1
|
Benjaskulluecha S, Boonmee A, Haque M, Wongprom B, Pattarakankul T, Pongma C, Sri-ngern-ngam K, Keawvilai P, Sukdee T, Saechue B, Kueanjinda P, Palaga T. O 6-methylguanine DNA methyltransferase regulates β-glucan-induced trained immunity of macrophages via farnesoid X receptor and AMPK. iScience 2024; 27:108733. [PMID: 38235325 PMCID: PMC10792243 DOI: 10.1016/j.isci.2023.108733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 10/10/2023] [Accepted: 12/11/2023] [Indexed: 01/19/2024] Open
Abstract
Trained immunity is the heightened state of innate immune memory that enhances immune response resulting in nonspecific protection. Epigenetic changes and metabolic reprogramming are critical steps that regulate trained immunity. In this study, we reported the involvement of O6-methylguanine DNA methyltransferase (MGMT), a DNA repair enzyme of lesion induced by alkylating agents, in regulation the trained immunity induced by β-glucan (BG). Pharmacological inhibition or silencing of MGMT expression altered LPS stimulated pro-inflammatory cytokine productions in BG-trained bone marrow derived macrophages (BMMs). Targeted deletion of Mgmt in BMMs resulted in reduction of the trained responses both in vitro and in vivo models. The transcriptomic analysis revealed that the dampening trained immunity in MGMT KO BMMs is partially mediated by ATM/FXR/AMPK axis affecting the MAPK/mTOR/HIF1α pathways and the reduction in glycolysis function. Taken together, a failure to resolve a DNA damage may have consequences for innate immune memory.
Collapse
Affiliation(s)
- Salisa Benjaskulluecha
- Interdisciplinary Graduate Program in Medical Microbiology, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand
- Center of Excellence in Immunology and Immune-Mediated Diseases, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Atsadang Boonmee
- Center of Excellence in Immunology and Immune-Mediated Diseases, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - MdFazlul Haque
- Center of Excellence in Immunology and Immune-Mediated Diseases, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Benjawan Wongprom
- Center of Excellence in Immunology and Immune-Mediated Diseases, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Thitiporn Pattarakankul
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
- Center of Excellence in Advanced Materials and Biointerfaces, Chulalongkorn University, Bangkok 10330, Thailand
| | - Chitsuda Pongma
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
- Graduate Program in Biotechnology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Kittitach Sri-ngern-ngam
- Center of Excellence in Immunology and Immune-Mediated Diseases, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Pornlapat Keawvilai
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
- Graduate Program in Biotechnology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Thadaphong Sukdee
- Interdisciplinary Graduate Program in Medical Microbiology, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand
- Center of Excellence in Immunology and Immune-Mediated Diseases, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Benjawan Saechue
- Center of Excellence in Immunology and Immune-Mediated Diseases, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
- One Health Research Unit, Faculty of Veterinary Science, Mahasarakham University, Mahasarakham 44000, Thailand
| | - Patipark Kueanjinda
- Interdisciplinary Graduate Program in Medical Microbiology, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand
- Center of Excellence in Immunology and Immune-Mediated Diseases, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Tanapat Palaga
- Interdisciplinary Graduate Program in Medical Microbiology, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand
- Center of Excellence in Immunology and Immune-Mediated Diseases, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
2
|
Askari H, Rabiei F, Yahyazadeh M, Biagini G, Ghasemi-Kasman M. Notch Signaling in Central Nervous System: From Cellular Development to Multiple Sclerosis Disease. Curr Neuropharmacol 2024; 23:3-19. [PMID: 39162293 PMCID: PMC11519821 DOI: 10.2174/1570159x22666240731114906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 03/01/2024] [Accepted: 03/19/2024] [Indexed: 08/21/2024] Open
Abstract
INTRODUCTION/OBJECTIVE Multiple sclerosis (MS), is characterized by autoimmune-driven neuroinflammation, axonal degeneration, and demyelination. This study aimed to explore the therapeutic potential of targeting Notch signaling within the central nervous system (CNS) in the context of MS. Understanding the intricate roles of Notch signaling could pave the way for targeted interventions to mitigate MS progression. METHODS A comprehensive literature review was conducted using databases such as PubMed, Web of Science, and Scopus. Keywords such as "Notch signaling," "neuroglial interactions," and "MS" were used. The selection criteria included relevance to neuroglial interactions, peer-reviewed publications, and studies involving animal models of MS. RESULTS This review highlights the diverse functions of Notch signaling in CNS development, including its regulation of neural stem cell differentiation into neurons, astrocytes, and oligodendrocytes. In the context of MS, Notch signaling has emerged as a promising therapeutic target, exhibiting positive impacts on neuroprotection and remyelination. However, its intricate nature within the CNS necessitates precise modulation for therapeutic efficacy. CONCLUSION This study provides a comprehensive overview of the potential therapeutic role of Notch signaling in MS. The findings underscore the significance of Notch modulation for neuroprotection and remyelination, emphasizing the need for precision in therapeutic interventions. Further research is imperative to elucidate the specific underlying mechanisms involved, which will provide a foundation for targeted therapeutic strategies for the management of MS and related neurodegenerative disorders.
Collapse
Affiliation(s)
- Hamid Askari
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Fatemeh Rabiei
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Masoomeh Yahyazadeh
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Giuseppe Biagini
- Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Maryam Ghasemi-Kasman
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
- Department of Physiology, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
3
|
Christopoulos PF, Gjølberg TT, Krüger S, Haraldsen G, Andersen JT, Sundlisæter E. Targeting the Notch Signaling Pathway in Chronic Inflammatory Diseases. Front Immunol 2021; 12:668207. [PMID: 33912195 PMCID: PMC8071949 DOI: 10.3389/fimmu.2021.668207] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 03/24/2021] [Indexed: 12/14/2022] Open
Abstract
The Notch signaling pathway regulates developmental cell-fate decisions and has recently also been linked to inflammatory diseases. Although therapies targeting Notch signaling in inflammation in theory are attractive, their design and implementation have proven difficult, at least partly due to the broad involvement of Notch signaling in regenerative and homeostatic processes. In this review, we summarize the supporting role of Notch signaling in various inflammation-driven diseases, and highlight efforts to intervene with this pathway by targeting Notch ligands and/or receptors with distinct therapeutic strategies, including antibody designs. We discuss this in light of lessons learned from Notch targeting in cancer treatment. Finally, we elaborate on the impact of individual Notch members in inflammation, which may lay the foundation for development of therapeutic strategies in chronic inflammatory diseases.
Collapse
Affiliation(s)
| | - Torleif T. Gjølberg
- Institute of Clinical Medicine and Department of Pharmacology, University of Oslo and Oslo University Hospital, Oslo, Norway
- Centre for Eye Research and Department of Ophthalmology, University of Oslo and Oslo University Hospital, Oslo, Norway
- Department of Immunology, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Stig Krüger
- Department of Pathology, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Guttorm Haraldsen
- Department of Pathology, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Jan Terje Andersen
- Institute of Clinical Medicine and Department of Pharmacology, University of Oslo and Oslo University Hospital, Oslo, Norway
- Department of Immunology, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Eirik Sundlisæter
- Department of Pathology, University of Oslo and Oslo University Hospital, Oslo, Norway
| |
Collapse
|
4
|
Wenqian C, Fan W, Hu X. Genome-wide DNA methylation analysis of Hashimoto's thyroiditis during pregnancy. FEBS Open Bio 2020; 10:2780-2790. [PMID: 33113271 PMCID: PMC7714066 DOI: 10.1002/2211-5463.13018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/22/2020] [Accepted: 10/26/2020] [Indexed: 12/05/2022] Open
Abstract
Hashimoto's thyroiditis (HT) during pregnancy is usually accompanied by an elevation of thyroid‐stimulating hormone and a reduction of serum‐free thyroxine during gestation, which may lead to abortion, preterm delivery, and reduced intellectual function of the offspring. Epigenetic alterations may provide important insights into genetic–environmental interactions in HT. Here, we examined global DNA methylation patterns in patients with HT during pregnancy. DNA was extracted from 13 women with HT during pregnancy (HTDP) and eight healthy pregnant women as a control group. Genome‐wide methylation was detected with the use of an Illumina Human Methylation 850K Beadchip. A total of 652 differentially methylated positions (DMPs) and 27 differentially methylated regions (DMRs) were identified between the HTDP and control groups. GO analysis revealed that DMPs were significantly enriched in 540 GO terms, which included regulation of the differentiation of keratinocytes, T helper cell differentiation, and alpha‐beta T‐cell differentiation. Moreover, significant enrichment of KEGG pathways of the DMPs included mucin‐type O‐glycan biosynthesis, focal adhesion, and the insulin signaling pathway. The GO items associated with DMRs included muscle cell proliferation, response to biotic stimulus, anatomical structure formation involved in morphogenesis, and genes primarily involved in the FoxO signaling pathway. Finally, the DTNA gene was identified as the seed gene of functional epigenetic modules. In summary, the DNA methylation pattern of the HTDP group was distinct from that of the control group, and thus, changes in DNA methylation may influence the development of HT by regulation of the autoimmunity process.
Collapse
Affiliation(s)
- Cai Wenqian
- Eugenic Genetics Laboratory, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Wenlei Fan
- Internal Medicine DEPT, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Xijiang Hu
- Eugenic Genetics Laboratory, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| |
Collapse
|
5
|
Deng X, Lin Z, Zuo C, Fu Y. Upregulation of miR-150-5p alleviates LPS-induced inflammatory response and apoptosis of RAW264.7 macrophages by targeting Notch1. Open Life Sci 2020; 15:544-552. [PMID: 33817242 PMCID: PMC7874594 DOI: 10.1515/biol-2020-0058] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 06/10/2020] [Accepted: 06/10/2020] [Indexed: 12/29/2022] Open
Abstract
Circulating miR-150-5p has been identified as a prognostic marker in patients with critical illness and sepsis. Herein, we aimed to further explore the role and underlying mechanism of miR-150-5p in sepsis. Quantitative real-time-PCR assay was performed to detect the expression of miR-150-5p upon stimulation with lipopolysaccharide (LPS) in RAW264.7 cells. The levels of tumor necrosis factor-α, interleukin (IL)-6 and IL-1β were measured by ELISA assay. Cell apoptosis was determined using flow cytometry. Western blot was used to assess notch receptor 1 (Notch1) expression in LPS-induced RAW264.7 cells. Dual-luciferase reporter assay was employed to validate the target of miR-150-5p. Our data showed that miR-150-5p was downregulated and Notch1 was upregulated in LPS-stimulated RAW264.7 cells. miR-150-5p overexpression or Notch1 silencing alleviated LPS-induced inflammatory response and apoptosis in RAW264.7 cells. Moreover, Notch1 was a direct target of miR-150-5p. Notch1 abated miR-150-5p-mediated anti-inflammation and anti-apoptosis in LPS-induced RAW264.7 cells. miR-150-5p alleviated LPS-induced inflammatory response and apoptosis at least partly by targeting Notch1 in RAW264.7 cells, highlighting miR-150-5p as a target in the development of anti-inflammation and anti-apoptosis drugs for sepsis treatment.
Collapse
Affiliation(s)
- Xiaoyan Deng
- Department of ICU, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan Province, China
| | - Zhixing Lin
- Department of ICU, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan Province, China
| | - Chao Zuo
- Shandong Medical College, Jinan, Shandong Province, China
| | - Yanjie Fu
- Department of Burn and Plastic Surgery, Linyi People’s Hospital, No. 27, Jiefang Rd, Linyi City, 276000, Shandong Province, China
| |
Collapse
|
6
|
Du T, Yang CL, Ge MR, Liu Y, Zhang P, Li H, Li XL, Li T, Liu YD, Dou YC, Yang B, Duan RS. M1 Macrophage Derived Exosomes Aggravate Experimental Autoimmune Neuritis via Modulating Th1 Response. Front Immunol 2020; 11:1603. [PMID: 32793234 PMCID: PMC7390899 DOI: 10.3389/fimmu.2020.01603] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 06/16/2020] [Indexed: 12/29/2022] Open
Abstract
Guillain–Barré syndrome (GBS), an immune-mediated disorder affecting the peripheral nervous system, is the most common and severe acute paralytic neuropathy. GBS remains to be potentially life-threatening and disabling despite the increasing availability of current standard therapeutic regimens. Therefore, more targeted therapeutics are in urgent need. Macrophages have been implicated in both initiation and resolution of experimental autoimmune neuritis (EAN), the animal model of GBS, but the exact mechanisms remain to be elucidated. It has been increasingly appreciated that exosomes, a type of extracellular vesicles (EVs), are of importance for functions of macrophages. Nevertheless, the roles of macrophage derived exosomes in EAN/GBS remain unclear. Here we determined the effects of macrophage derived exosomes on the development of EAN in Lewis rats. M1 macrophage derived exosomes (M1 exosomes) were found to aggravate EAN via boosting Th1 and Th17 response, while M2 macrophage derived exosomes (M2 exosomes) showed potentials to mitigate disease severity via a mechanism bypassing Th1 and Th17 response. Besides, both M1 and M2 exosomes increased germinal center reactions in EAN. Further in vitro studies confirmed that M1 exosomes could directly promote IFN-γ production in T cells and M2 exosomes were not capable of inhibiting IFN-γ expression. Thus, our data identify a previously undescribed means that M1 macrophages amplify Th1 response via exosomes and provide novel insights into the crosstalk between macrophages and T cells as well.
Collapse
Affiliation(s)
- Tong Du
- Department of Neurology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Chun-Lin Yang
- Department of Neurology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Meng-Ru Ge
- Department of Neurology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Ying Liu
- Department of Neuronal Electrophysiology, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Peng Zhang
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Heng Li
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Xiao-Li Li
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Tao Li
- Department of Neurology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Yu-Dong Liu
- Department of Neuronal Electrophysiology, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Ying-Chun Dou
- College of Basic Medical Sciences, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Bing Yang
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Rui-Sheng Duan
- Department of Neurology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China.,Department of Neurology, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| |
Collapse
|
7
|
Sanna MD, Borgonetti V, Galeotti N. μ Opioid Receptor-Triggered Notch-1 Activation Contributes to Morphine Tolerance: Role of Neuron–Glia Communication. Mol Neurobiol 2019; 57:331-345. [DOI: 10.1007/s12035-019-01706-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 07/10/2019] [Indexed: 01/07/2023]
|
8
|
Taratummarat S, Sangphech N, Vu CTB, Palaga T, Ondee T, Surawut S, Sereemaspun A, Ritprajak P, Leelahavanichkul A. Gold nanoparticles attenuates bacterial sepsis in cecal ligation and puncture mouse model through the induction of M2 macrophage polarization. BMC Microbiol 2018; 18:85. [PMID: 30119646 PMCID: PMC6098657 DOI: 10.1186/s12866-018-1227-3] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 08/06/2018] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Gold nanoparticles (AuNP) have several biochemical advantageous properties especially for a candidate of drug carrier. However, the non-conjugated AuNP has a higher rate of cellular uptake than the conjugated ones. Spherical AuNP in a proper size (20-30 nm) is non-toxic to mice and shows anti-inflammatory properties. We tested if the administration of AuNP, as an adjuvant to antibiotics, could attenuate bacterial sepsis in cecal ligation and puncture (CLP) mouse model with antibiotic (imipenem/cilastatin). RESULTS Indeed, AuNP administration at the time of CLP improved the survival, blood bacterial burdens, kidney function, liver injury and inflammatory cytokines (TNF-α, IL-6, IL-1β and IL-10). AuNP also decreased M1 macrophages (CD86 + ve in F4/80 + ve cells) and increased M2 macrophages (CD206 + ve in F4/80 + ve cells) in the spleens of sepsis mice. The weak antibiotic effect of AuNP was demonstrated as the reduction of E. coli colony after 4 h incubation. In addition, AuNP altered cytokine production of bone-marrow-derived macrophages including reduced TNF-α, IL-6 and IL-1β but increased IL-10 at 6 and 24 h. Moreover, AuNP induced macrophage polarization toward anti-inflammatory responses (M2) as presented by increased Arg1 (Arginase 1) and PPARγ with decreased Nos2 (inducible nitric oxide synthase, iNos) and Nur77 at 3 h after incubation in vitro. CONCLUSIONS The adjuvant therapy of AuNP, with a proper antibiotic, attenuated CLP-induced bacterial sepsis in mice, at least in part, through the antibiotic effect and the induction of macrophage function toward the anti-inflammatory responses.
Collapse
Affiliation(s)
- Sujittra Taratummarat
- Medical Microbiology, Interdisciplinary Program, Graduate School, Chulalongkorn University, Bangkok, Thailand
| | - Naunpun Sangphech
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Chau Tran Bao Vu
- Oral Biology program, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Tanapat Palaga
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Thunnicha Ondee
- Medical Sciences Program, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Saowapha Surawut
- Medical Microbiology, Interdisciplinary Program, Graduate School, Chulalongkorn University, Bangkok, Thailand
| | - Amornpun Sereemaspun
- Department of Anatomy, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Patcharee Ritprajak
- Department of Microbiology and Immunology and Research Unit of Oral Microbiology, Chulalongkorn University, Bangkok, Thailand
| | - Asada Leelahavanichkul
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand. .,Center of Excellence in Immunology and Immune-mediated Diseases, Department of Microbiology, Faculty of Medicine Chulalongkorn University, Bangkok, Thailand.
| |
Collapse
|
9
|
Cummings M, Arumanayagam ACS, Zhao P, Kannanganat S, Stuve O, Karandikar NJ, Eagar TN. Presenilin1 regulates Th1 and Th17 effector responses but is not required for experimental autoimmune encephalomyelitis. PLoS One 2018; 13:e0200752. [PMID: 30089166 PMCID: PMC6082653 DOI: 10.1371/journal.pone.0200752] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 07/02/2018] [Indexed: 02/02/2023] Open
Abstract
Multiple Sclerosis (MS) is an inflammatory demyelinating disease of the central nervous system (CNS) where pathology is thought to be regulated by autoreactive T cells of the Th1 and Th17 phenotype. In this study we sought to understand the functions of Presenilin 1 (PSEN1) in regulating T cell effector responses in the experimental autoimmune encephalomyelitis (EAE) murine model of MS. PSEN1 is the catalytic subunit of γ-secretase a multimolecular protease that mediates intramembranous proteolysis. γ-secretase is known to regulate several pathways of immune importance. Here we examine the effects of disrupting PSEN1 functions on EAE and T effector differentiation using small molecule inhibitors of γ-secretase (GSI) and T cell-specific conditional knockout mice (PSEN1 cKO). Surprisingly, blocking PSEN1 function by GSI treatment or PSEN1 cKO had little effect on the development or course of MOG35-55-induced EAE. In vivo GSI administration reduced the number of myelin antigen-specific T cells and suppressed Th1 and Th17 differentiation following immunization. In vitro, GSI treatment inhibited Th1 differentiation in neutral but not IL-12 polarizing conditions. Th17 differentiation was also suppressed by the presence of GSI in all conditions and GSI-treated Th17 T cells failed to induce EAE following adoptive transfer. PSEN cKO T cells showed reduced Th1 and Th17 differentiation. We conclude that γ-secretase and PSEN1-dependent signals are involved in T effector responses in vivo and potently regulate T effector differentiation in vitro, however, they are dispensable for EAE.
Collapse
MESH Headings
- Amyloid Precursor Protein Secretases/antagonists & inhibitors
- Amyloid Precursor Protein Secretases/metabolism
- Animals
- Cell Differentiation/drug effects
- Cell Proliferation/drug effects
- Dibenzazepines/pharmacology
- Dibenzazepines/therapeutic use
- Encephalomyelitis, Autoimmune, Experimental/drug therapy
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Female
- Granulocyte-Macrophage Colony-Stimulating Factor/metabolism
- Interleukin-17/metabolism
- Interleukin-2/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism
- Presenilin-1/deficiency
- Presenilin-1/genetics
- Th1 Cells/drug effects
- Th1 Cells/immunology
- Th1 Cells/metabolism
- Th17 Cells/drug effects
- Th17 Cells/immunology
- Th17 Cells/metabolism
Collapse
Affiliation(s)
- Matthew Cummings
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, United States of America
| | | | - Picheng Zhao
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital Research Institute, Houston, TX, United States of America
| | - Sunil Kannanganat
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital Research Institute, Houston, TX, United States of America
| | - Olaf Stuve
- Neurology Section, VA North Texas Health Care System, Medical Service, Dallas, TX, United States of America
| | - Nitin J. Karandikar
- Department of Pathology, University of Iowa, Iowa City, IA, United States of America
| | - Todd N. Eagar
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital Research Institute, Houston, TX, United States of America
| |
Collapse
|
10
|
Wongchana W, Kongkavitoon P, Tangtanatakul P, Sittplangkoon C, Butta P, Chawalitpong S, Pattarakankul T, Osborne BA, Palaga T. Notch signaling regulates the responses of lipopolysaccharide-stimulated macrophages in the presence of immune complexes. PLoS One 2018; 13:e0198609. [PMID: 29889863 PMCID: PMC5995379 DOI: 10.1371/journal.pone.0198609] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Accepted: 05/22/2018] [Indexed: 01/06/2023] Open
Abstract
Macrophages exhibit diverse effector phenotypes depending on the stimuli and their microenvironment. Classically activated macrophages are primed with interferon (IFN)γ and stimulated with pathogen-associated molecular patterns. They produce inflammatory mediators and inflammatory cytokines, such as IL-12. In the presence of immune complexes (ICs), activated macrophages have decreased IL-12 production and increased IL-10 production and presumably act as regulatory macrophages. Notch signaling has been shown to regulate the effector functions of classically activated macrophages. In this study, we investigated whether Notch signaling is active in lipopolysaccharide (LPS)-stimulated macrophages in the presence of ICs. LPS/IC stimulation increased the level of cleaved Notch1 in murine macrophages, while IC stimulation alone did not. Delta-like 4, but not Jagged1, was responsible for generating cleaved Notch1. The activation of Notch signaling by LPS/ICs depended upon NF-κB and MEK/Erk pathway activation. Macrophages with the targeted deletion of Rbpj, which encodes a DNA-binding protein central to canonical Notch signaling, produced significantly less IL-10 upon LPS/IC stimulation. A similar impact on IL-10 production was observed when Notch signaling was inhibited with a gamma-secretase inhibitor (GSI). Defects in NF-κB p50 nuclear localization were observed in GSI-treated macrophages and in Rbpj-/- macrophages, suggesting cross-regulation between the Notch and NF-κB pathways. Transcriptomic analysis revealed that Notch signaling regulates the transcription of genes involved in the cell cycle, macrophage activation, leukocyte migration and cytokine production in LPS/IC-stimulated macrophages. Taken together, these results suggest that the Notch signaling pathway plays an important role in regulating the functions of macrophages activated by LPS and ICs.
Collapse
Affiliation(s)
- Wipawee Wongchana
- Graduate Program in Biotechnology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Immunology and Immune-mediated Diseases, Chulalongkorn University, Bangkok, Thailand
| | - Pornrat Kongkavitoon
- Center of Excellence in Immunology and Immune-mediated Diseases, Chulalongkorn University, Bangkok, Thailand
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Pattarin Tangtanatakul
- Center of Excellence in Immunology and Immune-mediated Diseases, Chulalongkorn University, Bangkok, Thailand
| | - Chutamath Sittplangkoon
- Graduate Program in Biotechnology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Immunology and Immune-mediated Diseases, Chulalongkorn University, Bangkok, Thailand
| | - Patcharavadee Butta
- Center of Excellence in Immunology and Immune-mediated Diseases, Chulalongkorn University, Bangkok, Thailand
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Supatta Chawalitpong
- Graduate Program in Biotechnology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Immunology and Immune-mediated Diseases, Chulalongkorn University, Bangkok, Thailand
| | - Thitiporn Pattarakankul
- Center of Excellence in Immunology and Immune-mediated Diseases, Chulalongkorn University, Bangkok, Thailand
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Barbara A. Osborne
- Department of Veterinary and Animal Sciences, University of Massachusetts at Amherst, Amherst, Massachusetts, United States of America
| | - Tanapat Palaga
- Center of Excellence in Immunology and Immune-mediated Diseases, Chulalongkorn University, Bangkok, Thailand
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- Omics Sciences & Bioinformatics Center, Chulalongkorn University, Bangkok, Thailand
- * E-mail:
| |
Collapse
|
11
|
Amici SA, Dong J, Guerau-de-Arellano M. Molecular Mechanisms Modulating the Phenotype of Macrophages and Microglia. Front Immunol 2017; 8:1520. [PMID: 29176977 PMCID: PMC5686097 DOI: 10.3389/fimmu.2017.01520] [Citation(s) in RCA: 141] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 10/26/2017] [Indexed: 12/24/2022] Open
Abstract
Macrophages and microglia play crucial roles during central nervous system development, homeostasis and acute events such as infection or injury. The diverse functions of tissue macrophages and microglia are mirrored by equally diverse phenotypes. A model of inflammatory/M1 versus a resolution phase/M2 macrophages has been widely used. However, the complexity of macrophage function can only be achieved by the existence of varied, plastic and tridimensional macrophage phenotypes. Understanding how tissue macrophages integrate environmental signals via molecular programs to define pathogen/injury inflammatory responses provides an opportunity to better understand the multilayered nature of macrophages, as well as target and modulate cellular programs to control excessive inflammation. This is particularly important in MS and other neuroinflammatory diseases, where chronic inflammatory macrophage and microglial responses may contribute to pathology. Here, we perform a comprehensive review of our current understanding of how molecular pathways modulate tissue macrophage phenotype, covering both classic pathways and the emerging role of microRNAs, receptor-tyrosine kinases and metabolism in macrophage phenotype. In addition, we discuss pathway parallels in microglia, novel markers helpful in the identification of peripheral macrophages versus microglia and markers linked to their phenotype.
Collapse
Affiliation(s)
- Stephanie A Amici
- School of Health and Rehabilitation Sciences, Division of Medical Laboratory Science, College of Medicine, Wexner Medical Center, The Ohio State University, Columbus, OH, United States
| | - Joycelyn Dong
- School of Health and Rehabilitation Sciences, Division of Medical Laboratory Science, College of Medicine, Wexner Medical Center, The Ohio State University, Columbus, OH, United States.,McCormick School of Engineering, Division of Biomedical Engineering, Northwestern University, Evanston, IL, United States
| | - Mireia Guerau-de-Arellano
- School of Health and Rehabilitation Sciences, Division of Medical Laboratory Science, College of Medicine, Wexner Medical Center, The Ohio State University, Columbus, OH, United States.,Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, United States.,Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, United States.,Department of Neuroscience, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
12
|
Li Q, Zhang H, Yu L, Wu C, Luo X, Sun H, Ding J. Down-regulation of Notch signaling pathway reverses the Th1/Th2 imbalance in tuberculosis patients. Int Immunopharmacol 2017; 54:24-32. [PMID: 29100034 DOI: 10.1016/j.intimp.2017.10.026] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 10/17/2017] [Accepted: 10/19/2017] [Indexed: 02/09/2023]
Abstract
Th1/Th2 imbalance to Th2 is of significance in the peripheral immune responses in Tuberculosis (TB) development. However, the mechanisms for Th1/Th2 imbalance are still not well determined. Notch signaling pathway is involved in the peripheral T cell activation and effector cell differentiation. However, whether it affects Th1/Th2 imbalance in TB patients is still not known. Here, we used γ-secretase inhibitor (DAPT) to treat the peripheral blood mononuclear cells (PBMCs) from healthy people or individuals with latent or active TB infection in vitro, respectively. Then, the Th1/Th2 ratios were determined by flow cytometry, and cytokines of IFN-γ, IL-4, IL-10 in the culture supernatant were measured by CBA method. The Notch signal pathway associated proteins Hes1, GATA3 and T-bet were quantitated by real-time PCR or immunoblotting. Our results showed that DAPT effectively inhibited the protein level of Hes1. In TB patients, the Th2 ratio increased in the PBMCs, alone with the high expression of GATA3 and IL-4, resulting in the high ratios of Th2/Th1 and GATA3/T-bet in TB patients. However, Th2 cells ratio decreased after blocking the Notch signaling pathway by DAPT and the Th2/Th1 ratio in TB patients were DAPT dose-dependent, accompanied by the decrease of IL-4 and GATA3. But, its influence on Th1 ratio and Th1 related T-bet and IFN-γ levels were not significant. In conclusion, our results suggest that blocking Notch signaling by DAPT could inhibit Th2 responses and restore Th1/Th2 imbalance in TB patients.
Collapse
Affiliation(s)
- Qifeng Li
- Department of Clinical Laboratory, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, Xinjiang, China; Xinjiang Institute of Pediatrics, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi 830001, Xinjiang, China
| | - Hui Zhang
- Clinical Medicine Research Center, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi 830001, Xinjiang, China
| | - Liang Yu
- Xinjiang Institute of Pediatrics, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi 830001, Xinjiang, China
| | - Chao Wu
- Department of Respiratory and Critical Care Medicine, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi 830001, Xinjiang, China
| | - Xinhui Luo
- Xinjiang Institute of Pediatrics, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi 830001, Xinjiang, China
| | - He Sun
- Xinjiang Institute of Pediatrics, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi 830001, Xinjiang, China.
| | - Jianbing Ding
- Department of Clinical Laboratory, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, Xinjiang, China; Department of Immunology, School of Preclinical Medicine, Xinjiang Medical University, Urumqi 830011, Xinjiang, China.
| |
Collapse
|
13
|
Fernández M, Monsalve EM, López-López S, Ruiz-García A, Mellado S, Caminos E, García-Ramírez JJ, Laborda J, Tranque P, Díaz-Guerra MJM. Absence of Notch1 in murine myeloid cells attenuates the development of experimental autoimmune encephalomyelitis by affecting Th1 and Th17 priming. Eur J Immunol 2017; 47:2090-2100. [PMID: 28762472 DOI: 10.1002/eji.201646901] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 07/14/2017] [Accepted: 07/28/2017] [Indexed: 12/22/2022]
Abstract
Inhibition of Notch signalling in T cells attenuates the development of experimental autoimmune encephalomyelitis (EAE), a mouse model of multiple sclerosis. Growing evidence indicates that myeloid cells are also key players in autoimmune processes. Thus, the present study evaluates the role of the Notch1 receptor in myeloid cells on the progression of myelin oligodendrocyte glycoprotein (MOG)35-55 -induced EAE, using mice with a myeloid-specific deletion of the Notch1 gene (MyeNotch1KO). We found that EAE progression was less severe in the absence of Notch1 in myeloid cells. Thus, histopathological analysis revealed reduced pathology in the spinal cord of MyeNotch1KO mice, with decreased microglia/astrocyte activation, demyelination and infiltration of CD4+ T cells. Moreover, these mice showed lower Th1 and Th17 cell infiltration and expression of IFN-γ and IL-17 mRNA in the spinal cord. Accordingly, splenocytes from MyeNotch1KO mice reactivated in vitro presented reduced Th1 and Th17 activation, and lower expression of IL-12, IL-23, TNF-α, IL-6, and CD86. Moreover, reactivated wild-type splenocytes showed increased Notch1 expression, arguing for a specific involvement of this receptor in autoimmune T cell activation in secondary lymphoid tissues. In summary, our results reveal a key role of the Notch1 receptor in myeloid cells for the initiation and progression of EAE.
Collapse
Affiliation(s)
- Miriam Fernández
- Facultad de Medicina (UCLM), Instituto de Investigación en Discapacidades Neurológicas (IDINE), Albacete, Spain
| | - Eva M Monsalve
- Facultad de Medicina (UCLM), Centro Regional de Investigaciones Biomédicas (CRIB), Unidad Asociada de Biomedicina (UCLM-CSIC), Albacete, Spain
| | - Susana López-López
- Facultad de Medicina (UCLM), Centro Regional de Investigaciones Biomédicas (CRIB), Unidad Asociada de Biomedicina (UCLM-CSIC), Albacete, Spain
| | - Almudena Ruiz-García
- Facultad de Medicina (UCLM), Centro Regional de Investigaciones Biomédicas (CRIB), Unidad Asociada de Biomedicina (UCLM-CSIC), Albacete, Spain
| | - Susana Mellado
- Facultad de Medicina (UCLM), Instituto de Investigación en Discapacidades Neurológicas (IDINE), Albacete, Spain
| | - Elena Caminos
- Facultad de Medicina (UCLM), Instituto de Investigación en Discapacidades Neurológicas (IDINE), Albacete, Spain
| | - José Javier García-Ramírez
- Facultad de Medicina (UCLM), Centro Regional de Investigaciones Biomédicas (CRIB), Unidad Asociada de Biomedicina (UCLM-CSIC), Albacete, Spain
| | - Jorge Laborda
- Facultad de Medicina (UCLM), Centro Regional de Investigaciones Biomédicas (CRIB), Unidad Asociada de Biomedicina (UCLM-CSIC), Albacete, Spain
| | - Pedro Tranque
- Facultad de Medicina (UCLM), Instituto de Investigación en Discapacidades Neurológicas (IDINE), Albacete, Spain
| | - María José M Díaz-Guerra
- Facultad de Medicina (UCLM), Centro Regional de Investigaciones Biomédicas (CRIB), Unidad Asociada de Biomedicina (UCLM-CSIC), Albacete, Spain
| |
Collapse
|
14
|
Sun W, Zhang H, Wang H, Chiu YG, Wang M, Ritchlin CT, Kiernan A, Boyce BF, Xing L. Targeting Notch-Activated M1 Macrophages Attenuates Joint Tissue Damage in a Mouse Model of Inflammatory Arthritis. J Bone Miner Res 2017; 32:1469-1480. [PMID: 28256007 PMCID: PMC5489377 DOI: 10.1002/jbmr.3117] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 02/14/2017] [Accepted: 02/27/2017] [Indexed: 12/20/2022]
Abstract
Expression levels of Notch signaling molecules are increased in synovium from patients with rheumatoid arthritis (RA). However, it is not known which cell type(s) in RA synovium have Notch activation or if they play a pathogenetic role in RA. Here, we used Hes1-GFP/TNF-transgenic (TNF-Tg) mice to investigate the role of cells with active Notch signaling (GFP+) in RA. The number of GFP+ cells was significantly increased in synovium in Hes1-GFP/TNF-Tg mice and about 60% of them were F4/80+ macrophages expressing the inflammatory macrophage (M1) marker. TNF-Tg mice transplanted with Hes1-GFP/TNF-Tg bone marrow (BM) had significantly more GFP+ cells in their synovium than in BM. Intraarticular injection of Hes1-GFP/TNF-Tg or Hes1-GFP+ BM macrophages into WT and TNF-Tg mice showed the highest synovial GFP+ cells in the TNF-Tg mice that received Hes1-GFP/TNF-Tg cells. Thapsigargin (THAP), a Notch inhibitor, decreased TNF-induced M1 and increased M2 numbers and reduced joint lesion, synovial M1s, and GFP+ cells in Hes1-GFP/TNF-Tg mice. THAP did not affect M1s from mice carrying a constitutively active Notch1. Thus, the main cells with activated Notch signaling in the inflamed synovium of TNF-Tg mice are M1s derived from BM and targeting them may represent a new therapeutic approach for patients with inflammatory arthritis. © 2017 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Wen Sun
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Hengwei Zhang
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Hua Wang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Yahui Grace Chiu
- Allergy/Immunology and Rheumatology Division, University of Rochester Medical Center, Rochester, NY, USA
| | - Mengmeng Wang
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Christopher T Ritchlin
- Allergy/Immunology and Rheumatology Division, University of Rochester Medical Center, Rochester, NY, USA.,Center for Musculoskeletal Research (CMSR), University of Rochester Medical Center, Rochester, NY, USA
| | - Amy Kiernan
- Department of Ophthalmology, University of Rochester Medical Center, Rochester, NY, USA
| | - Brendan F Boyce
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA.,Center for Musculoskeletal Research (CMSR), University of Rochester Medical Center, Rochester, NY, USA
| | - Lianping Xing
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA.,Center for Musculoskeletal Research (CMSR), University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
15
|
Romera LMD, Kaihami GH, Jannuzzi GP, de Almeida JRF, de Almeida SR. The Critical Role of Notch1–TLR 4 Signaling in the Inflammatory and Fungicidal Activity of Macrophages Against Paracoccidioides brasiliensis Strain Pb18. Mycopathologia 2017; 182:797-807. [DOI: 10.1007/s11046-017-0154-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 05/31/2017] [Indexed: 12/13/2022]
|
16
|
Li C, Sheng A, Jia X, Zeng Z, Zhang X, Zhao W, Zhang W. Th17/Treg dysregulation in allergic asthmatic children is associated with elevated notch expression. J Asthma 2017; 55:1-7. [PMID: 28463581 DOI: 10.1080/02770903.2016.1266494] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Notch signaling pathway is critically involved in the differentiation of T helper (Th) cells, key players in the pathogenesis of allergic diseases. OBJECTIVE The study is to explore whether Th17/Treg dysregulation in children with allergic asthma (AA) is associated with alteration of Notch expression. METHODS Thirty-five patients with AA and thirty-five healthy control children were selected. Flow cytometry was used to detect Th17 and Treg cells. Quantitative real-time polymerase chain reaction (QRT-PCR) was used to measure the expression of Notch1 mRNA. The correlations among Notch1 mRNA expression, the percentage of Th17 cells, and Th17/Treg ratio were calculated. RESULTS Th17 and Treg cells were significantly increased and decreased, respectively, in children with AA than in healthy control (p < 0.001). mRNA level of Notch1 was elevated in children with AA comparing to healthy controls (p < 0.001). The mRNA expression of Notch1 was positively correlated with the percentage of Th17 cells (r = 0.775, p < 0.001) and Th17/Treg ratio (r = 0.698, p < 0.001). CONCLUSION Children with AA showed dysregulation of Th17/Treg cells in peripheral blood. Such change is accompanied with overexpression of Notch1, indicating Th17/Treg dysregulation in children with AA is associated with elevated Notch expression.
Collapse
Affiliation(s)
- Changchong Li
- a Department of Pediatric Allergy and Immunology , The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University , Wenzhou , Zhejiang Province , China
| | - Anqun Sheng
- a Department of Pediatric Allergy and Immunology , The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University , Wenzhou , Zhejiang Province , China
| | - Xiaoxiao Jia
- a Department of Pediatric Allergy and Immunology , The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University , Wenzhou , Zhejiang Province , China
| | - Zeyu Zeng
- a Department of Pediatric Allergy and Immunology , The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University , Wenzhou , Zhejiang Province , China
| | - Xueya Zhang
- a Department of Pediatric Allergy and Immunology , The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University , Wenzhou , Zhejiang Province , China
| | - Wei Zhao
- b Division of Allergy and Immunology, Department of Pediatrics , Virginia Commonwealth University , Richmond , VA , USA
| | - Weixi Zhang
- a Department of Pediatric Allergy and Immunology , The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University , Wenzhou , Zhejiang Province , China
| |
Collapse
|
17
|
Li X, Liu F, Zhang X, Shi G, Ren J, Ji J, Ding L, Fan H, Dou H, Hou Y. Notch-Hes-1 axis controls TLR7-mediated autophagic death of macrophage via induction of P62 in mice with lupus. Cell Death Dis 2016; 7:e2341. [PMID: 27537524 PMCID: PMC5108329 DOI: 10.1038/cddis.2016.244] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Revised: 07/11/2016] [Accepted: 07/12/2016] [Indexed: 01/21/2023]
Abstract
The increased death of macrophages has been considered as a pathogenic factor for systemic lupus erythematosus (SLE), and dysfunction of autophagy may contribute to improper cell death. However, the effect of autophagy on macrophage during the pathogenesis of SLE is still unclear. Here we found that the death rate and autophagy level of macrophages significantly increased in MRL/lpr lupus-prone mice. Activation of toll-like receptor 7 (TLR7) triggered macrophage death in an autophagy-dependent but caspase-independent way in vitro. Moreover, P62/SQSTM1 is thought to have an essential role in selective autophagy. We also demonstrated that P62/SQSTM1 was required for TLR7-induced autophagy, and knockdown of P62 suppressed R848-induced cell death and LC3II protein accumulation. As an important mediator for cell-cell communication, Notch signaling is responsible for cell-fate decisions. Our results showed that activation of TLR7 also upregulated the expression of Notch1, especially its downstream target gene Hairy and enhancer of split 1 (Hes-1) in macrophages. Of note, we found that Hes-1, as a transcriptional factor, controlled TLR7-induced autophagy by regulating P62 expression. Furthermore, to confirm the above results in vivo, TLR7 agonist imiquimod (IMQ)-induced lupus mouse model was prepared. Splenic macrophages from IMQ-treated mice exhibited increased autophagy and cell death as well as enhanced expressions of Notch1 and Hes-1. Our results indicate that Notch1-Hes-1 signaling controls TLR7-induced autophagic death of macrophage via regulation of P62 in mice with lupus.
Collapse
Affiliation(s)
- Xiaojing Li
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing 210093, China
| | - Fei Liu
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing 210093, China
| | - Xuefang Zhang
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing 210093, China
| | - Guoping Shi
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing 210093, China
| | - Jing Ren
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing 210093, China
| | - Jianjian Ji
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing 210093, China
| | - Liang Ding
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing 210093, China
| | - Hongye Fan
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Huan Dou
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing 210093, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing 210093, China
| | - Yayi Hou
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing 210093, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing 210093, China
| |
Collapse
|
18
|
Urso K, Charles JF, Shull GE, Aliprantis AO, Balestrieri B. Anion Exchanger 2 Regulates Dectin-1-Dependent Phagocytosis and Killing of Candida albicans. PLoS One 2016; 11:e0158893. [PMID: 27391897 PMCID: PMC4938408 DOI: 10.1371/journal.pone.0158893] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 06/23/2016] [Indexed: 01/17/2023] Open
Abstract
Anion exchanger 2 (Ae2; gene symbol, Slc4a2) is a plasma membrane Cl-/HCO3- exchanger expressed in the gastrointestinal tract, kidney and bone. We have previously shown that Ae2 is required for the function of osteoclasts, bone resorbing cells of the macrophage lineage, to maintain homeostatic cytoplasmic pH and electroneutrality during acid secretion. Macrophages require endosomal acidification for pathogen killing during the process known as phagocytosis. Chloride is thought to be the principal ion responsible for maintaining electroneutrality during organelle acidification, but whether Cl-/HCO3- exchangers such as Ae2 contribute to macrophage function is not known. In this study we investigated the role of Ae2 in primary macrophages during phagocytosis. We find that Ae2 is expressed in macrophages where it regulates intracellular pH and the binding of Zymosan, a fungal cell wall derivative. Surprisingly, the transcription and surface expression of Dectin-1, the major phagocytic receptor for Candida albicans (C. albicans) and Zymosan, is reduced in the absence of Ae2. As a consequence, Zymosan-induced Tnfα expression is also impaired in Ae2-deficient macrophages. Similar to Ae2 deficiency, pharmacological alkalinization of lysosomal pH with bafilomycin A decreases both Dectin-1 mRNA and cell surface expression. Finally, Ae2-deficient macrophages demonstrate defective phagocytosis and killing of the human pathogenic fungus C. albicans. Our results strongly suggest that Ae2 is a critical factor in the innate response to C. albicans. This study represents an important contribution to a better understanding of how Dectin-1 expression and fungal clearance is regulated.
Collapse
Affiliation(s)
- Katia Urso
- Department of Medicine, Division of Rheumatology, Immunology and Allergy, Brigham and Women’s, Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Julia F. Charles
- Department of Medicine, Division of Rheumatology, Immunology and Allergy, Brigham and Women’s, Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Gary E. Shull
- Department of Molecular Genetics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Antonios O. Aliprantis
- Department of Medicine, Division of Rheumatology, Immunology and Allergy, Brigham and Women’s, Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Barbara Balestrieri
- Department of Medicine, Division of Rheumatology, Immunology and Allergy, Brigham and Women’s, Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- Jeff and Penny Vinik Center for Allergic Disease Research, Division of Rheumatology, Immunology and Allergy, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
19
|
The transcriptional repressor Hes1 attenuates inflammation by regulating transcription elongation. Nat Immunol 2016; 17:930-7. [PMID: 27322654 PMCID: PMC4955730 DOI: 10.1038/ni.3486] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Accepted: 05/05/2016] [Indexed: 12/15/2022]
Abstract
Most of the known regulatory mechanisms that curb inflammatory gene expression target pre-transcription-initiation steps, and evidence for post-initiation regulation of inflammatory gene expression remains scarce. We found that the transcriptional repressor Hes1 suppressed production of CXCL1, a chemokine that is crucial for recruiting neutrophils. Hes1 negatively regulated neutrophil recruitment in vivo in a manner that was dependent on macrophage-produced CXCL1, and it attenuated the severity of inflammatory arthritis. Mechanistically, inhibition of Cxcl1 expression by Hes1 did not involve modification of transcription initiation. Instead, Hes1 inhibited signal-induced recruitment of the positive transcription-elongation complex P-TEFb and thereby prevented phosphorylation of RNA polymerase II at Ser2 and productive elongation. Thus, our results identify Hes1 as a homeostatic suppressor of inflammatory responses that exerts its suppressive function by regulating transcription elongation.
Collapse
|
20
|
Dynamic changes in global microRNAome and transcriptome reveal complex miRNA-mRNA regulated host response to Japanese Encephalitis Virus in microglial cells. Sci Rep 2016; 6:20263. [PMID: 26838068 PMCID: PMC4738309 DOI: 10.1038/srep20263] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 12/31/2015] [Indexed: 12/11/2022] Open
Abstract
Microglia cells in the brain play essential role during Japanese Encephalitis Virus (JEV) infection and may lead to change in microRNA (miRNA) and mRNA profile. These changes may together control disease outcome. Using Affymetrix microarray platform, we profiled cellular miRNA and mRNA expression at multiple time points during viral infection in human microglial (CHME3) cells. In silico analysis of microarray data revealed a phased pattern of miRNAs expression, associated with JEV replication and provided unique signatures of infection. Target prediction and pathway enrichment analysis identified anti correlation between differentially expressed miRNA and the gene expression at multiple time point which ultimately affected diverse signaling pathways including Notch signaling pathways in microglia. Activation of Notch pathway during JEV infection was demonstrated in vitro and in vivo. The expression of a subset of miRNAs that target multiple genes in Notch signaling pathways were suppressed and their overexpression could affect JEV induced immune response. Further analysis provided evidence for the possible presence of cellular competing endogenous RNA (ceRNA) associated with innate immune response. Collectively, our data provide a uniquely comprehensive view of the changes in the host miRNAs induced by JEV during cellular infection and identify Notch pathway in modulating microglia mediated inflammation.
Collapse
|