonary Medicine, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic-University of Barcelona, Barcelona, Spain
- Biomedical Research Networking Center on Respiratory Diseases (CIBERES), Madrid, Spain
- European Reference Network on Rare Pulmonary Diseases (ERN-LUNG), Spain
| | - Agustín García
- Department of Pulmonary Medicine, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic-University of Barcelona, Barcelona, Spain
- Biomedical Research Networking Center on Respiratory Diseases (CIBERES), Madrid, Spain
- European Reference Network on Rare Pulmonary Diseases (ERN-LUNG), Spain
| | - Rodrigo Torres-Castro
- Department of Pulmonary Medicine, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic-University of Barcelona, Barcelona, Spain
- Biomedical Research Networking Center on Respiratory Diseases (CIBERES), Madrid, Spain
- European Reference Network on Rare Pulmonary Diseases (ERN-LUNG), Spain
| | - Joan A Barberà
- Department of Pulmonary Medicine, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic-University of Barcelona, Barcelona, Spain
- Biomedical Research Networking Center on Respiratory Diseases (CIBERES), Madrid, Spain
- European Reference Network on Rare Pulmonary Diseases (ERN-LUNG), Spain
| |
Collapse
|
6
|
Tseng CC, Sung YW, Chen KY, Wang PY, Yen CY, Sung WY, Wu CC, Ou TT, Tsai WC, Liao WT, Chen CJ, Lee SC, Chang SJ, Yen JH. The Role of Macrophages in Connective Tissue Disease-Associated Interstitial Lung Disease: Focusing on Molecular Mechanisms and Potential Treatment Strategies. Int J Mol Sci 2023; 24:11995. [PMID: 37569370 PMCID: PMC10419312 DOI: 10.3390/ijms241511995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023] Open
Abstract
Connective tissue disease-associated interstitial lung disease (CTD-ILD) is a severe manifestation of CTD that leads to significant morbidity and mortality. Clinically, ILD can occur in diverse CTDs. Pathologically, CTD-ILD is characterized by various histologic patterns, such as nonspecific interstitial pneumonia, organizing pneumonia, and usual interstitial pneumonia. Abnormal immune system responses have traditionally been instrumental in its pathophysiology, and various changes in immune cells have been described, especially in macrophages. This article first briefly overviews the epidemiology, clinical characteristics, impacts, and histopathologic changes associated with CTD-ILD. Next, it summarizes the roles of various signaling pathways in macrophages or products of macrophages in ILD, helped by insights gained from animal models. In the following sections, this review returns to studies of macrophages in CTD-ILD in humans for an overall picture of the current understanding. Finally, we direct attention to potential therapies targeting macrophages in CTD-ILD in investigation or in clinical trials, as well as the future directions regarding macrophages in the context of CTD-ILD. Although the field of macrophages in CTD-ILD is still in its infancy, several lines of evidence suggest the potential of this area.
Collapse
Affiliation(s)
- Chia-Chun Tseng
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Division of Rheumatology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| | - Ya-Wen Sung
- Department of Nursing, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| | - Kuan-Yu Chen
- Division of Rheumatology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| | - Pin-Yi Wang
- Division of Rheumatology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| | - Chang-Yi Yen
- Division of Rheumatology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| | - Wan-Yu Sung
- Division of Rheumatology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| | - Cheng-Chin Wu
- Division of Rheumatology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| | - Tsan-Teng Ou
- Division of Rheumatology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| | - Wen-Chan Tsai
- Division of Rheumatology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| | - Wei-Ting Liao
- Department of Biotechnology, College of Life Science, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| | - Chung-Jen Chen
- Department of Internal Medicine, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung 801, Taiwan
| | - Su-Chen Lee
- Laboratory Diagnosis of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Shun-Jen Chang
- Department of Kinesiology, Health and Leisure Studies, National University of Kaohsiung, Kaohsiung 811, Taiwan
| | - Jeng-Hsien Yen
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Division of Rheumatology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| |
Collapse
|
7
|
Cozzi G, Scagnellato L, Lorenzin M, Savarino E, Zingone F, Ometto F, Favero M, Doria A, Vavricka SR, Ramonda R. Spondyloarthritis with inflammatory bowel disease: the latest on biologic and targeted therapies. Nat Rev Rheumatol 2023:10.1038/s41584-023-00984-8. [PMID: 37386288 DOI: 10.1038/s41584-023-00984-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/19/2023] [Indexed: 07/01/2023]
Abstract
Spondyloarthritis (SpA) encompasses a heterogeneous group of chronic inflammatory diseases that can affect both axial and peripheral joints, tendons and entheses. Among the extra-articular manifestations, inflammatory bowel disease (IBD) is associated with considerable morbidity and effects on quality of life. In everyday clinical practice, treatment of these conditions requires a close collaboration between gastroenterologists and rheumatologists to enable early detection of joint and intestinal manifestations during follow-up and to choose the most effective therapeutic regimen, implementing precision medicine for each patient's subtype of SpA and IBD. The biggest issue in this field is the dearth of drugs that are approved for both diseases, as only TNF inhibitors are currently approved for the treatment of full-spectrum SpA-IBD. Janus tyrosine kinase inhibitors are among the most promising drugs for the treatment of peripheral and axial SpA, as well as for intestinal manifestations. Other therapies such as inhibitors of IL-23 and IL-17, phosphodiesterase 4 inhibitor, α4β7 integrin blockers and faecal microbiota transplantation seem to only be able to control some disease domains, or require further studies. Given the growing interest in the development of novel drugs to treat both conditions, it is important to understand the current state of the art and the unmet needs in the management of SpA-IBD.
Collapse
Affiliation(s)
- Giacomo Cozzi
- Rheumatology Unit, Department of Medicine-DIMED, Padova University Hospital, Padova, Italy
| | - Laura Scagnellato
- Rheumatology Unit, Department of Medicine-DIMED, Padova University Hospital, Padova, Italy
| | - Mariagrazia Lorenzin
- Rheumatology Unit, Department of Medicine-DIMED, Padova University Hospital, Padova, Italy
| | - Edoardo Savarino
- Gastroenterology Unit, Department of Surgery, Oncology and Gastroenterology, University Hospital of Padova, Padova, Italy
| | - Fabiana Zingone
- Gastroenterology Unit, Department of Surgery, Oncology and Gastroenterology, University Hospital of Padova, Padova, Italy
| | - Francesca Ometto
- Rheumatology Unit, Department of Medicine-DIMED, Padova University Hospital, Padova, Italy
| | - Marta Favero
- Rheumatology Unit, Department of Medicine-DIMED, Padova University Hospital, Padova, Italy
| | - Andrea Doria
- Rheumatology Unit, Department of Medicine-DIMED, Padova University Hospital, Padova, Italy
| | - Stephan R Vavricka
- Department of Gastroenterology and Hepatology, University Hospital Zürich and Center for Gastroenterology and Hepatology, Zürich, Switzerland
| | - Roberta Ramonda
- Rheumatology Unit, Department of Medicine-DIMED, Padova University Hospital, Padova, Italy.
| |
Collapse
|
8
|
Chen Y, Li F, Hua M, Liang M, Song C. Role of GM-CSF in lung balance and disease. Front Immunol 2023; 14:1158859. [PMID: 37081870 PMCID: PMC10111008 DOI: 10.3389/fimmu.2023.1158859] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 03/24/2023] [Indexed: 04/07/2023] Open
Abstract
Granulocyte-macrophage colony-stimulating factor (GM-CSF) is a hematopoietic growth factor originally identified as a stimulus that induces the differentiation of bone marrow progenitor cells into granulocytes and macrophages. GM-CSF is now considered to be a multi-origin and pleiotropic cytokine. GM-CSF receptor signals activate JAK2 and induce nuclear signals through the JAK-STAT, MAPK, PI3K, and other pathways. In addition to promoting the metabolism of pulmonary surfactant and the maturation and differentiation of alveolar macrophages, GM-CSF plays a key role in interstitial lung disease, allergic lung disease, alcoholic lung disease, and pulmonary bacterial, fungal, and viral infections. This article reviews the latest knowledge on the relationship between GM-CSF and lung balance and lung disease, and indicates that there is much more to GM-CSF than its name suggests.
Collapse
Affiliation(s)
- Yingzi Chen
- Department of Immunology, School of Laboratory Medicine, Bengbu Medical College, Anhui, China
- Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical College, Anhui, China
| | - Fan Li
- Department of Immunology, School of Laboratory Medicine, Bengbu Medical College, Anhui, China
- Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical College, Anhui, China
| | - Mengqing Hua
- Department of Immunology, School of Laboratory Medicine, Bengbu Medical College, Anhui, China
- Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical College, Anhui, China
| | - Meng Liang
- Department of Biotechnology, School of Life Science, Bengbu Medical College, Anhui, China
- *Correspondence: Chuanwang Song, ; Meng Liang,
| | - Chuanwang Song
- Department of Immunology, School of Laboratory Medicine, Bengbu Medical College, Anhui, China
- Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical College, Anhui, China
- *Correspondence: Chuanwang Song, ; Meng Liang,
| |
Collapse
|
9
|
Ma X, Ma R, Zhang M, Qian B, Wang B, Yang W. Recent Progress in Multiple Sclerosis Treatment Using Immune Cells as Targets. Pharmaceutics 2023; 15:pharmaceutics15030728. [PMID: 36986586 PMCID: PMC10057470 DOI: 10.3390/pharmaceutics15030728] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 02/02/2023] [Accepted: 02/16/2023] [Indexed: 02/24/2023] Open
Abstract
Multiple sclerosis (MS) is an autoimmune-mediated demyelinating disease of the central nervous system. The main pathological features are inflammatory reaction, demyelination, axonal disintegration, reactive gliosis, etc. The etiology and pathogenesis of the disease have not been clarified. The initial studies believed that T cell-mediated cellular immunity is the key to the pathogenesis of MS. In recent years, more and more evidence has shown that B cells and their mediated humoral immune and innate immune cells (such as microglia, dendritic cells, macrophages, etc.) also play an important role in the pathogenesis of MS. This article mainly reviews the research progress of MS by targeting different immune cells and analyzes the action pathways of drugs. The types and mechanisms of immune cells related to the pathogenesis are introduced in detail, and the mechanisms of drugs targeting different immune cells are discussed in depth. This article aims to clarify the pathogenesis and immunotherapy pathway of MS, hoping to find new targets and strategies for the development of therapeutic drugs for MS.
Collapse
Affiliation(s)
- Xiaohong Ma
- Department of Neuroscience, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou 450000, China
- The First Clinical Medical School, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Rong Ma
- School of Pharmaceutical Sciences, Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou University, Zhengzhou 450001, China
| | - Mengzhe Zhang
- School of Pharmaceutical Sciences, Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou University, Zhengzhou 450001, China
| | - Baicheng Qian
- Department of Neuroscience, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou 450000, China
| | - Baoliang Wang
- Department of Neuroscience, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou 450000, China
- Correspondence: (B.W.); (W.Y.)
| | - Weijing Yang
- School of Pharmaceutical Sciences, Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou University, Zhengzhou 450001, China
- Correspondence: (B.W.); (W.Y.)
| |
Collapse
|
10
|
Cheng YC, Zhang X, Lin SC, Li S, Chang YK, Chen HH, Lin CC. Echinocystic Acid Ameliorates Arthritis in SKG Mice by Suppressing Th17 Cell Differentiation and Human Rheumatoid Arthritis Fibroblast-Like Synoviocytes Inflammation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:16176-16187. [PMID: 36516328 DOI: 10.1021/acs.jafc.2c05802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Echinocystic acid (EA), a pentacyclic triterpene, exhibits anti-inflammatory, antioxidant, and analgesic activities to counteract pathological effects in various diseases. Here, we aimed to determine the immunomodulatory effect of EA on zymosan-induced arthritis in SKG mice and how it would influence Th17 differentiation and human rheumatoid arthritis fibroblast-like synoviocytes inflammation. Our results showed that EA (10 and 25 mg/kg) attenuated arthritis symptoms, including high arthritis scores, infiltrating inflammatory cells, synovial hyperplasia, bone erosion, and the high levels of proinflammatory cytokines, such as TNF-α, interleukin (IL)-6, and IL-1β in paw tissues, and reduced the number of splenic Th17 cells. Mechanistically, we found that in vitro treatment of EA inhibited both IL-6- and transforming growth factor-β (TGF-β)-induced Th17 cell differentiation by suppressing the phosphorylation of signal transducers and transcriptional activators, especially STAT3. In line with the in vivo result, EA significantly reduced the protein and mRNA expression of IL-6 and IL-1β in human RA-FLA cells, MH7A cells. Furthermore, the production of both cytokines was confirmed with the downregulation of mitogen-activated protein kinases (MAPK) and nuclear factor-κB (NF-κB) signaling pathways under the stimulation of TNF-α. In conclusion, these findings revealed that EA was capable of amelioration of arthritic disorders in SKG mice through inhibiting Th17 cell differentiation and synovial fibroblast inflammation, supporting that EA is a promising therapeutic candidate for treating RA patients.
Collapse
Affiliation(s)
- Yu-Chieh Cheng
- Department of Orthopaedics, Tungs' Taichung Metro Harbor Hospital, Taichung 433, Taiwan
- Institute of Biomedical Science, National Chung-Hsing University, Taichung 402, Taiwan
| | - Xiang Zhang
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm SE-171 77, Sweden
| | - Shih-Chao Lin
- Bachelor Degree Program in Marine Biotechnology, College of Life Sciences, National Taiwan Ocean University, Keelung 202, Taiwan
| | - Shiming Li
- Department of Food Science, Rutgers University, New Brunswick, New Jersey 08901-8554, United States
| | - Yu-Kang Chang
- Department of Medical Research, Tungs' Taichung Metro Harbor Hospital, Taichung 433, Taiwan
| | - Hsin-Hua Chen
- Division of Allergy, Immunology, and Rheumatology, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung City 40705, Taiwan
- School of Medicine, National Yang-Ming University, Taipei City 30010, Taiwan
- Department of Industrial Engineering and Enterprise Information, Tunghai University, Taichung City 407224, Taiwan
- Institute of Biomedical Science, the iEGG and Animal Biotechnology Center, National Chung-Hsing University, Taichung 402, Taiwan
| | - Chi-Chien Lin
- Institute of Rong Hsing Research Center for Translational Medicine, Chung Hsing University, Taichung City 402, Taiwan
- Institute of Biomedical Science, the iEGG and Animal Biotechnology Center, National Chung-Hsing University, Taichung 402, Taiwan
- Department of Medical Research, China Medical University Hospital, Taichung 404, Taiwan
- Department of Medical Research, Taichung Veterans General Hospital, Taichung 407, Taiwan
- Department of Pharmacology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
11
|
Ning Q, Chen T, Wang G, Xu D, Yu Y, Mao Q, Li T, Li L, Li J, Lu X, Li J, Li Z, Zhang W, Xiao Y, Meng Q, Mi Y, Shang J, Yu Y, Zhao Y, Zhao C, Zhao H, Huang J, Peng J, Tang H, Tang X, Hu J, Hu B, Guo W, Zheng B, Chen B, Zhang Y, Wei J, Sheng J, Chen Z, Wang M, Xie Q, Wang Y, Wang FS, Hou J, Duan Z, Wei L, Jia J. Expert Consensus on Diagnosis and Treatment of End-Stage Liver Disease Complicated with Infections. INFECTIOUS DISEASES & IMMUNITY 2022; 2:168-178. [DOI: 10.1097/id9.0000000000000055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Indexed: 10/13/2023]
Abstract
Abstract
End-stage liver disease (ESLD) is a life-threatening clinical syndrome that markedly increases mortality in patients with infections. In patients with ESLD, infections can induce or aggravate the occurrence of liver decompensation. Consequently, infections are among the most common complications of disease progression. There is a lack of working procedure for early diagnosis and appropriate management for patients with ESLD complicated by infections as well as local and international guidelines or consensus. This consensus assembled up-to-date knowledge and experience across Chinese colleagues, providing data on principles as well as working procedures for the diagnosis and treatment of patients with ESLD complicated by infections.
Collapse
Affiliation(s)
- Qin Ning
- Department of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Tao Chen
- Department of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Guiqiang Wang
- Department of Infectious Disease, Center for Liver Disease, Peking University First Hospital, Beijing 100034, China
| | - Dong Xu
- Department of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yanyan Yu
- Department of Infectious Disease, Center for Liver Disease, Peking University First Hospital, Beijing 100034, China
| | - Qing Mao
- Department of Infectious Diseases, Southwest Hospital, Army Medical University, Chongqing 400038, China
| | - Taisheng Li
- Department of Infectious Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Jun Li
- Department of Infectious Disease, The First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China
| | - Xiaoju Lu
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Jiabin Li
- Department of Infectious Diseases, First Affiliated Hospital of Anhui Medical University, Hefei 230031, China
| | - Zhiwei Li
- Department of Infectious Diseases, Shengjing Hospital, Affiliated Hospital of China Medical University, Shenyang 110801, China
| | - Wenhong Zhang
- Department of Infectious Diseases, Institute of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Yonghong Xiao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Qinghua Meng
- Department of Severe Liver Diseases, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Yuqiang Mi
- Nankai University Second People's Hospital, Tianjin 300071, China
| | - Jia Shang
- Department of Infectious Disease, People's Hospital of Henan Province, Zhengzhou 450003, China
| | - Yunsong Yu
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310020, China
| | - Yingren Zhao
- Department of Infectious Diseases, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China
| | - Caiyan Zhao
- Department of Infectious Diseases, Third Affiliated Hospital of Hebei Medical University, Shijiazhuang 050051, China
| | - Hong Zhao
- Department of Infectious Disease, Center for Liver Disease, Peking University First Hospital, Beijing 100034, China
| | - Jianrong Huang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Jie Peng
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Hong Tang
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Xiaoping Tang
- Research Institute of Infectious Diseases, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou 510060, China
| | - Jinhua Hu
- Liver Failure Treatment and Research Center, The Fifth Medical Center, China PLA General Hospital, Beijing 100039, China
| | - Bijie Hu
- Department of Infectious Diseases, Zhongshan Hospital of Fudan University, Shanghai 200032, China
| | - Wei Guo
- Department of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Bo Zheng
- Institute of Clinical Pharmacology, Peking University First Hospital, Beijing 100034, China
| | - Baiyi Chen
- Department of Infectious Diseases, The First Hospital of China Medical University, Shenyang 110002, China
| | - Yuexin Zhang
- Center of Infectious Diseases, First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, China
| | - Jia Wei
- Department of Infectious Disease, The Second People's Hospital, Kunming 650201, China
| | - Jifang Sheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Zhi Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Minggui Wang
- Department of Infectious Diseases, Institute of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Qing Xie
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Yuming Wang
- Department of Infectious Diseases, Southwest Hospital, Army Medical University, Chongqing 400038, China
| | - Fu-Sheng Wang
- Liver Failure Treatment and Research Center, The Fifth Medical Center, China PLA General Hospital, Beijing 100039, China
| | - Jinlin Hou
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Zhongping Duan
- Artificial Liver Center, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Lai Wei
- Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Peking University Hepatology Institute, Peking University People's Hospital, Beijing 100044, China
| | - Jidong Jia
- Liver Research Center, Beijing Friendship Hospital, Capital Medial University; Beijing Key Laboratory of Translational Medicine on Liver Cirrhosis & National Clinical Research Center for Digestive Diseases, Beijing 100050, China
| | | |
Collapse
|
12
|
Abstract
Granulocyte macrophage-colony stimulating factor (GM-CSF) was originally identified as a growth factor for its ability to promote the proliferation and differentiation in vitro of bone marrow progenitor cells into granulocytes and macrophages. Many preclinical studies, using GM-CSF deletion or depletion approaches, have demonstrated that GM-CSF has a wide range of biological functions, including the mediation of inflammation and pain, indicating that it can be a potential target in many inflammatory and autoimmune conditions. This review provides a brief overview of GM-CSF biology and signaling, and summarizes the findings from preclinical models of a range of inflammatory and autoimmune disorders and the latest clinical trials targeting GM-CSF or its receptor in these disorders.
Collapse
Affiliation(s)
- Adrian A Achuthan
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria 3050, Australia.
| | - Kevin M C Lee
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria 3050, Australia
| | - John A Hamilton
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria 3050, Australia; Australian Institute for Musculoskeletal Science, St Albans, Victoria 3021, Australia
| |
Collapse
|
13
|
Ingelfinger F, De Feo D, Becher B. GM-CSF: Master regulator of the T cell-phagocyte interface during inflammation. Semin Immunol 2021; 54:101518. [PMID: 34763973 DOI: 10.1016/j.smim.2021.101518] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 10/23/2021] [Indexed: 12/21/2022]
Abstract
The role of granulocyte-macrophage colony-stimulating factor (GM-CSF) was sequentially redefined during the past decades. Originally described as a hematopoietic growth factor for myelopoiesis, GM-CSF was recognized as a central mediator of inflammation bridging the innate and adaptive arms of the immune system. Phagocytes sensing GM-CSF adapt an inflammatory phenotype and facilitate pathogen clearance. However, in the context of chronic tissue inflammation, GM-CSF secreted by tissue-invading lymphocytes has detrimental effects by licensing tissue damage and hyperinflammation. Accordingly, therapeutic intervention at the T cell-phagocyte interface represents an attractive target to ameliorate disease progression and immunopathology. Although GM-CSF is largely dispensable for steady state myelopoiesis, dysregulation, as seen in chronic inflammatory diseases, may however lead to disrupted haematopoiesis and long-term effects on bone marrow output. Here, we will survey the role of GM-CSF during inflammation, discuss the extent to which GM-CSF-secreting T cells, debate their introduction as a separate T cell lineage and explore current and future clinical implications of GM-CSF in human disease settings.
Collapse
Affiliation(s)
- Florian Ingelfinger
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland; Department of Neurology, University Hospital Zurich, Zurich, Switzerland
| | - Donatella De Feo
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Burkhard Becher
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
14
|
Kusuda M, Haroon N, Nakamura A. Complexity of enthesitis and new bone formation in ankylosing spondylitis: current understanding of the immunopathology and therapeutic approaches. Mod Rheumatol 2021; 32:484-492. [PMID: 34918137 DOI: 10.1093/mr/roab057] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/29/2021] [Accepted: 08/03/2021] [Indexed: 01/20/2023]
Abstract
Despite increasing availability of treatments for spondyloarthritis (SpA) including tumour necrosis factor (TNF) and interleukin-17 (IL-17) inhibitors, there is no established treatment that abates new bone formation (NBF) in ankylosing spondylitis (AS), a subset of SpA. Recent research on TNF has revealed the increased level of transmembrane TNF in the joint tissue of SpA patients compared to that of rheumatoid arthritis patients, which appears to facilitate TNF-driven osteo-proliferative changes in AS. In addition, there is considerable interest in the central role of IL-23/IL-17 axis in type 3 immunity and the therapeutic potential of blocking this axis to ameliorate enthesitis and NBF in AS. AS immunopathology involves a variety of immune cells, including both innate and adoptive immune cells, to orchestrate the immune response driving type 3 immunity. In response to external stimuli of inflammatory cytokines, local osteo-chondral progenitor cells activate intra-cellular anabolic molecules and signals involving hedgehog, bone morphogenetic proteins, receptor activator of nuclear factor kappa-B ligand, and Wnt pathways to promote NBF in AS. Here, we provide an overview of the current immunopathology and future directions for the treatment of enthesitis and NBF associated with AS.
Collapse
Affiliation(s)
- Masaki Kusuda
- Schroeder Arthritis Institute, Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Nigil Haroon
- Schroeder Arthritis Institute, Krembil Research Institute, University Health Network, Toronto, ON, Canada.,Spondylitis Program, Division of Rheumatology, Toronto Western Hospital, University Health Network, Toronto, ON, Canada.,Division of Rheumatology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada.,Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Akihiro Nakamura
- Schroeder Arthritis Institute, Krembil Research Institute, University Health Network, Toronto, ON, Canada.,Spondylitis Program, Division of Rheumatology, Toronto Western Hospital, University Health Network, Toronto, ON, Canada.,Division of Rheumatology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada.,Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
15
|
Al-Hamed FS, Rodan R, Ramirez-Garcialuna JL, Elkashty O, Al-Shahrani N, Tran SD, Lordkipanidzé M, Kaartinen M, Badran Z, Tamimi F. The effect of aging on the bone healing properties of blood plasma. Injury 2021; 52:1697-1708. [PMID: 34049703 DOI: 10.1016/j.injury.2021.05.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 05/01/2021] [Indexed: 02/02/2023]
Abstract
OBJECTIVES Age-related changes in blood composition have been found to affect overall health. Thus, this study aimed to understand the effect of these changes on bone healing by assessing how plasma derived from young and old rats affect bone healing using a rat model. METHODS . Blood plasma was collected from 6-month and 24-month old rats. Differences in elemental composition and metabolome were assessed using optical emission spectrometry and liquid mass spectrometry, respectively. Bilateral tibial bone defects were created in eight rats. Young plasma was randomly applied to one defect, while aged plasma was applied to the contralateral one. Rats were euthanized after two weeks, and their tibiae were analyzed using micro-CT and histology. The proteome of bone marrow was analyzed in an additional group of three rats. RESULTS Bone-defects treated with aged-plasma were significantly bigger in size and presented lower bone volume/tissue volume compared to defects treated with young-plasma. Histomorphometric analysis showed fewer mast cells, macrophages, and lymphocytes in defects treated with old versus young plasma. The proteome analysis showed that young plasma upregulated pathways required for bone healing (e.g. RUNX2, platelet signaling, and crosslinking of collagen fibrils) whereas old plasma upregulated pathways, involved in disease and inflammation (e.g. IL-7, IL-15, IL-20, and GM-CSF signaling). Plasma derived from old rats presented higher concentrations of iron, phosphorous, and nucleotide metabolites as well as lower concentrations of platelets, citric acid cycle, and pentose phosphate pathway metabolites compared to plasma derived from young rats. CONCLUSION bone defects treated with plasma-derived from young rats showed better healing compared to defects treated with plasma-derived from old rats. The application of young and old plasmas has different effects on the proteome of bone defects.
Collapse
Affiliation(s)
| | - Rania Rodan
- Faculty of Dentistry, McGill University, Montreal, QC, Canada; Senior specialist in periodontology, Royal Medical Services, Amman, Jordan
| | - Jose Luis Ramirez-Garcialuna
- Faculty of Medicine, McGill University, Montreal, QC, Canada; The Bone Engineering Labs, Research Institute McGill University Health Center, Montreal, QC, Canada
| | - Osama Elkashty
- Faculty of Dentistry, McGill University, Montreal, QC, Canada; Faculty of Dentistry, Mansoura University, Mansoura, Egypt
| | | | - Simon D Tran
- Faculty of Dentistry, McGill University, Montreal, QC, Canada
| | - Marie Lordkipanidzé
- Faculté de pharmacie, Université de Montréal, Montréal, QC, Canada; Research Center, Montreal Heart Institute, Montreal, QC, Canada
| | - Mari Kaartinen
- Faculty of Dentistry, McGill University, Montreal, QC, Canada
| | - Zahi Badran
- Faculty of Dentistry, McGill University, Montreal, QC, Canada; Department of Periodontology (CHU/Rmes Inserm U1229/UIC11), Faculty of Dental Surgery, University of Nantes, Nantes, France; College of Dental Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Faleh Tamimi
- College of Dental Medicine, Qatar University, Doha, Qatar.
| |
Collapse
|
16
|
Mizutani S, Nishio J, Kondo K, Motomura K, Yamada Z, Masuoka S, Yamada S, Muraoka S, Ishii N, Kuboi Y, Sendo S, Mikami T, Imai T, Nanki T. Treatment with an Anti-CX3CL1 Antibody Suppresses M1 Macrophage Infiltration in Interstitial Lung Disease in SKG Mice. Pharmaceuticals (Basel) 2021; 14:ph14050474. [PMID: 34067842 PMCID: PMC8156344 DOI: 10.3390/ph14050474] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 05/13/2021] [Indexed: 12/28/2022] Open
Abstract
CX3C Motif Chemokine Ligand 1 (CX3CL1; fractalkine) has been implicated in the pathogenesis of rheumatoid arthritis (RA) and its inhibition was found to attenuate arthritis in mice as well as in a clinical trial. Therefore, we investigated the effects of an anti-CX3CL1 monoclonal antibody (mAb) on immune-mediated interstitial lung disease (ILD) in SKG mice, which exhibit similar pathological and clinical features to human RA-ILD. CX3CL1 and CX3C chemokine receptor 1 (CX3CR1), the receptor for CX3CL1, were both expressed in the fibroblastic foci of lung tissue and the number of bronchoalveolar fluid (BALF) cells was elevated in ILD in SKG mice. No significant changes were observed in lung fibrosis or the number of BALF cells by the treatment with anti-CX3CL1 mAb. However, significantly greater reductions were observed in the number of M1 macrophages than in M2 macrophages in the BALF of treated mice. Furthermore, CX3CR1 expression levels were significantly higher in M1 macrophages than in M2 macrophages. These results suggest the stronger inhibitory effects of the anti-CX3CL1 mAb treatment against the alveolar infiltration of M1 macrophages than M2 macrophages in ILD in SKG mice. Thus, the CX3CL1-CX3CR1 axis may be involved in the infiltration of inflammatory M1 macrophages in RA-ILD.
Collapse
Affiliation(s)
- Satoshi Mizutani
- Department of Internal Medicine, Division of Rheumatology, Toho University School of Medicine, Ota-ku, Tokyo 143-8541, Japan; (S.M.); (J.N.); (K.K.); (K.M.); (Z.Y.); (S.M.); (S.Y.); (S.M.)
| | - Junko Nishio
- Department of Internal Medicine, Division of Rheumatology, Toho University School of Medicine, Ota-ku, Tokyo 143-8541, Japan; (S.M.); (J.N.); (K.K.); (K.M.); (Z.Y.); (S.M.); (S.Y.); (S.M.)
- Department of Immunopathology and Immunoregulation, Toho University School of Medicine, Ota-ku, Tokyo 143-8540, Japan
| | - Kanoh Kondo
- Department of Internal Medicine, Division of Rheumatology, Toho University School of Medicine, Ota-ku, Tokyo 143-8541, Japan; (S.M.); (J.N.); (K.K.); (K.M.); (Z.Y.); (S.M.); (S.Y.); (S.M.)
| | - Kaori Motomura
- Department of Internal Medicine, Division of Rheumatology, Toho University School of Medicine, Ota-ku, Tokyo 143-8541, Japan; (S.M.); (J.N.); (K.K.); (K.M.); (Z.Y.); (S.M.); (S.Y.); (S.M.)
| | - Zento Yamada
- Department of Internal Medicine, Division of Rheumatology, Toho University School of Medicine, Ota-ku, Tokyo 143-8541, Japan; (S.M.); (J.N.); (K.K.); (K.M.); (Z.Y.); (S.M.); (S.Y.); (S.M.)
| | - Shotaro Masuoka
- Department of Internal Medicine, Division of Rheumatology, Toho University School of Medicine, Ota-ku, Tokyo 143-8541, Japan; (S.M.); (J.N.); (K.K.); (K.M.); (Z.Y.); (S.M.); (S.Y.); (S.M.)
| | - Soichi Yamada
- Department of Internal Medicine, Division of Rheumatology, Toho University School of Medicine, Ota-ku, Tokyo 143-8541, Japan; (S.M.); (J.N.); (K.K.); (K.M.); (Z.Y.); (S.M.); (S.Y.); (S.M.)
| | - Sei Muraoka
- Department of Internal Medicine, Division of Rheumatology, Toho University School of Medicine, Ota-ku, Tokyo 143-8541, Japan; (S.M.); (J.N.); (K.K.); (K.M.); (Z.Y.); (S.M.); (S.Y.); (S.M.)
| | - Naoto Ishii
- KAN Research Institute, Inc., Chuo-ku, Kobe-shi, Hyogo 650-0047, Japan; (N.I.); (Y.K.); (T.I.)
| | - Yoshikazu Kuboi
- KAN Research Institute, Inc., Chuo-ku, Kobe-shi, Hyogo 650-0047, Japan; (N.I.); (Y.K.); (T.I.)
| | - Sho Sendo
- Department of Internal Medicine, Division of Rheumatology and Clinical Immunology, Kobe University Graduate School of Medicine, Chuo-ku, Kobe-shi, Hyogo 650-0017, Japan;
| | - Tetuo Mikami
- Department of Pathology, Toho University School of Medicine, Ota-ku, Tokyo 143-8540, Japan;
| | - Toshio Imai
- KAN Research Institute, Inc., Chuo-ku, Kobe-shi, Hyogo 650-0047, Japan; (N.I.); (Y.K.); (T.I.)
| | - Toshihiro Nanki
- Department of Internal Medicine, Division of Rheumatology, Toho University School of Medicine, Ota-ku, Tokyo 143-8541, Japan; (S.M.); (J.N.); (K.K.); (K.M.); (Z.Y.); (S.M.); (S.Y.); (S.M.)
- Correspondence: ; Tel.: +81-3-3762-4151 (ext. 6591)
| |
Collapse
|
17
|
Lee KMC, Achuthan AA, Hamilton JA. GM-CSF: A Promising Target in Inflammation and Autoimmunity. Immunotargets Ther 2020; 9:225-240. [PMID: 33150139 PMCID: PMC7605919 DOI: 10.2147/itt.s262566] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 10/15/2020] [Indexed: 12/14/2022] Open
Abstract
The cytokine, granulocyte macrophage-colony stimulating factor (GM-CSF), was firstly identified as being able to induce in vitro the proliferation and differentiation of bone marrow progenitors into granulocytes and macrophages. Much preclinical data have indicated that GM-CSF has a wide range of functions across different tissues in its action on myeloid cells, and GM-CSF deletion/depletion approaches indicate its potential as an important therapeutic target in several inflammatory and autoimmune disorders, for example, rheumatoid arthritis. In this review, we discuss briefly the biology of GM-CSF, raise some current issues and questions pertaining to this biology, summarize the results from preclinical models of a range of inflammatory and autoimmune disorders and list the latest clinical trials evaluating GM-CSF blockade in such disorders.
Collapse
Affiliation(s)
- Kevin M C Lee
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Melbourne, VIC, 3050, Australia
| | - Adrian A Achuthan
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Melbourne, VIC, 3050, Australia
| | - John A Hamilton
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Melbourne, VIC, 3050, Australia
- Australian Institute for Musculoskeletal Science (AIMSS), The University of Melbourne and Western Health, Melbourne, VIC, Australia
| |
Collapse
|
18
|
Hamamoto Y, Ouhara K, Munenaga S, Shoji M, Ozawa T, Hisatsune J, Kado I, Kajiya M, Matsuda S, Kawai T, Mizuno N, Fujita T, Hirata S, Tanimoto K, Nakayama K, Kishi H, Sugiyama E, Kurihara H. Effect of Porphyromonas gingivalis infection on gut dysbiosis and resultant arthritis exacerbation in mouse model. Arthritis Res Ther 2020; 22:249. [PMID: 33076980 PMCID: PMC7574451 DOI: 10.1186/s13075-020-02348-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 10/07/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Porphyromonas gingivalis (Pg) infection causes periodontal disease and exacerbates rheumatoid arthritis (RA). It is reported that inoculation of periodontopathogenic bacteria (i.e., Pg) can alter gut microbiota composition in the animal models. Gut microbiota dysbiosis in human has shown strong associations with systemic diseases, including RA, diabetes mellitus, and inflammatory bowel disease. Therefore, this study investigated dysbiosis-mediated arthritis by Pg oral inoculation in an experimental arthritis model mouse. METHODS Pg inoculation in the oral cavity twice a week for 6 weeks was performed to induce periodontitis in SKG mice. Concomitantly, a single intraperitoneal (i.p.) injection of laminarin (LA) was administered to induce experimental arthritis (Pg-LA mouse). Citrullinated protein (CP) and IL-6 levels in serum as well as periodontal, intestinal, and joint tissues were measured by ELISA. Gut microbiota composition was determined by pyrosequencing the 16 s ribosomal RNA genes after DNA purification of mouse feces. Fecal microbiota transplantation (FMT) was performed by transferring Pg-LA-derived feces to normal SKG mice. The effects of Pg peptidylarginine deiminase (PgPAD) on the level of citrullinated proteins and arthritis progression were determined using a PgPAD knockout mutant. RESULTS Periodontal alveolar bone loss and IL-6 in gingival tissue were induced by Pg oral infection, as well as severe joint destruction, increased arthritis scores (AS), and both IL-6 and CP productions in serum, joint, and intestinal tissues. Distribution of Deferribacteres and S24-7 was decreased, while CP was significantly increased in gingiva, joint, and intestinal tissues of Pg-inoculated experimental arthritis mice compared to experimental arthritis mice without Pg inoculation. Further, FMT from Pg-inoculated experimental arthritis mice reproduced donor gut microbiota and resulted in severe joint destruction with increased IL-6 and CP production in joint and intestinal tissues. The average AS of FMT from Pg-inoculated experimental arthritis was much higher than that of donor mouse. However, inoculation of the PgPAD knockout mutant inhibited the elevation of arthritis scores and ACPA level in serum and reduced CP amount in gingival, joint, and intestinal tissues compared to Pg wild-type inoculation. CONCLUSION Pg oral infection affected gut microbiota dysbiosis and joint destruction via increased CP generation.
Collapse
Affiliation(s)
- Yuta Hamamoto
- Department of Periodontal Medicine, Division of Applied Life Sciences, Institute of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| | - Kazuhisa Ouhara
- Department of Periodontal Medicine, Division of Applied Life Sciences, Institute of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan.
| | - Syuichi Munenaga
- Department of Periodontal Medicine, Division of Applied Life Sciences, Institute of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| | - Mikio Shoji
- Department of Microbiology and Oral Infection, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki, 852-8588, Japan
| | - Tatsuhiko Ozawa
- Department of Immunology, Faculty of Medicine, Academic Assembly, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Jyunzo Hisatsune
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases (NIID), Toyama 1-23-1, Shinjuku-ku, Tokyo, 162-8640, Japan
| | - Isamu Kado
- Department of Orthodontics and Craniofacial Developmental Biology, Graduate School of Biomedical & Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| | - Mikihito Kajiya
- Department of Periodontal Medicine, Division of Applied Life Sciences, Institute of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| | - Shinji Matsuda
- Department of Periodontal Medicine, Division of Applied Life Sciences, Institute of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| | - Toshihisa Kawai
- Department of Periodontology, Nova Southeastern University College of Dental Medicine, 3200 South University Drive, Fort Lauderdale, FL, 33328, USA
| | - Noriyoshi Mizuno
- Department of Periodontal Medicine, Division of Applied Life Sciences, Institute of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| | - Tsuyoshi Fujita
- Department of Periodontal Medicine, Division of Applied Life Sciences, Institute of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| | - Shintaro Hirata
- Department of Clinical Immunology and Rheumatology, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Kotaro Tanimoto
- Department of Orthodontics and Craniofacial Developmental Biology, Graduate School of Biomedical & Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| | - Koji Nakayama
- Department of Microbiology and Oral Infection, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki, 852-8588, Japan
| | - Hiroyuki Kishi
- Department of Immunology, Faculty of Medicine, Academic Assembly, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Eiji Sugiyama
- Department of Clinical Immunology and Rheumatology, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Hidemi Kurihara
- Department of Periodontal Medicine, Division of Applied Life Sciences, Institute of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| |
Collapse
|
19
|
Chiang CC, Chen CM, Suen JL, Su HH, Hsieh CC, Cheng CM. Stimulatory effect of gastroesophageal reflux disease (GERD) on pulmonary fibroblast differentiation. Dig Liver Dis 2020; 52:988-994. [PMID: 32727693 DOI: 10.1016/j.dld.2020.07.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 07/04/2020] [Accepted: 07/07/2020] [Indexed: 12/11/2022]
Abstract
Epidemiological studies indicate that prolonged micro-aspiration of gastric fluid is associated in gastroesophageal reflux disease with the development of chronic respiratory diseases, possibly caused by inflammation-related immunomodulation. Therefore, we sought to ascertain the effect of gastric fluid exposure on pulmonary residential cells. The expression of α-smooth muscle actin as a fibrotic marker was increased in both normal human pulmonary fibroblast cells and mouse macrophages. Gastric fluid enhanced the proliferation and migration of HFL-1 cells and stimulated the expression of inflammatory cytokines in an antibody assay. Elevated expression of the Rho signaling pathway was noted in fibroblast cells stimulated with gastric fluid or conditioned media. These results indicate that gastric fluid alone, or the mixture of proinflammatory mediators induced by gastric fluid in the pulmonary context, can stimulate pulmonary fibroblast cell inflammation, migration, and differentiation, suggesting that a wound healing process is initiated. Subsequent aberrant repair in pulmonary residential cells may lead to pulmonary fibroblast differentiation and fibrotic progression. The results point to a stimulatory effect of chronic GERD on pulmonary fibroblast differentiation, and this may promote the development of chronic pulmonary diseases in the long term.
Collapse
Affiliation(s)
- Cheng Che Chiang
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chin-Ming Chen
- Department of Intensive Care Medicine, Chi Mei Medical Center, Tainan, Taiwan; School of Medicine, Chun Shan Medicine University, Taichung Taiwan
| | - Jau Ling Suen
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Hsiang Han Su
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chong Chao Hsieh
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Division of Cardiovascular Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Chih-Mei Cheng
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan.
| |
Collapse
|
20
|
Higashioka K, Kikushige Y, Ayano M, Kimoto Y, Mitoma H, Kikukawa M, Akahoshi M, Arinobu Y, Horiuchi T, Akashi K, Niiro H. Generation of a novel CD30 + B cell subset producing GM-CSF and its possible link to the pathogenesis of systemic sclerosis. Clin Exp Immunol 2020; 201:233-243. [PMID: 32538493 PMCID: PMC7419935 DOI: 10.1111/cei.13477] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 05/26/2020] [Accepted: 06/06/2020] [Indexed: 12/12/2022] Open
Abstract
Systemic sclerosis (SSc) is a T helper type 2 (Th2)-associated autoimmune disease characterized by vasculopathy and fibrosis. Efficacy of B cell depletion therapy underscores antibody-independent functions of B cells in SSc. A recent study showed that the Th2 cytokine interleukin (IL)-4 induces granulocyte-macrophage colony-stimulating factor (GM-CSF)-producing effector B cells (GM-Beffs ) in humans. In this study, we sought to elucidate the generation mechanism of GM-Beffs and also determine a role of this subset in SSc. Among Th-associated cytokines, IL-4 most significantly facilitated the generation of GM-Beffs within memory B cells in healthy controls (HCs). In addition, the profibrotic cytokine transforming growth factor (TGF)-β further potentiated IL-4- and IL-13-induced GM-Beffs . Of note, tofacitinib, a Janus kinase (JAK) inhibitor, inhibited the expression of GM-CSF mRNA and protein in memory B cells induced by IL-4, but not by TGF-β. GM-Beffs were enriched within CD20+ CD30+ CD38-/low cells, a distinct population from plasmablasts, suggesting that GM-Beffs exert antibody-independent functions. GM-Beffs were also enriched in a CD30+ fraction of freshly isolated B cells. GM-Beffs generated under Th2 conditions facilitated the differentiation from CD14+ monocytes to DC-SIGN+ CD1a+ CD14- CD86+ cells, which significantly promoted the proliferation of naive T cells. CD30+ GM-Beffs were more pronounced in patients with SSc than in HCs. A subpopulation of SSc patients with the diffuse type and concomitant interstitial lung disease exhibited high numbers of GM-Beffs . Together, these findings suggest that human GM-Beffs are enriched in a CD30+ B cell subset and play a role in the pathogenesis of SSc.
Collapse
Affiliation(s)
- K. Higashioka
- Department of Medicine and Biosystemic ScienceGraduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Y. Kikushige
- Department of Medicine and Biosystemic ScienceGraduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - M. Ayano
- Department of Medicine and Biosystemic ScienceGraduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Y. Kimoto
- Department of Internal MedicineKyushu University Beppu HospitalTsurumiharaBeppuOitaJapan
| | - H. Mitoma
- Department of Medicine and Biosystemic ScienceGraduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - M. Kikukawa
- Department of Medical EducationFaculty of Medical SciencesKyushu UniversityFukuokaJapan
| | - M. Akahoshi
- Department of Medicine and Biosystemic ScienceGraduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Y. Arinobu
- Department of Medicine and Biosystemic ScienceGraduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - T. Horiuchi
- Department of Internal MedicineKyushu University Beppu HospitalTsurumiharaBeppuOitaJapan
| | - K. Akashi
- Department of Medicine and Biosystemic ScienceGraduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - H. Niiro
- Department of Medical EducationFaculty of Medical SciencesKyushu UniversityFukuokaJapan
| |
Collapse
|
21
|
Hamilton JA. GM-CSF in inflammation. J Exp Med 2020; 217:jem.20190945. [PMID: 31611249 PMCID: PMC7037240 DOI: 10.1084/jem.20190945] [Citation(s) in RCA: 188] [Impact Index Per Article: 37.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 07/09/2019] [Accepted: 09/11/2019] [Indexed: 02/06/2023] Open
Abstract
GM-CSF is a potential therapeutic target in inflammation and autoimmunity. This study reviews the literature on the biology of GM-CSF, in particular that describing the research leading to clinical trials targeting GM-CSF and its receptor in numerous inflammatory/autoimmune conditions, such as rheumatoid arthritis. Granulocyte–macrophage colony-stimulating factor (GM-CSF) has many more functions than its original in vitro identification as an inducer of granulocyte and macrophage development from progenitor cells. Key features of GM-CSF biology need to be defined better, such as the responding and producing cell types, its links with other mediators, its prosurvival versus activation/differentiation functions, and when it is relevant in pathology. Significant preclinical data have emerged from GM-CSF deletion/depletion approaches indicating that GM-CSF is a potential target in many inflammatory/autoimmune conditions. Clinical trials targeting GM-CSF or its receptor have shown encouraging efficacy and safety profiles, particularly in rheumatoid arthritis. This review provides an update on the above topics and current issues/questions surrounding GM-CSF biology.
Collapse
Affiliation(s)
- John A Hamilton
- The University of Melbourne, Department of Medicine, Royal Melbourne Hospital, Parkville, Victoria, Australia.,Australian Institute for Musculoskeletal Science, The University of Melbourne and Western Health, St Albans, Victoria, Australia
| |
Collapse
|
22
|
Lang FM, Lee KMC, Teijaro JR, Becher B, Hamilton JA. GM-CSF-based treatments in COVID-19: reconciling opposing therapeutic approaches. Nat Rev Immunol 2020; 20:507-514. [PMID: 32576980 PMCID: PMC7309428 DOI: 10.1038/s41577-020-0357-7] [Citation(s) in RCA: 169] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/01/2020] [Indexed: 12/17/2022]
Abstract
Therapeutics against coronavirus disease 2019 (COVID-19) are urgently needed. Granulocyte–macrophage colony-stimulating factor (GM-CSF), a myelopoietic growth factor and pro-inflammatory cytokine, plays a critical role in alveolar macrophage homeostasis, lung inflammation and immunological disease. Both administration and inhibition of GM-CSF are currently being therapeutically tested in COVID-19 clinical trials. This Perspective discusses the pleiotropic biology of GM-CSF and the scientific merits behind these contrasting approaches. Recombinant granulocyte–macrophage colony-stimulating factor (GM-CSF) as well as antibodies targeted at GM-CSF or its receptor are being tested in clinical trials for coronavirus disease 2019 (COVID-19). This Perspective introduces the pleiotropic functions of GM-CSF and explores the rationale behind these different approaches.
Collapse
Affiliation(s)
| | - Kevin M-C Lee
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, Melbourne, Victoria, Australia
| | - John R Teijaro
- Department of Immunology and Microbiology, Scripps Research Institute, La Jolla, CA, USA
| | - Burkhard Becher
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - John A Hamilton
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, Melbourne, Victoria, Australia. .,Australian Institute for Musculoskeletal Science, The University of Melbourne and Western Health, St Albans, Melbourne, Victoria, Australia.
| |
Collapse
|
23
|
Wu EK, Ambrosini RD, Kottmann RM, Ritchlin CT, Schwarz EM, Rahimi H. Reinterpreting Evidence of Rheumatoid Arthritis-Associated Interstitial Lung Disease to Understand Etiology. Curr Rheumatol Rev 2020; 15:277-289. [PMID: 30652645 DOI: 10.2174/1573397115666190116102451] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Revised: 11/19/2018] [Accepted: 01/05/2019] [Indexed: 02/07/2023]
Abstract
Interstitial Lung Disease (ILD) is a well-known complication of rheumatoid arthritis (RA) which often results in significant morbidity and mortality. It is often diagnosed late in the disease process via descriptive criteria. Multiple subtypes of RA-ILD exist as defined by chest CT and histopathology. In the absence of formal natural history studies and definitive diagnostics, a conventional dogma has emerged that there are two major subtypes of RA-ILD (nonspecific interstitial pneumonia (NSIP) and Usual Interstitial Pneumonia (UIP)). These subtypes are based on clinical experience and correlation studies. However, recent animal model data are incongruous with established paradigms of RA-ILD and beg reassessment of the clinical evidence in order to better understand etiology, pathogenesis, prognosis, and response to therapy. To this end, here we: 1) review the literature on epidemiology, radiology, histopathology and clinical outcomes of the various RAILD subtypes, existing animal models, and current theories on RA-ILD pathogenesis; 2) highlight the major gaps in our knowledge; and 3) propose future research to test an emerging theory of RAILD that posits initial rheumatic lung inflammation in the form of NSIP-like pathology transforms mesenchymal cells to derive chimeric disease, and subsequently develops into frank UIP-like fibrosis in some RA patients. Elucidation of the pathogenesis of RA-ILD is critical for the development of effective interventions for RA-ILD.
Collapse
Affiliation(s)
- Emily K Wu
- Center for Musculoskeletal Research, School of Medicine and Dentistry, University of Rochester, Rochester, NY, United States.,Department of Microbiology & Immunology, School of Medicine and Dentistry, University of Rochester, Rochester, NY, United States
| | - Robert D Ambrosini
- Department of Imaging Sciences, School of Medicine and Dentistry, University of Rochester, Rochester, NY, United States
| | - R Matthew Kottmann
- Division of Pulmonary Diseases and Critical Care, Department of Medicine, School of Medicine and Dentistry, University of Rochester, Rochester, NY, United States
| | - Christopher T Ritchlin
- Center for Musculoskeletal Research, School of Medicine and Dentistry, University of Rochester, Rochester, NY, United States.,Division of Allergy, Immunology, Rheumatology, Department of Medicine, School of Medicine and Dentistry, University of Rochester, Rochester, NY, United States
| | - Edward M Schwarz
- Center for Musculoskeletal Research, School of Medicine and Dentistry, University of Rochester, Rochester, NY, United States.,Department of Microbiology & Immunology, School of Medicine and Dentistry, University of Rochester, Rochester, NY, United States.,Department of Orthopaedics, School of Medicine and Dentistry, University of Rochester, Rochester, NY, United States
| | - Homaira Rahimi
- Center for Musculoskeletal Research, School of Medicine and Dentistry, University of Rochester, Rochester, NY, United States.,Department of Pediatrics, School of Medicine and Dentistry, University of Rochester, Rochester, NY, United States
| |
Collapse
|
24
|
Regan-Komito D, Swann JW, Demetriou P, Cohen ES, Horwood NJ, Sansom SN, Griseri T. GM-CSF drives dysregulated hematopoietic stem cell activity and pathogenic extramedullary myelopoiesis in experimental spondyloarthritis. Nat Commun 2020; 11:155. [PMID: 31919358 PMCID: PMC6952438 DOI: 10.1038/s41467-019-13853-4] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 12/02/2019] [Indexed: 12/13/2022] Open
Abstract
Dysregulated hematopoiesis occurs in several chronic inflammatory diseases, but it remains unclear how hematopoietic stem cells (HSCs) in the bone marrow (BM) sense peripheral inflammation and contribute to tissue damage in arthritis. Here, we show the HSC gene expression program is biased toward myelopoiesis and differentiation skewed toward granulocyte-monocyte progenitors (GMP) during joint and intestinal inflammation in experimental spondyloarthritis (SpA). GM-CSF-receptor is increased on HSCs and multipotent progenitors, favoring a striking increase in myelopoiesis at the earliest hematopoietic stages. GMP accumulate in the BM in SpA and, unexpectedly, at extramedullary sites: in the inflamed joints and spleen. Furthermore, we show that GM-CSF promotes extramedullary myelopoiesis, tissue-toxic neutrophil accumulation in target organs, and GM-CSF prophylactic or therapeutic blockade substantially decreases SpA severity. Surprisingly, besides CD4+ T cells and innate lymphoid cells, mast cells are a source of GM-CSF in this model, and its pathogenic production is promoted by the alarmin IL-33.
Collapse
Affiliation(s)
- Daniel Regan-Komito
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Roosevelt Drive, Oxford, UK
| | - James W Swann
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Roosevelt Drive, Oxford, UK
| | - Philippos Demetriou
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Roosevelt Drive, Oxford, UK
| | - E Suzanne Cohen
- Biopharmaceutical Research Division, AstraZeneca, Cambridge, UK
| | - Nicole J Horwood
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Roosevelt Drive, Oxford, UK
- Norwich Medical School, University of East Anglia, Bob Champion Research and Education Building, James Watson Road, Norwich Research Park, Norwich, UK
| | - Stephen N Sansom
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Roosevelt Drive, Oxford, UK
| | - Thibault Griseri
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Roosevelt Drive, Oxford, UK.
| |
Collapse
|
25
|
Nakamura A, Talukdar A, Nakamura S, Pathan E, Haroon N. Bone formation in axial spondyloarthritis: Is disease modification possible? Best Pract Res Clin Rheumatol 2019; 33:101491. [DOI: 10.1016/j.berh.2020.101491] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
26
|
Sendo S, Saegusa J, Yamada H, Nishimura K, Morinobu A. Tofacitinib facilitates the expansion of myeloid-derived suppressor cells and ameliorates interstitial lung disease in SKG mice. Arthritis Res Ther 2019; 21:184. [PMID: 31387650 PMCID: PMC6685227 DOI: 10.1186/s13075-019-1963-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 07/22/2019] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Rheumatoid arthritis-associated interstitial lung disease (RA-ILD) is a sometimes life-threatening complication in RA patients. SKG mice develop not only arthritis but also an ILD resembling RA-ILD. We previously reported that tofacitinib, a JAK inhibitor, facilitates the expansion of myeloid-derived suppressor cells (MDSCs) and ameliorates arthritis in SKG mice. The aim of this study was to elucidate the effect of tofacitinib on the ILD in SKG mice. METHODS We assessed the effect of tofacitinib on the zymosan (Zym)-induced ILD in SKG mice histologically and examined the cells infiltrating the lung by flow cytometry. The effects of lung MDSCs on T cell proliferation and Th17 cell differentiation were assessed in vitro. We also evaluated the effects of tofacitinib on MDSCs and dendritic cells in vitro. RESULTS Tofacitinib significantly suppressed the progression of ILD compared to the control SKG mice. The MDSCs were increased, while Th17 cells, group 1 innate lymphoid cells (ILC1s), and GM-CSF+ILCs were decreased in the lungs of tofacitinib-treated mice. MDSCs isolated from the inflamed lungs suppressed T cell proliferation and Th17 cell differentiation in vitro. Tofacitinib promoted MDSC expansion and suppressed bone marrow-derived dendritic cell (BMDC) differentiation in vitro. CONCLUSION Tofacitinib facilitates the expansion of MDSCs in the lung and ameliorates ILD in SKG mice.
Collapse
Affiliation(s)
- Sho Sendo
- Department of Internal Medicine, Division of Rheumatology and Clinical Immunology, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Jun Saegusa
- Department of Internal Medicine, Division of Rheumatology and Clinical Immunology, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Hirotaka Yamada
- Department of Internal Medicine, Division of Rheumatology and Clinical Immunology, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Keisuke Nishimura
- Department of Endocrinology and Rheumatology, Kurashiki Central Hospital, 1-1-1 Miwa, Kurashiki, Okayama, 710-8602, Japan
| | - Akio Morinobu
- Department of Internal Medicine, Division of Rheumatology and Clinical Immunology, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan.
| |
Collapse
|
27
|
Lotfi N, Thome R, Rezaei N, Zhang GX, Rezaei A, Rostami A, Esmaeil N. Roles of GM-CSF in the Pathogenesis of Autoimmune Diseases: An Update. Front Immunol 2019; 10:1265. [PMID: 31275302 PMCID: PMC6593264 DOI: 10.3389/fimmu.2019.01265] [Citation(s) in RCA: 138] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 05/17/2019] [Indexed: 12/15/2022] Open
Abstract
Granulocyte-macrophage colony-stimulating factor (GM-CSF) was first described as a growth factor that induces the differentiation and proliferation of myeloid progenitors in the bone marrow. GM-CSF also has an important cytokine effect in chronic inflammatory diseases by stimulating the activation and migration of myeloid cells to inflammation sites, promoting survival of target cells and stimulating the renewal of effector granulocytes and macrophages. Because of these pro-cellular effects, an imbalance in GM-CSF production/signaling may lead to harmful inflammatory conditions. In this context, GM-CSF has a pathogenic role in autoimmune diseases that are dependent on cellular immune responses such as multiple sclerosis (MS) and rheumatoid arthritis (RA). Conversely, a protective role has also been described in other autoimmune diseases where humoral responses are detrimental such as myasthenia gravis (MG), Hashimoto's thyroiditis (HT), inflammatory bowel disease (IBD), and systemic lupus erythematosus (SLE). In this review, we aimed for a comprehensive analysis of literature data on the multiple roles of GM-CSF in autoimmue diseases and possible therapeutic strategies that target GM-CSF production.
Collapse
Affiliation(s)
- Noushin Lotfi
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.,Department of Neurology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Rodolfo Thome
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Nahid Rezaei
- Department of Immunology, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Guang-Xian Zhang
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Abbas Rezaei
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Abdolmohamad Rostami
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Nafiseh Esmaeil
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
28
|
Xu Y, Yu L, Hao C, Wang Y, Zhu C, Ji W, Li Y, Li G, Chen Z, Yan Y. Plasma soluble B7-H3 levels for severity evaluation in pediatric patients with Mycoplasma pneumoniae pneumonia. Int Immunopharmacol 2019; 73:163-171. [PMID: 31100711 DOI: 10.1016/j.intimp.2019.05.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 04/30/2019] [Accepted: 05/08/2019] [Indexed: 10/26/2022]
Abstract
Seeking for the novel biomarkers for Mycoplasma pneumoniae pneumonia (MPP) could be not only helpful for disease diagnosis but also useful for treatment efficacy monitoring. The aim of present study was to evaluate the role of plasma soluble B7-H3 (sB7-H3) in MPP diagnosis and treatment efficacy prediction, and involvement of B7-H3 in MPP disease course. A total of 108 MPP patients and 40 control subjects were recruited into this study for changes of sB7-H3 levels in MPP. In addition, a mouse model of MPP was also established for confirmation of the involvement of sB7-H3 in MPP in vivo. Significantly increased levels of sB7-H3 were found in both mild and severe MPP patients compared to control patients. Moreover, significantly increased level of sB7-H3 was also found in severe MPP patients compared to mild subjects. The ROC curve showed sB7-H3 had severity prediction capacity in mild and severe MPP. Plasma sB7-H3 correlated positively with IFN-r and GM-CSF in mild or severe MPP patients. Moreover, significantly increased level of plasma sB7-H3 level were found in acute phase MPP patients compared to control subjects, whereas significantly decreased level of plasma sB7-H3 was found in recovery phase MPP patients compared to acute phase patients. In addition, decreased levels of sB7-H3 were found in mice from Dexamethasone group compared to LAMP group. Plasma sB7-H3 level might serve as biomarker for severity MPP prediction and treatment efficacy evaluation. Furthermore, direct involvement of B7-H3 was confirmed in vivo during the MPP disease course.
Collapse
Affiliation(s)
- Yunyun Xu
- Institute of Pediatrics, Children's Hospital of Soochow University, Suzhou, Jiangsu 215025, China
| | - Lexiang Yu
- Department of Respiratory Disease, Children's Hospital of Soochow University, Suzhou, Jiangsu 215025, China
| | - Chuangli Hao
- Department of Respiratory Disease, Children's Hospital of Soochow University, Suzhou, Jiangsu 215025, China
| | - Yuqing Wang
- Department of Respiratory Disease, Children's Hospital of Soochow University, Suzhou, Jiangsu 215025, China
| | - Canhong Zhu
- Department of Respiratory Disease, Children's Hospital of Soochow University, Suzhou, Jiangsu 215025, China
| | - Wei Ji
- Department of Respiratory Disease, Children's Hospital of Soochow University, Suzhou, Jiangsu 215025, China
| | - Yiping Li
- Institute of Pediatrics, Children's Hospital of Soochow University, Suzhou, Jiangsu 215025, China
| | - Gang Li
- Institute of Pediatrics, Children's Hospital of Soochow University, Suzhou, Jiangsu 215025, China
| | - Zhengrong Chen
- Department of Respiratory Disease, Children's Hospital of Soochow University, Suzhou, Jiangsu 215025, China.
| | - Yongdong Yan
- Department of Respiratory Disease, Children's Hospital of Soochow University, Suzhou, Jiangsu 215025, China.
| |
Collapse
|
29
|
Innate Immune Modulation by GM-CSF and IL-3 in Health and Disease. Int J Mol Sci 2019; 20:ijms20040834. [PMID: 30769926 PMCID: PMC6412223 DOI: 10.3390/ijms20040834] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 01/31/2019] [Accepted: 02/06/2019] [Indexed: 02/07/2023] Open
Abstract
Granulocyte-macrophage colony-stimulating factor (GM-CSF) and inteleukin-3 (IL-3) have long been known as mediators of emergency myelopoiesis, but recent evidence has highlighted their critical role in modulating innate immune effector functions in mice and humans. This new wealth of knowledge has uncovered novel aspects of the pathogenesis of a range of disorders, including infectious, neoplastic, autoimmune, allergic and cardiovascular diseases. Consequently, GM-CSF and IL-3 are now being investigated as therapeutic targets for some of these disorders, and some phase I/II clinical trials are already showing promising results. There is also pre-clinical and clinical evidence that GM-CSF can be an effective immunostimulatory agent when being combined with anti-cytotoxic T lymphocyte-associated protein 4 (anti-CTLA-4) in patients with metastatic melanoma as well as in novel cancer immunotherapy approaches. Finally, GM-CSF and to a lesser extent IL-3 play a critical role in experimental models of trained immunity by acting not only on bone marrow precursors but also directly on mature myeloid cells. Altogether, characterizing GM-CSF and IL-3 as central mediators of innate immune activation is poised to open new therapeutic avenues for several immune-mediated disorders and define their potential in the context of immunotherapies.
Collapse
|
30
|
Vecellio M, Cohen CJ, Roberts AR, Wordsworth PB, Kenna TJ. RUNX3 and T-Bet in Immunopathogenesis of Ankylosing Spondylitis-Novel Targets for Therapy? Front Immunol 2019; 9:3132. [PMID: 30687330 PMCID: PMC6335330 DOI: 10.3389/fimmu.2018.03132] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 12/18/2018] [Indexed: 12/30/2022] Open
Abstract
Susceptibility to ankylosing spondylitis (AS) is polygenic with more than 100 genes identified to date. These include HLA-B27 and the aminopeptidases (ERAP1, ERAP2, and LNPEPS), which are involved in antigen processing and presentation to T-cells, and several genes (IL23R, IL6R, STAT3, JAK2, IL1R1/2, IL12B, and IL7R) involved in IL23 driven pathways of inflammation. AS is also strongly associated with polymorphisms in two transcription factors, RUNX3 and T-bet (encoded by TBX21), which are important in T-cell development and function. The influence of these genes on the pathogenesis of AS and their potential for identifying drug targets is discussed here.
Collapse
Affiliation(s)
- Matteo Vecellio
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom.,Oxford Musculoskeletal Biomedical Research Unit, National Institute for Health Research, Oxford, United Kingdom.,Oxford Comprehensive Biomedical Research Centre, Botnar Research Centre, National Institute for Health Research, Nuffield Orthopaedic Centre, Oxford, United Kingdom
| | - Carla J Cohen
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom.,Oxford Musculoskeletal Biomedical Research Unit, National Institute for Health Research, Oxford, United Kingdom.,Oxford Comprehensive Biomedical Research Centre, Botnar Research Centre, National Institute for Health Research, Nuffield Orthopaedic Centre, Oxford, United Kingdom
| | - Amity R Roberts
- Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Paul B Wordsworth
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom.,Oxford Musculoskeletal Biomedical Research Unit, National Institute for Health Research, Oxford, United Kingdom.,Oxford Comprehensive Biomedical Research Centre, Botnar Research Centre, National Institute for Health Research, Nuffield Orthopaedic Centre, Oxford, United Kingdom
| | - Tony J Kenna
- Translational Research Institute, Princess Alexandra Hospital, Brisbane, QLD, Australia.,Faculty of Health, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
| |
Collapse
|
31
|
Napier RJ, Lee EJ, Vance EE, Snow PE, Samson KA, Dawson CE, Moran AE, Stenzel P, Davey MP, Sakaguchi S, Rosenzweig HL. Nod2 Deficiency Augments Th17 Responses and Exacerbates Autoimmune Arthritis. THE JOURNAL OF IMMUNOLOGY 2018; 201:1889-1898. [PMID: 30150283 DOI: 10.4049/jimmunol.1700507] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 07/27/2018] [Indexed: 12/11/2022]
Abstract
Arthritis in a genetically susceptible SKG strain of mice models a theoretical paradigm wherein autoimmune arthritis arises because of interplay between preexisting autoreactive T cells and environmental stimuli. SKG mice have a point mutation in ZAP-70 that results in attenuated TCR signaling, altered thymic selection, and spontaneous production of autoreactive T cells that cause arthritis following exposure to microbial β-glucans. In this study, we identify Nod2, an innate immune receptor, as a critical suppressor of arthritis in SKG mice. SKG mice deficient in Nod2 (Nod2-/-SKG) developed a dramatically exacerbated form of arthritis, which was independent of sex and microbiota, but required the skg mutation in T cells. Worsened arthritis in Nod2-/-SKG mice was accompanied by expansion of Th17 cells, which to some measure coproduced TNF, GM-CSF, and IL-22, along with elevated IL-17A levels within joint synovial fluid. Importantly, neutralization of IL-17A mitigated arthritis in Nod2-/-SKG mice, indicating that Nod2-mediated protection occurs through suppression of the Th17 response. Nod2 deficiency did not alter regulatory T cell development or function. Instead, Nod2 deficiency resulted in an enhanced fundamental ability of SKG CD4+ T cells (from naive mice) to produce increased levels of IL-17 and to passively transfer arthritis to lymphopenic recipients on a single-cell level. These data reveal a previously unconsidered role for T cell-intrinsic Nod2 as an endogenous negative regulator of Th17 responses and arthritogenic T cells. Based on our findings, future studies aimed at understanding a negative regulatory function of Nod2 within autoreactive T cells could provide novel therapeutic strategies for treatment of patients with arthritis.
Collapse
Affiliation(s)
- Ruth J Napier
- Veterans Affairs Portland Health Care System, Portland, OR 97239.,Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR 97239
| | - Ellen J Lee
- Veterans Affairs Portland Health Care System, Portland, OR 97239.,Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR 97239
| | - Emily E Vance
- Veterans Affairs Portland Health Care System, Portland, OR 97239.,Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR 97239
| | - Paige E Snow
- Veterans Affairs Portland Health Care System, Portland, OR 97239
| | - Kimberly A Samson
- Veterans Affairs Portland Health Care System, Portland, OR 97239.,Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR 97239
| | - Clare E Dawson
- Veterans Affairs Portland Health Care System, Portland, OR 97239
| | - Amy E Moran
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR 97239
| | - Peter Stenzel
- Department of Anatomic Pathology, Oregon Health & Science University, Portland, OR 97239
| | - Michael P Davey
- Veterans Affairs Portland Health Care System, Portland, OR 97239.,Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR 97239.,Department of Medicine, Oregon Health & Science University, Portland, OR 97239; and
| | | | - Holly L Rosenzweig
- Veterans Affairs Portland Health Care System, Portland, OR 97239; .,Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR 97239
| |
Collapse
|
32
|
Kwon OC, Lee EJ, Chang EJ, Youn J, Ghang B, Hong S, Lee CK, Yoo B, Kim YG. IL-17A +GM-CSF + Neutrophils Are the Major Infiltrating Cells in Interstitial Lung Disease in an Autoimmune Arthritis Model. Front Immunol 2018; 9:1544. [PMID: 30013577 PMCID: PMC6036238 DOI: 10.3389/fimmu.2018.01544] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 06/21/2018] [Indexed: 11/25/2022] Open
Abstract
Objective To gain a better understanding of the pathogenesis of autoimmune arthritis-associated interstitial lung disease (ILD), we sought to identify the characteristics of lung-infiltrating cells in SKG mice with ILD. Methods We injected curdlan in SKG mice at 8 weeks of age, and identified the presence of ILD by PET-MRI at 20 weeks post-injection and histological analysis at 22 weeks post-injection. Lung-infiltrating cells were examined by flow cytometry. Analysis of serum cytokines by the Luminex multiplex cytokine assay was performed at 14 and 22 weeks post-injection, and cytokine profiles before and after the development of ILD were compared. Opal multiplexed immunofluorescent staining of lung tissue was also performed. Results At 20 weeks post-injection, curdlan-treated SKG mice developed not only arthritis but also lung inflammation combined with fibrosis, which was identified by PET-MRI and histological analysis. The majority of inflammatory cells that accumulated in the lungs of curdlan-treated SKG mice were CD11b+Gr1+ neutrophils, which co-express IL-17A and GM-CSF, rather than TNF-α. Compared with 14 weeks post-injection, serum levels of GM-CSF, MCP1, IL-17A, IL-23, TSLP, and soluble IL-7Rα had increased at 22 weeks post-injection, whereas those of IFN-γ, IL-22, IL-6, and TNF-α remained unchanged. Furthermore, IL-23, CXCL5, IL-17A, and GM-CSF, but not TNF-α, were observed in immunofluorescent-stained lung tissue. Conclusion We found that IL-17A+GM-CSF+ neutrophils represented the major inflammatory cells in the lungs of curdlan-treated SKG mice. In addition, GM-CSF and IL-17A appear to play a more important role than TNF-α in ILD development.
Collapse
Affiliation(s)
- Oh Chan Kwon
- Division of Rheumatology, Department of Medicine, College of Medicine, University of Ulsan, Asan Medical Center, Seoul, South Korea
| | - Eun-Ju Lee
- Division of Rheumatology, Department of Medicine, College of Medicine, University of Ulsan, Asan Medical Center, Seoul, South Korea
| | - Eun-Ju Chang
- Department of Biomedical Science, College of Medicine, University of Ulsan, Asan Medical Center, Seoul, South Korea
| | - Jeehee Youn
- Department of Anatomy and Cell Biology, College of Medicine, Hanyang University, Seoul, South Korea
| | - Byeongzu Ghang
- Division of Rheumatology, Department of Medicine, College of Medicine, University of Ulsan, Asan Medical Center, Seoul, South Korea
| | - Seokchan Hong
- Division of Rheumatology, Department of Medicine, College of Medicine, University of Ulsan, Asan Medical Center, Seoul, South Korea
| | - Chang-Keun Lee
- Division of Rheumatology, Department of Medicine, College of Medicine, University of Ulsan, Asan Medical Center, Seoul, South Korea
| | - Bin Yoo
- Division of Rheumatology, Department of Medicine, College of Medicine, University of Ulsan, Asan Medical Center, Seoul, South Korea
| | - Yong-Gil Kim
- Division of Rheumatology, Department of Medicine, College of Medicine, University of Ulsan, Asan Medical Center, Seoul, South Korea
| |
Collapse
|
33
|
Chen M, Zhang J, Chen Y, Qiu Y, Luo Z, Zhao S, Du L, Tian D. Hydrogen protects lung from hypoxia/re-oxygenation injury by reducing hydroxyl radical production and inhibiting inflammatory responses. Sci Rep 2018; 8:8004. [PMID: 29789753 PMCID: PMC5964155 DOI: 10.1038/s41598-018-26335-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 05/08/2018] [Indexed: 02/05/2023] Open
Abstract
Here we investigated whether hydrogen can protect the lung from chronic injury induced by hypoxia/re-oxygenation (H/R). We developed a mouse model in which H/R exposure triggered clinically typical lung injury, involving increased alveolar wall thickening, infiltration by neutrophils, consolidation, alveolar hemorrhage, increased levels of inflammatory factors and recruitment of M1 macrophages. All these processes were attenuated in the presence of H2. We found that H/R-induced injury in our mouse model was associated with production of hydroxyl radicals as well as increased levels of colony-stimulating factors and circulating leukocytes. H2 attenuated H/R-induced production of hydroxyl radicals, up-regulation of colony-stimulating factors, and recruitment of neutrophils and M1 macrophages to lung tissues. However, H2 did not substantially affect the H/R-induced increase in erythropoietin or pulmonary artery remodeling. Our results suggest that H2 ameliorates H/R-induced lung injury by inhibiting hydroxyl radical production and inflammation in lungs. It may also prevent colony-stimulating factors from mobilizing progenitors in response to H/R-induced injury.
Collapse
Affiliation(s)
- Meihong Chen
- Department of Respiratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, Guangdong, 511500, China
| | - Jie Zhang
- Department of Pathology Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yun Chen
- Department of Respiratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, Guangdong, 511500, China
| | - Yan Qiu
- Department of Anesthesiology and Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Zi Luo
- Department of Anesthesiology and Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.,Department of Anesthesiology, Loudi Central Hospital, Loudi, Hunan, 417000, China
| | - Sixia Zhao
- Department of Anesthesiology and Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.,Department of Anesthesiology, Xiangtan Central Hospital, Xiangtan, Hunan, 411100, China
| | - Lei Du
- Department of Anesthesiology and Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Dongbo Tian
- Department of Respiratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, Guangdong, 511500, China.
| |
Collapse
|
34
|
Worth C, Bowness P, Hussein Al-Mossawi M. Novel Therapeutic Targets in Axial Spondyloarthritis. CURRENT TREATMENT OPTIONS IN RHEUMATOLOGY 2018; 4:174-182. [PMID: 29938195 PMCID: PMC5978800 DOI: 10.1007/s40674-018-0095-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Purpose of review Axial spondyloarthritis remains an area of significant unmet clinical need with only two immune pathways currently targeted by licenced therapies compared to other immune-mediated inflammatory joint disorders such as rheumatoid arthritis where a multitude of therapeutic options are available. This review will look at emerging therapeutic targets in axial spondyloarthritis beyond the neutralisation of IL-17A and TNF by monoclonal antibodies. Recent findings Several promising targets are in various stages of pre-clinical and clinical development in axial spondyloarthritis. These include small molecule approaches to target transcription factors, epigenetic modification and intracellular modulation of cytokine signalling by kinase inhibition. GM-CSF has also emerged as a potential driver of inflammation. Summary A number of novel and promising therapeutic options are in various stages of development in axial spondyloarthritis. The Janus kinase inhibitors have shown great promise in other immune-mediated inflammatory disorders and will be an exciting addition to the axial spondyloarthritis field as the first oral disease-modifying agents. GM-CSF blockade also shows great promise since antibodies for neutralising this cytokine are safe in patients and have shown efficacy in other immune-mediated inflammatory diseases.
Collapse
Affiliation(s)
- Claudia Worth
- Nuffield Department of Orthopaedics Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Oxford, OX3 7HE UK
| | - Paul Bowness
- Nuffield Department of Orthopaedics Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Oxford, OX3 7HE UK
| | - M Hussein Al-Mossawi
- Nuffield Department of Orthopaedics Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Oxford, OX3 7HE UK
| |
Collapse
|
35
|
Kim H, Brooks KM, Tang CC, Wakim P, Blake M, Brooks SR, Montealegre Sanchez GA, de Jesus AA, Huang Y, Tsai WL, Gadina M, Prakash A, Janes JM, Zhang X, Macias WL, Kumar P, Goldbach-Mansky R. Pharmacokinetics, Pharmacodynamics, and Proposed Dosing of the Oral JAK1 and JAK2 Inhibitor Baricitinib in Pediatric and Young Adult CANDLE and SAVI Patients. Clin Pharmacol Ther 2017; 104:364-373. [PMID: 29134648 DOI: 10.1002/cpt.936] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 11/03/2017] [Accepted: 11/05/2017] [Indexed: 12/19/2022]
Abstract
Population pharmacokinetic (popPK) modeling was used to characterize the PK profile of the oral Janus kinase (JAK)1/JAK2 inhibitor, baricitinib, in 18 patients with Mendelian interferonopathies who are enrolled in a compassionate use program. Patients received doses between 0.1 to 17 mg per day. Covariates of weight and renal function significantly influenced volume-of-distribution and clearance, respectively. The half-life of baricitinib in patients less than 40 kg was substantially shorter than in adult populations, requiring the need for dosing up to 4 times daily. On therapeutic doses, the mean area-under-the-concentration-vs.-time curve was 2,388 nM*hr, which is 1.83-fold higher than mean baricitinib exposures in adult patients with rheumatoid arthritis receiving doses of 4 mg once-daily. Dose-dependent decreases in interferon (IFN) biomarkers confirmed an in vivo effect of baricitinib on type-1 IFN signaling. PopPK and pharmacodynamic data support a proposal for a weight- and estimated glomerular filtration rate-based dosing regimen in guiding baricitinib dosing in patients with rare interferonopathies.
Collapse
Affiliation(s)
- Hanna Kim
- Lawrence Shulman Scholar, Office of the Clinical Director, and Pediatric Translational Research Branch, NIAMS, NIH, Bethesda, Maryland, USA
| | - Kristina M Brooks
- Clinical Pharmacokinetics Research Unit, Pharmacy Department, NIH Clinical Center, Bethesda, Maryland, USA
| | | | - Paul Wakim
- Biostatistics and Clinical Epidemiology Service, NIH Clinical Center, Bethesda, Maryland, USA
| | - Mary Blake
- Translational Immunology Section, Office of Science and Technology, NIAMS, NIH, Bethesda, Maryland, USA
| | - Stephen R Brooks
- Biodata Mining and Discovery Section, Office of Science and Technology, NIAMS, NIH, Bethesda, Maryland, USA
| | | | - Adriana A de Jesus
- Translational Autoinflammatory Disease Studies, NIAID, NIH, Bethesda, Maryland, USA
| | - Yan Huang
- Translational Autoinflammatory Disease Studies, NIAID, NIH, Bethesda, Maryland, USA
| | - Wanxia Li Tsai
- Translational Immunology Section, Office of Science and Technology, NIAMS, NIH, Bethesda, Maryland, USA
| | - Massimo Gadina
- Translational Immunology Section, Office of Science and Technology, NIAMS, NIH, Bethesda, Maryland, USA
| | | | | | - Xin Zhang
- Eli Lilly and Co, Indianapolis, Indiana, USA
| | | | - Parag Kumar
- Clinical Pharmacokinetics Research Unit, Pharmacy Department, NIH Clinical Center, Bethesda, Maryland, USA
| | | |
Collapse
|
36
|
Unique transcriptome signatures and GM-CSF expression in lymphocytes from patients with spondyloarthritis. Nat Commun 2017; 8:1510. [PMID: 29142230 PMCID: PMC5688161 DOI: 10.1038/s41467-017-01771-2] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 10/13/2017] [Indexed: 12/17/2022] Open
Abstract
Spondyloarthritis encompasses a group of common inflammatory diseases thought to be driven by IL-17A-secreting type-17 lymphocytes. Here we show increased numbers of GM-CSF-producing CD4 and CD8 lymphocytes in the blood and joints of patients with spondyloarthritis, and increased numbers of IL-17A+GM-CSF+ double-producing CD4, CD8, γδ and NK cells. GM-CSF production in CD4 T cells occurs both independently and in combination with classical Th1 and Th17 cytokines. Type 3 innate lymphoid cells producing predominantly GM-CSF are expanded in synovial tissues from patients with spondyloarthritis. GM-CSF+CD4+ cells, isolated using a triple cytokine capture approach, have a specific transcriptional signature. Both GM-CSF+ and IL-17A+GM-CSF+ double-producing CD4 T cells express increased levels of GPR65, a proton-sensing receptor associated with spondyloarthritis in genome-wide association studies and pathogenicity in murine inflammatory disease models. Silencing GPR65 in primary CD4 T cells reduces GM-CSF production. GM-CSF and GPR65 may thus serve as targets for therapeutic intervention of spondyloarthritis. Spondyloarthritis is an inflammatory disease with Th17 cells implicated in the pathogenesis. Here the authors show that patients with spondyloarthritis have increased numbers of GM-CSF-secreting blood and synovial lymphocytes, Th17 or not, that carry a unique transcriptional profile including enhanced GPR65 expression.
Collapse
|
37
|
Sendo S, Saegusa J, Okano T, Takahashi S, Akashi K, Morinobu A. CD11b+Gr-1 dim Tolerogenic Dendritic Cell-Like Cells Are Expanded in Interstitial Lung Disease in SKG Mice. Arthritis Rheumatol 2017; 69:2314-2327. [PMID: 28805019 DOI: 10.1002/art.40231] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 08/09/2017] [Indexed: 12/19/2022]
Abstract
OBJECTIVE SKG mice develop interstitial lung disease (ILD) resembling rheumatoid arthritis-associated ILD in humans. The aim of this study was to clarify the mechanism underlying the lung pathology by analyzing lung-infiltrating cells in SKG mice with ILD. METHODS We assessed the severity of zymosan A (ZyA)-induced ILD in SKG mice histologically, and we examined lung-infiltrating cells by flow cytometry. Total lung cells and isolated monocytic myeloid-derived suppressor cells (MDSCs) were cultured in vitro with granulocyte-macrophage colony-stimulating factor (GM-CSF) and interleukin-4. The proliferation of 5,6-carboxyfluorescein diacetate N-succinimidyl ester-labeled naive T cells cocultured with isolated CD11b+Gr-1dim cells and MDSCs was evaluated by flow cytometry. CD11b+Gr-1dim cells were adoptively transferred to ZyA-treated SKG mice. RESULTS MDSCs, Th17 cells, and group 1 and 3 innate lymphoid cells (ILC1s and ILC3s) were increased in the lungs; the proportion of these cells varied with ILD severity. In this process, we found that a unique cell population, CD11b+Gr-1dim cells, was expanded in the severely inflamed lungs. Approximately half of the CD11b+Gr-1dim cells expressed CD11c. CD11b+Gr-1dim cells were induced from monocytic MDSCs with GM-CSF in vitro and were considered tolerogenic because they suppressed T cell proliferation. These CD11b+Gr-1dim cells have never been described previously, and we termed them CD11b+Gr-1dim tolerogenic dendritic cell (DC)-like cells. Th17 cells, ILC1s, and ILC3s in the inflamed lung produced GM-CSF, which may have expanded CD11b+Gr-1dim tolerogenic DC-like cells in vivo. Furthermore, adoptive transfer of CD11b+Gr-1dim tolerogenic DC-like cells significantly suppressed progression of ILD in SKG mice. CONCLUSION We identified unique suppressive myeloid cells that were differentiated from monocytic MDSCs in SKG mice with ILD, and we termed them CD11b+Gr-1dim tolerogenic DC-like cells.
Collapse
Affiliation(s)
- Sho Sendo
- Kobe University Graduate School of Medicine, Kobe, Japan
| | - Jun Saegusa
- Kobe University Graduate School of Medicine, Kobe, Japan
| | - Takaichi Okano
- Kobe University Graduate School of Medicine, Kobe, Japan
| | | | - Kengo Akashi
- Kobe University Graduate School of Medicine, Kobe, Japan
| | - Akio Morinobu
- Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
38
|
Becher B, Tugues S, Greter M. GM-CSF: From Growth Factor to Central Mediator of Tissue Inflammation. Immunity 2017; 45:963-973. [PMID: 27851925 DOI: 10.1016/j.immuni.2016.10.026] [Citation(s) in RCA: 390] [Impact Index Per Article: 48.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 10/19/2016] [Accepted: 10/25/2016] [Indexed: 12/21/2022]
Abstract
The granulocyte-macrophage colony-stimulating factor (GM-CSF) was initially classified as a hematopoietic growth factor. However, unlike its close relatives macrophage CSF (M-CSF) and granulocyte CSF (G-CSF), the majority of myeloid cells do not require GM-CSF for steady-state myelopoiesis. Instead, in inflammation, GM-CSF serves as a communication conduit between tissue-invading lymphocytes and myeloid cells. Even though lymphocytes are in all likelihood the instigators of chronic inflammatory disease, GM-CSF-activated phagocytes are well equipped to cause tissue damage. The pivotal role of GM-CSF at the T cell:myeloid cell interface might shift our attention toward studying the function of the myeloid compartment in immunopathology. Targeting specifically the crosstalk between T cells and myeloid cells through GM-CSF holds promise for the development of therapeutics to combat chronic tissue inflammation. Here, we will review some of the major discoveries of the recent past, which indicate that GM-CSF is so much more than its name suggests.
Collapse
Affiliation(s)
- Burkhard Becher
- Institute of Experimental Immunology, University of Zurich Winterthurerstrasse 190, 8057 Zurich, Switzerland.
| | - Sonia Tugues
- Institute of Experimental Immunology, University of Zurich Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Melanie Greter
- Institute of Experimental Immunology, University of Zurich Winterthurerstrasse 190, 8057 Zurich, Switzerland
| |
Collapse
|
39
|
Miyachi H, Nakamura Y, Nakamura Y, Matsue H. Improvement of the initial stage of interstitial lung disease during psoriasis treatment with secukinumab. J Dermatol 2017; 44:e328-e329. [PMID: 28891081 DOI: 10.1111/1346-8138.14026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Hideaki Miyachi
- Department of Dermatology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Yuumi Nakamura
- Department of Dermatology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Yasuhiro Nakamura
- Department of Dermatology, Chibaken Saiseikai Narashino Hospital, Narashino, Japan
| | - Hiroyuki Matsue
- Department of Dermatology, Graduate School of Medicine, Chiba University, Chiba, Japan.,Medical Mycology Research Center, Chiba University, Chiba, Japan
| |
Collapse
|
40
|
Noack M, Miossec P. Selected cytokine pathways in rheumatoid arthritis. Semin Immunopathol 2017; 39:365-383. [DOI: 10.1007/s00281-017-0619-z] [Citation(s) in RCA: 208] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 01/31/2017] [Indexed: 12/13/2022]
|
41
|
Anti-colony-stimulating factor therapies for inflammatory and autoimmune diseases. Nat Rev Drug Discov 2016; 16:53-70. [PMID: 28031576 DOI: 10.1038/nrd.2016.231] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
42
|
Shiomi A, Usui T, Mimori T. GM-CSF as a therapeutic target in autoimmune diseases. Inflamm Regen 2016; 36:8. [PMID: 29259681 PMCID: PMC5725926 DOI: 10.1186/s41232-016-0014-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 05/10/2016] [Indexed: 12/23/2022] Open
Abstract
Granulocyte-macrophage colony-stimulating factor (GM-CSF) has been known as a hematopoietic growth factor and immune modulator. Recent studies revealed that GM-CSF also had pro-inflammatory functions and contributed to the pathogenicity of Th17 cells in the development of Th17-mediated autoimmune diseases. GM-CSF inhibition in some animal models of autoimmune diseases showed significant beneficial effects. Therefore, several agents targeting GM-CSF are being developed and are expected to be a useful strategy for the treatment of autoimmune diseases. Particularly, in clinical trials for rheumatoid arthritis (RA) patients, GM-CSF inhibition showed rapid and significant efficacy with no serious side effects. This article summarizes recent findings of GM-CSF and information of clinical trials targeting GM-CSF in autoimmune diseases.
Collapse
Affiliation(s)
- Aoi Shiomi
- Department of Rheumatology and Clinical Immunology, Graduate School of Medicine, Kyoto University, 54-Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507 Japan
| | - Takashi Usui
- Department of Rheumatology and Clinical Immunology, Graduate School of Medicine, Kyoto University, 54-Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507 Japan
| | - Tsuneyo Mimori
- Department of Rheumatology and Clinical Immunology, Graduate School of Medicine, Kyoto University, 54-Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507 Japan
| |
Collapse
|
43
|
Ushach I, Zlotnik A. Biological role of granulocyte macrophage colony-stimulating factor (GM-CSF) and macrophage colony-stimulating factor (M-CSF) on cells of the myeloid lineage. J Leukoc Biol 2016; 100:481-9. [PMID: 27354413 DOI: 10.1189/jlb.3ru0316-144r] [Citation(s) in RCA: 367] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 06/07/2016] [Indexed: 12/14/2022] Open
Abstract
M-CSF and GM-CSF are 2 important cytokines that regulate macrophage numbers and function. Here, we review their known effects on cells of the macrophage-monocyte lineage. Important clues to their function come from their expression patterns. M-CSF exhibits a mostly homeostatic expression pattern, whereas GM-CSF is a product of cells activated during inflammatory or pathologic conditions. Accordingly, M-CSF regulates the numbers of various tissue macrophage and monocyte populations without altering their "activation" status. Conversely, GM-CSF induces activation of monocytes/macrophages and also mediates differentiation to other states that participate in immune responses [i.e., dendritic cells (DCs)]. Further insights into their function have come from analyses of mice deficient in either cytokine. M-CSF signals through its receptor (CSF-1R). Interestingly, mice deficient in CSF-1R expression exhibit a more significant phenotype than mice deficient in M-CSF. This observation was explained by the discovery of a novel cytokine (IL-34) that represents a second ligand of CSF-1R. Information about the function of these ligands/receptor system is still developing, but its complexity is intriguing and strongly suggests that more interesting biology remains to be elucidated. Based on our current knowledge, several therapeutic molecules targeting either the M-CSF or the GM-CSF pathways have been developed and are currently being tested in clinical trials targeting either autoimmune diseases or cancer. It is intriguing to consider how evolution has directed these pathways to develop; their complexity likely mirrors the multiple functions in which cells of the monocyte/macrophage system are involved.
Collapse
Affiliation(s)
- Irina Ushach
- Department of Physiology and Biophysics, Institute for Immunology, University of California, Irvine, California, USA
| | - Albert Zlotnik
- Department of Physiology and Biophysics, Institute for Immunology, University of California, Irvine, California, USA
| |
Collapse
|
44
|
Guerard S, Boieri M, Hultqvist M, Holmdahl R, Wing K. The SKG Mutation in ZAP-70 also Confers Arthritis Susceptibility in C57 Black Mouse Strains. Scand J Immunol 2016; 84:3-11. [DOI: 10.1111/sji.12438] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 04/01/2016] [Indexed: 01/08/2023]
Affiliation(s)
- S. Guerard
- Division of Medical Inflammation Research; Department of Medical Biochemistry and Biophysics; Karolinska Institutet; Stockholm Sweden
| | - M. Boieri
- Institute of Basic Medical Sciences; Faculty of Medicine; University of Oslo; Oslo Norway
| | - M. Hultqvist
- Division of Medical Inflammation Research; Department of Medical Biochemistry and Biophysics; Karolinska Institutet; Stockholm Sweden
- Redoxis AB; Medicon Village Scheelevägen 2; Lund Sweden
| | - R. Holmdahl
- Division of Medical Inflammation Research; Department of Medical Biochemistry and Biophysics; Karolinska Institutet; Stockholm Sweden
| | - K. Wing
- Division of Medical Inflammation Research; Department of Medical Biochemistry and Biophysics; Karolinska Institutet; Stockholm Sweden
| |
Collapse
|
45
|
Galligan CL, Keystone EC, Fish EN. Fibrocyte and T cell interactions promote disease pathogenesis in rheumatoid arthritis. J Autoimmun 2016; 69:38-50. [DOI: 10.1016/j.jaut.2016.02.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 02/16/2016] [Accepted: 02/17/2016] [Indexed: 01/18/2023]
|
46
|
Imura Y, Yukawa N, Handa T, Nakashima R, Murakami K, Yoshifuji H, Ohmura K, Ishii H, Nakata K, Mimori T. Two cases of autoimmune and secondary pulmonary alveolar proteinosis during immunosuppressive therapy in dermatomyositis with interstitial lung disease. Mod Rheumatol 2016; 28:724-729. [PMID: 26872621 DOI: 10.3109/14397595.2016.1153443] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Interstitial lung disease (ILD) with dermatomyositis often requires intensive immunosuppressive therapy. Here, we report two cases of pulmonary alveolar proteinosis (PAP) in dermatomyositis with ILD. One case was secondary PAP, and the other was autoimmune PAP positive for the anti-granulocyte macrophage-colony-stimulating factor antibody. PAP arose during immunosuppressive therapy and symptoms ceased by attenuating immunosuppression. Exacerbation of pulmonary lesions during intensive immunosuppressive therapy may distinguish PAP from worsening ILD and attenuating immunosuppression should be considered.
Collapse
Affiliation(s)
| | | | - Tomohiro Handa
- b Department of Respiratory Medicine Graduate School of Medicine , Kyoto University , Sakyo-ku, Kyoto , Japan
| | - Ran Nakashima
- a Department of Rheumatology and Clinical Immunology
| | | | | | | | - Haruyuki Ishii
- c Department of Respiratory Medicine , Kyorin University School of Medicine , Mitaka , Japan , and
| | - Koh Nakata
- d Bioscience Medical Research Center , Niigata University , Chuoku, Niigata , Japan
| | | |
Collapse
|
47
|
Wu L, Diny NL, Ong S, Barin JG, Hou X, Rose NR, Talor MV, Čiháková D. Pathogenic IL-23 signaling is required to initiate GM-CSF-driven autoimmune myocarditis in mice. Eur J Immunol 2016; 46:582-92. [PMID: 26660726 PMCID: PMC5153891 DOI: 10.1002/eji.201545924] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 10/26/2015] [Accepted: 12/08/2015] [Indexed: 01/22/2023]
Abstract
Using a mouse model of experimental autoimmune myocarditis (EAM), we showed for the first time that IL-23 stimulation of CD4(+) T cells is required only briefly at the initiation of GM-CFS-dependent cardiac autoimmunity. IL-23 signal, acting as a switch, turns on pathogenicity of CD4(+) T cells, and becomes dispensable once autoreactivity is established. Il23a(-/-) mice failed to mount an efficient Th17 response to immunization, and were protected from myocarditis. However, remarkably, transient IL-23 stimulation ex vivo fully restored pathogenicity in otherwise nonpathogenic CD4(+) T cells raised from Il23a(-/-) donors. Thus, IL-23 may no longer be necessary to uphold inflammation in established autoimmune diseases. In addition, we demonstrated that IL-23-induced GM-CSF mediates the pathogenicity of CD4(+) T cells in EAM. The neutralization of GM-CSF abrogated cardiac inflammation. However, sustained IL-23 signaling is required to maintain IL-17A production in CD4(+) T cells. Despite inducing inflammation in Il23a(-/-) recipients comparable to wild-type (WT), autoreactive CD4(+) T cells downregulated IL-17A production without persistent IL-23 signaling. This divergence on the controls of GM-CSF-dependent pathogenicity on one side and IL-17A production on the other side may contribute to the discrepant efficacies of anti-IL-23 therapy in different autoimmune diseases.
Collapse
Affiliation(s)
- Lei Wu
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Maryland 21205, U.S.A
| | - Nicola L. Diny
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Maryland 21205, U.S.A
| | - SuFey Ong
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Maryland 21205, U.S.A
| | - Jobert G. Barin
- Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, Maryland 21205, U.S.A
| | - Xuezhou Hou
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Maryland 21205, U.S.A
| | - Noel R. Rose
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Maryland 21205, U.S.A
- Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, Maryland 21205, U.S.A
| | - Monica V. Talor
- Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, Maryland 21205, U.S.A
| | - Daniela Čiháková
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Maryland 21205, U.S.A
- Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, Maryland 21205, U.S.A
| |
Collapse
|
48
|
Enigma of IL-17 and Th17 Cells in Rheumatoid Arthritis and in Autoimmune Animal Models of Arthritis. Mediators Inflamm 2016; 2016:6145810. [PMID: 26903711 PMCID: PMC4745575 DOI: 10.1155/2016/6145810] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 01/03/2016] [Indexed: 12/14/2022] Open
Abstract
Rheumatoid arthritis (RA) is one of the most common autoimmune disorders characterized by the chronic and progressive inflammation of various organs, most notably the synovia of joints leading to joint destruction, a shorter life expectancy, and reduced quality of life. Although we have substantial information about the pathophysiology of the disease with various groups of immune cells and soluble mediators identified to participate in the pathogenesis, several aspects of the altered immune functions and regulation in RA remain controversial. Animal models are especially useful in such scenarios. Recently research focused on IL-17 and IL-17 producing cells in various inflammatory diseases such as in RA and in different rodent models of RA. These studies provided occasionally contradictory results with IL-17 being more prominent in some of the models than in others; the findings of such experimental setups were sometimes inconclusive compared to the human data. The aim of this review is to summarize briefly the recent advancements on the role of IL-17, particularly in the different rodent models of RA.
Collapse
|
49
|
Abstract
Granulocyte-macrophage colony stimulating factor (GM-CSF) is a growth factor first identified as an inducer of differentiation and proliferation of granulocytes and macrophages derived from haematopoietic progenitor cells. Later studies have shown that GM-CSF is involved in a wide range of biological processes in both innate and adaptive immunity, with its production being tightly linked to the response to danger signals. Given that the functions of GM-CSF span multiple tissues and biological processes, this cytokine has shown potential as a new and important therapeutic target in several autoimmune and inflammatory disorders - particularly in rheumatoid arthritis. Indeed, GM-CSF was one of the first cytokines detected in human synovial fluid from inflamed joints. Therapies that target GM-CSF or its receptor have been tested in preclinical studies with promising results, further supporting the potential of targeting the GM-CSF pathway. In this Review, we discuss our expanding view of the biology of GM-CSF, outline what has been learnt about GM-CSF from studies of animal models and human diseases, and summarize the results of early phase clinical trials evaluating GM-CSF antagonism in inflammatory disorders.
Collapse
|
50
|
Pivotal roles of GM-CSF in autoimmunity and inflammation. Mediators Inflamm 2015; 2015:568543. [PMID: 25838639 PMCID: PMC4370199 DOI: 10.1155/2015/568543] [Citation(s) in RCA: 158] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 02/23/2015] [Indexed: 12/14/2022] Open
Abstract
Granulocyte macrophage-colony stimulating factor (GM-CSF) is a hematopoietic growth factor, which stimulates the proliferation of granulocytes and macrophages from bone marrow precursor cells. In autoimmune and inflammatory diseases, Th17 cells have been considered as strong inducers of tissue inflammation. However, recent evidence indicates that GM-CSF has prominent proinflammatory functions and that this growth factor (not IL-17) is critical for the pathogenicity of CD4+ T cells. Therefore, the mechanism of GM-CSF-producing CD4+ T cell differentiation and the role of GM-CSF in the development of autoimmune and inflammatory diseases are gaining increasing attention. This review summarizes the latest knowledge of GM-CSF and its relationship with autoimmune and inflammatory diseases. The potential therapies targeting GM-CSF as well as their possible side effects have also been addressed in this review.
Collapse
|