1
|
Kianpoor S, Ehsani A, Torshizi RV, Masoudi AA, Bakhtiarizadeh MR. Unlocking the genetic code: a comprehensive Genome-Wide association study and gene set enrichment analysis of cell-mediated immunity in chickens. BMC Genomics 2025; 26:337. [PMID: 40181279 PMCID: PMC11970016 DOI: 10.1186/s12864-025-11538-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 03/27/2025] [Indexed: 04/05/2025] Open
Abstract
BACKGROUND The poultry immune system is essential for protecting against infectious diseases and maintaining health and productivity. Cell-mediated immune responses (CMIs) protect organisms against intracellular pathogens. This study aimed to enrich the findings of genome-wide association studies (GWAS) by including several systematic gene set enrichment analyses (GSEA) related to cell-mediated immune responses in chickens. METHODS To investigate the function of the cellular immune system, phenotypic data were collected based on the differences in skin thickness before and after impregnation with dinitrochlorobenzene (DNCB) solution. Additionally, 312 hybrid birds of the F2 generation of Arian broiler chickens and Urmia native chickens were genotyped using the Illumina 60k SNP BeadChip. A general linear model (GLM) with an FDR < 5% was used for the association analysis. Functional enrichment analysis of the identified candidate genes was performed using the Enrichr database. A protein‒protein interaction (PPI) network was constructed using the STRING database. In addition, colocalization analysis was applied to identify QTLs related to the immune system. RESULTS GWAS revealed 147 SNPs associated with the CMI trait, which were related to 1363 genes. These genes were significantly enriched in eight KEGG pathways, 22 Reactome pathways, and 18 biological processes. PPI network analysis led to the identification of 26 hub genes. The three hub genes PSMA3, PSMC2 and PSMB4 were enriched in almost all pathways related to cellular immunity, including the proteasome, interleukin-1 signaling, and programmed cell death pathways, which makes them important candidates involved in CMI. In addition, the MAP3K8, NLRC5, UBB, CASP6, DAPK2, TNFRSF6B, TNFSF15, and PIK3CD genes were identified as key genes in several functional pathways. A total of 10 SNPs were found in interferon-gamma QTLs, and two SNPs were found in the cell-mediated immune response QTL region, leading to the identification of 12 cellular immune response-related genes that were reported as important candidates in previous studies. CONCLUSION The post-GWAS analysis in this study led to the identification of key genes that regulate the biological processes of cellular immunity in chickens. Therefore, selecting birds that excel in expressing such genes can improve immunity in chickens.
Collapse
Affiliation(s)
- Somayeh Kianpoor
- Department of Animal Science, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Alireza Ehsani
- Department of Animal Science, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran.
| | - Rasoul Vaez Torshizi
- Department of Animal Science, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Ali Akbar Masoudi
- Department of Animal Science, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | | |
Collapse
|
2
|
Yang H, Sun T, Sun Z, Wang H, Liu D, Wu D, Qin T, Zhou M. Unravelling the role of ubiquitin-specific proteases in breast carcinoma: insights into tumour progression and immune microenvironment modulation. World J Surg Oncol 2025; 23:60. [PMID: 39979972 PMCID: PMC11841324 DOI: 10.1186/s12957-025-03667-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 01/19/2025] [Indexed: 02/22/2025] Open
Abstract
Breast cancer is a prevalent malignancy worldwide, and its treatment has increasingly shifted towards precision medicine, with immunotherapy emerging as a key therapeutic strategy. Deubiquitination, an essential epigenetic modification, is regulated by deubiquitinating enzymes (DUBs) and plays a critical role in immune function and tumor progression. Ubiquitin-specific proteases (USPs), a prominent subgroup of DUBs, are involved in regulating immune cell functions, antigen processing, and T cell development in the context of breast cancer. Certain USPs also modulate the differentiation of immune cells, such as myeloid-derived suppressor cells (MDSCs) and regulatory T cells (Tregs), within the breast cancer immune microenvironment. Furthermore, several USPs influence the expression of PD-L1, thus affecting the efficacy of immune checkpoint inhibitors. The overexpression of USPs may promote immune evasion, contributing to the development of treatment resistance. This review elucidates the role of USPs in modulating the immune microenvironment and immune responses in breast cancer. Additionally, it discusses effective strategies for combining USP inhibitors with other therapeutic agents to enhance treatment outcomes. Therefore, targeting USPs presents the potential to enhance the efficacy of immunotherapy and overcome drug resistance, offering a more effective treatment strategy for breast cancer patients.
Collapse
Affiliation(s)
- Huiyuan Yang
- Qingdao Municipal Hospital Affiliated with Qingdao University, Qingdao, Shandong Province, 266011, China
| | - Tingting Sun
- Department of Oncology, Qingdao Municipal Hospital, Qingdao, Shandong Province, 266011, China
| | - Zhenni Sun
- Department of Oncology, Qingdao Municipal Hospital, Qingdao, Shandong Province, 266011, China
| | - Haining Wang
- Department of Oncology, No. 971 Hospital of the People's Liberation Army Navy, Qingdao, 266001, China
| | - Dongjie Liu
- Department of Second Recuperation, Dalian Rehabilitation Recuperation Center of Joint Logistics Support Force of PLA, Dalian, 116013, China
| | - Dapeng Wu
- Department of Oncology, Qingdao Municipal Hospital, Qingdao, Shandong Province, 266011, China.
| | - Tao Qin
- Qingdao Municipal Hospital Affiliated with Qingdao University, Qingdao, Shandong Province, 266011, China.
- Department of Oncology, Qingdao Municipal Hospital, Qingdao, Shandong Province, 266011, China.
| | - Mi Zhou
- Qingdao Municipal Hospital Affiliated with Qingdao University, Qingdao, Shandong Province, 266011, China.
- Department of Oncology, Qingdao Municipal Hospital, Qingdao, Shandong Province, 266011, China.
| |
Collapse
|
3
|
Gao H, Chen Z, Zhao L, Ji C, Xing F. Cellular functions, molecular signalings and therapeutic applications: Translational potential of deubiquitylating enzyme USP9X as a drug target in cancer treatment. Biochim Biophys Acta Rev Cancer 2024; 1879:189099. [PMID: 38582329 DOI: 10.1016/j.bbcan.2024.189099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/13/2023] [Accepted: 03/31/2024] [Indexed: 04/08/2024]
Abstract
Protein ubiquitination, one of the most significant post-translational modifications, plays an important role in controlling the proteins activity in diverse cellular processes. The reversible process of protein ubiquitination, known as deubiquitination, has emerged as a critical mechanism for maintaining cellular homeostasis. The deubiquitinases (DUBs), which participate in deubiquitination process are increasingly recognized as potential candidates for drug discovery. Among these DUBs, ubiquitin-specific protease 9× (USP9X), a highly conserved member of the USP family, exhibits versatile functions in various cellular processes, including the regulation of cell cycle, protein endocytosis, apoptosis, cell polarity, immunological microenvironment, and stem cell characteristics. The dysregulation and abnormal activities of USP9X are influenced by intricate cellular signaling pathway crosstalk and upstream non-coding RNAs. The complex expression patterns and controversial clinical significance of USP9X in cancers suggest its potential as a prognostic biomarker. Furthermore, USP9X inhibitors has shown promising antitumor activity and holds the potential to overcome therapeutic resistance in preclinical models. However, a comprehensive summary of the role and molecular functions of USP9X in cancer progression is currently lacking. In this review, we provide a comprehensive delineation of USP9X participation in numerous critical cellular processes, complicated signaling pathways within the tumor microenvironment, and its potential translational applications to combat therapeutic resistance. By systematically summarizing the updated molecular mechanisms of USP9X in cancer biology, this review aims to contribute to the advancement of cancer therapeutics and provide essential insights for specialists and clinicians in the development of improved cancer treatment strategies.
Collapse
Affiliation(s)
- Hongli Gao
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Zhiguang Chen
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Liang Zhao
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Ce Ji
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| | - Fei Xing
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| |
Collapse
|
4
|
Feng Y, Li Y, Ma F, Wu E, Cheng Z, Zhou S, Wang Z, Yang L, Sun X, Zhang J. Notoginsenoside Ft1 inhibits colorectal cancer growth by increasing CD8 + T cell proportion in tumor-bearing mice through the USP9X signaling pathway. Chin J Nat Med 2024; 22:329-340. [PMID: 38658096 DOI: 10.1016/s1875-5364(24)60623-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Indexed: 04/26/2024]
Abstract
The management of colorectal cancer (CRC) poses a significant challenge, necessitating the development of innovative and effective therapeutics. Our research has shown that notoginsenoside Ft1 (Ng-Ft1), a small molecule, markedly inhibits subcutaneous tumor formation in CRC and enhances the proportion of CD8+ T cells in tumor-bearing mice, thus restraining tumor growth. Investigation into the mechanism revealed that Ng-Ft1 selectively targets the deubiquitination enzyme USP9X, undermining its role in shielding β-catenin. This leads to a reduction in the expression of downstream effectors in the Wnt signaling pathway. These findings indicate that Ng-Ft1 could be a promising small-molecule treatment for CRC, working by blocking tumor progression via the Wnt signaling pathway and augmenting CD8+ T cell prevalence within the tumor environment.
Collapse
Affiliation(s)
- Yutao Feng
- Shanghai Key Laboratory of Compound Chinese Medicines, The MOE Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yuan Li
- Shanghai Key Laboratory of Compound Chinese Medicines, The MOE Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Fen Ma
- Shanghai Key Laboratory of Compound Chinese Medicines, The MOE Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Enjiang Wu
- Shanghai Key Laboratory of Compound Chinese Medicines, The MOE Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zewei Cheng
- Shanghai Key Laboratory of Compound Chinese Medicines, The MOE Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Shiling Zhou
- Shanghai Key Laboratory of Compound Chinese Medicines, The MOE Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zhengtao Wang
- Shanghai Key Laboratory of Compound Chinese Medicines, The MOE Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Li Yang
- Shanghai Key Laboratory of Compound Chinese Medicines, The MOE Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Xun Sun
- Gastrointestinal surgery, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China.
| | - Jiwei Zhang
- Shanghai Key Laboratory of Compound Chinese Medicines, The MOE Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
5
|
Deng C, Xu Y, Chen H, Zhu X, Huang L, Chen Z, Xu H, Song G, Lu J, Huang W, Liu R, Tang Q, Wang J. Extracellular-vesicle-packaged S100A11 from osteosarcoma cells mediates lung premetastatic niche formation by recruiting gMDSCs. Cell Rep 2024; 43:113751. [PMID: 38341855 DOI: 10.1016/j.celrep.2024.113751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 11/28/2023] [Accepted: 01/22/2024] [Indexed: 02/13/2024] Open
Abstract
The premetastatic niche (PMN) contributes to lung-specific metastatic tropism in osteosarcoma. However, the crosstalk between primary tumor cells and lung stromal cells is not clearly defined. Here, we dissect the composition of immune cells in the lung PMN and identify granulocytic myeloid-derived suppressor cell (gMDSC) infiltration as positively associated with immunosuppressive PMN formation and tumor cell colonization. Osteosarcoma-cell-derived extracellular vesicles (EVs) activate lung interstitial macrophages to initiate the influx of gMDSCs via secretion of the chemokine CXCL2. Proteomic profiling of EVs reveals that EV-packaged S100A11 stimulates the Janus kinase 2/signal transducer and activator of transcription 3 signaling pathway in macrophages by interacting with USP9X. High level of S100A11 expression or circulating gMDSCs correlates with the presentation of lung metastasis and poor prognosis in osteosarcoma patients. In summary, we identify a key role of tumor-derived EVs in lung PMN formation, providing potential strategies for monitoring or preventing lung metastasis in osteosarcoma.
Collapse
Affiliation(s)
- Chuangzhong Deng
- Department of Musculoskeletal Oncology, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China; State Key Laboratory of Oncology in Southern China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China
| | - Yanyang Xu
- Department of Musculoskeletal Oncology, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China; State Key Laboratory of Oncology in Southern China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China
| | - Hongmin Chen
- Department of Musculoskeletal Oncology, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China; State Key Laboratory of Oncology in Southern China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China
| | - Xiaojun Zhu
- Department of Musculoskeletal Oncology, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China; State Key Laboratory of Oncology in Southern China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China
| | - Lihua Huang
- State Key Laboratory of Oncology in Southern China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China; Administration Department of Nosocomial Infection, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China
| | - Zhihao Chen
- Department of Musculoskeletal Oncology, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China; State Key Laboratory of Oncology in Southern China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China
| | - Huaiyuan Xu
- Department of Musculoskeletal Oncology, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China; State Key Laboratory of Oncology in Southern China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China
| | - Guohui Song
- Department of Musculoskeletal Oncology, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China; State Key Laboratory of Oncology in Southern China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China
| | - Jinchang Lu
- Department of Musculoskeletal Oncology, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China; State Key Laboratory of Oncology in Southern China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China
| | - Wenlin Huang
- State Key Laboratory of Oncology in Southern China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China
| | - Ranyi Liu
- State Key Laboratory of Oncology in Southern China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China
| | - Qinglian Tang
- Department of Musculoskeletal Oncology, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China; State Key Laboratory of Oncology in Southern China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China.
| | - Jin Wang
- Department of Musculoskeletal Oncology, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China; State Key Laboratory of Oncology in Southern China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China.
| |
Collapse
|
6
|
Du Y, Zhang H, Hu H. Ubiquitination of Immune System and Cancer Therapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1466:35-45. [PMID: 39546134 DOI: 10.1007/978-981-97-7288-9_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
Ubiquitination is a post-translational modification mechanism which regulates a variety of signaling pathways and crucial biological processes. It has long been known that ubiquitination regulates the fundamental cellular processes through the induction of proteasomal degradation of target proteins. Meanwhile, the nondegradative types of polyubiquitination modification have been appreciated as important regulatory machinery by modulating the activity or subcellular localization of key signaling proteins. The function of ubiquitination plays an important role in immune responses, which helps to maintain the stability of the internal environment and to control over protein stability and function and are thus critical for the regulation of both innate and adaptive immunity. Furthermore, ubiquitination also regulates both tumor-suppressing and tumor-promoting pathways in cancer. In this review, we will discuss recent progress regarding how ubiquitination regulates immune responses, focusing on Toll-like receptors signaling in innate immunity, T cell activation, TCR signaling, and tumor immunotherapy.
Collapse
Affiliation(s)
- Yizhou Du
- Center for Immunology and Hematology, Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Huiyuan Zhang
- Center for Immunology and Hematology, Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Hongbo Hu
- Center for Immunology and Hematology, Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.
- Chongqing International Institute for Immunology, Chongqing, China.
| |
Collapse
|
7
|
Gao H, Yin J, Ji C, Yu X, Xue J, Guan X, Zhang S, Liu X, Xing F. Targeting ubiquitin specific proteases (USPs) in cancer immunotherapy: from basic research to preclinical application. J Exp Clin Cancer Res 2023; 42:225. [PMID: 37658402 PMCID: PMC10472646 DOI: 10.1186/s13046-023-02805-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 08/21/2023] [Indexed: 09/03/2023] Open
Abstract
Tumors have evolved in various mechanisms to evade the immune system, hindering the antitumor immune response and facilitating tumor progression. Immunotherapy has become a potential treatment strategy specific to different cancer types by utilizing multifarious molecular mechanisms to enhance the immune response against tumors. Among these mechanisms, the ubiquitin-proteasome system (UPS) is a significant non-lysosomal pathway specific to protein degradation, regulated by deubiquitinating enzymes (DUBs) that counterbalance ubiquitin signaling. Ubiquitin-specific proteases (USPs), the largest DUB family with the strongest variety, play critical roles in modulating immune cell function, regulating immune response, and participating in antigen processing and presentation during tumor progression. According to recent studies, the expressions of some USP family members in tumor cells are involved in tumor immune escape and immune microenvironment. This review explores the potential of targeting USPs as a new approach for cancer immunotherapy, highlighting recent basic and preclinical studies investigating the applications of USP inhibitors. By providing insights into the structure and function of USPs in cancer immunity, this review aims at assisting in developing new therapeutic approaches for enhancing the immunotherapy efficacy.
Collapse
Affiliation(s)
- Hongli Gao
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Jianqiao Yin
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Ce Ji
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Xiaopeng Yu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Jinqi Xue
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Xin Guan
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Shuang Zhang
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Xun Liu
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
| | - Fei Xing
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
| |
Collapse
|
8
|
Jiang Y, Hong K, Zhao Y, Xu K. Emerging role of deubiquitination modifications of programmed death-ligand 1 in cancer immunotherapy. Front Immunol 2023; 14:1228200. [PMID: 37415977 PMCID: PMC10321661 DOI: 10.3389/fimmu.2023.1228200] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 06/09/2023] [Indexed: 07/08/2023] Open
Abstract
Immune evasion is essential for carcinogenesis and cancer progression. Programmed death-ligand 1 (PD-L1), a critical immune checkpoint molecule, interacts with programmed death receptor-1 (PD-1) on immune cells to suppress anti-tumor immune responses. In the past decade, antibodies targeting PD-1/PD-L1 have tremendously altered cancer treatment paradigms. Post-translational modifications have been reported as key regulators of PD-L1 expression. Among these modifications, ubiquitination and deubiquitination are reversible processes that dynamically control protein degradation and stabilization. Deubiquitinating enzymes (DUBs) are responsible for deubiquitination and have emerged as crucial players in tumor growth, progression, and immune evasion. Recently, studies have highlighted the participation of DUBs in deubiquitinating PD-L1 and modulating its expression. Here, we review the recent developments in deubiquitination modifications of PD-L1 and focus on the underlying mechanisms and effects on anti-tumor immunity.
Collapse
Affiliation(s)
- Yao Jiang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kai Hong
- Department of Medical Ultrasound, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yingchao Zhao
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kai Xu
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
9
|
Anto NP, Arya AK, Muraleedharan A, Shaik J, Nath PR, Livneh E, Sun Z, Braiman A, Isakov N. Cyclophilin A associates with and regulates the activity of ZAP70 in TCR/CD3-stimulated T cells. Cell Mol Life Sci 2022; 80:7. [PMID: 36495335 PMCID: PMC11072327 DOI: 10.1007/s00018-022-04657-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 11/26/2022] [Accepted: 11/26/2022] [Indexed: 12/13/2022]
Abstract
The ZAP70 protein tyrosine kinase (PTK) couples stimulated T cell antigen receptors (TCRs) to their downstream signal transduction pathways and is sine qua non for T cell activation and differentiation. TCR engagement leads to activation-induced post-translational modifications of ZAP70, predominantly by kinases, which modulate its conformation, leading to activation of its catalytic domain. Here, we demonstrate that ZAP70 in TCR/CD3-activated mouse spleen and thymus cells, as well as human Jurkat T cells, is regulated by the peptidyl-prolyl cis-trans isomerase (PPIase), cyclophilin A (CypA) and that this regulation is abrogated by cyclosporin A (CsA), a CypA inhibitor. We found that TCR crosslinking promoted a rapid and transient, Lck-dependent association of CypA with the interdomain B region, at the ZAP70 regulatory domain. CsA inhibited CypA binding to ZAP70 and prevented the colocalization of CypA and ZAP70 at the cell membrane. In addition, imaging analyses of antigen-specific T cells stimulated by MHC-restricted antigen-fed antigen-presenting cells revealed the recruitment of ZAP70-bound CypA to the immunological synapse. Enzymatically active CypA downregulated the catalytic activity of ZAP70 in vitro, an effect that was reversed by CsA in TCR/CD3-activated normal T cells but not in CypA-deficient T cells, and further confirmed in vivo by FRET-based studies. We suggest that CypA plays a role in determining the activity of ZAP70 in TCR-engaged T cells and impact on T cell activation by intervening with the activity of multiple downstream effector molecules.
Collapse
Affiliation(s)
- Nikhil Ponnoor Anto
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, P.O.B. 653, 84105, Beer Sheva, Israel
| | - Awadhesh Kumar Arya
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, P.O.B. 653, 84105, Beer Sheva, Israel
- Department of Emergency Medicine, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Amitha Muraleedharan
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, P.O.B. 653, 84105, Beer Sheva, Israel
| | - Jakeer Shaik
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, P.O.B. 653, 84105, Beer Sheva, Israel
| | - Pulak Ranjan Nath
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, P.O.B. 653, 84105, Beer Sheva, Israel
- Clinical and Translational Immunology Unit, National Eye Institute, National Institutes of Health, Bethesda, MD, 20892-1857, USA
| | - Etta Livneh
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, P.O.B. 653, 84105, Beer Sheva, Israel
| | - Zuoming Sun
- Department of Immunology and Theranostics, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute of the City of Hope, Duarte, CA, 91010, USA
| | - Alex Braiman
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, P.O.B. 653, 84105, Beer Sheva, Israel
| | - Noah Isakov
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, P.O.B. 653, 84105, Beer Sheva, Israel.
| |
Collapse
|
10
|
USP9x promotes CD8 + T-cell dysfunction in association with autophagy inhibition in septic liver injury. Acta Biochim Biophys Sin (Shanghai) 2022; 54:1-10. [PMID: 36514222 PMCID: PMC10157537 DOI: 10.3724/abbs.2022174] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Sepsis is a life-threatening condition manifested by concurrent inflammation and immunosuppression. Ubiquitin-specific peptidase 9, X-linked (USP9x), is a USP domain-containing deubiquitinase which is required in T-cell development. In the present study, we investigate whether USP9x plays a role in hepatic CD8 + T-cell dysfunction in septic mice. We find that CD8 + T cells are decreased in the blood of septic patients with liver injury compared with those without liver injury, the CD4/CD8 ratio is increased, and the levels of cytolytic factors, granzyme B and perforin are downregulated. The number of hepatic CD8 + T cells and USP9x expression are both increased 24 h after cecal ligation and puncture-induced sepsis in a mouse model, a pattern similar to liver injury. The mechanism involves promotion of CD8 + T-cell dysfunction by USP9x associated with suppression of cell cytolytic activity via autophagy inhibition, which is reversed by the USP9x inhibitor WP1130. In the in vivo studies, autophagy is significantly increased in hepatic CD8 + T cells of septic mice with conditional knockout of mammalian target of rapamycin. This study shows that USP9x has the potential to be used as a therapeutic target in septic liver injury.
Collapse
|
11
|
Roles and mechanisms of ankyrin-G in neuropsychiatric disorders. Exp Mol Med 2022; 54:867-877. [PMID: 35794211 PMCID: PMC9356056 DOI: 10.1038/s12276-022-00798-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/17/2022] [Accepted: 03/23/2022] [Indexed: 12/20/2022] Open
Abstract
Ankyrin proteins act as molecular scaffolds and play an essential role in regulating cellular functions. Recent evidence has implicated the ANK3 gene, encoding ankyrin-G, in bipolar disorder (BD), schizophrenia (SZ), and autism spectrum disorder (ASD). Within neurons, ankyrin-G plays an important role in localizing proteins to the axon initial segment and nodes of Ranvier or to the dendritic shaft and spines. In this review, we describe the expression patterns of ankyrin-G isoforms, which vary according to the stage of brain development, and consider their functional differences. Furthermore, we discuss how posttranslational modifications of ankyrin-G affect its protein expression, interactions, and subcellular localization. Understanding these mechanisms leads us to elucidate potential pathways of pathogenesis in neurodevelopmental and psychiatric disorders, including BD, SZ, and ASD, which are caused by rare pathogenic mutations or changes in the expression levels of ankyrin-G in the brain. Mutations affecting the production, distribution, or function of the ankyrin-G protein may contribute to a variety of different neuropsychiatric disorders. Ankyrin-G is typically observed at the synapses between neurons, and contributes to intercellular adhesion and signaling along with other important functions. Peter Penzes and colleagues at Northwestern University, Chicago, USA, review the biology of this protein and identify potential mechanisms by which ankyrin-G mutations might impair healthy brain development. Mutations in the gene encoding this protein are strongly linked with bipolar disorder, but have also been tentatively connected to autism spectrum disorders and schizophrenia. The authors highlight physiologically important interactions with a diverse array of other brain proteins, which can in turn be modulated by various chemical modifications to ankyrin-G, and conclude that drugs that influence these modifications could have potential therapeutic value.
Collapse
|
12
|
Mélique S, Yang C, Lesourne R. Negative times negative equals positive, THEMIS sets the rule on thymic selection and peripheral T cell responses. Biomed J 2022; 45:334-346. [PMID: 35346866 PMCID: PMC9250082 DOI: 10.1016/j.bj.2022.03.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 03/03/2022] [Accepted: 03/03/2022] [Indexed: 12/31/2022] Open
Abstract
The activity of T cells is finely controlled by a set of negative regulators of T-cell antigen receptor (TCR)-mediated signaling. However, how those negative regulators are themselves controlled to prevent ineffective TCR-mediated responses remain poorly understood. Thymocyte-expressed molecule involved in selection (THEMIS) has been characterized over a decade ago as an important player of T cell development. Although the molecular function of THEMIS has long remained puzzling and subject to controversies, latest investigations suggest that THEMIS stimulates TCR-mediated signaling by repressing the tyrosine phosphatases SHP-1 and SHP-2 which exert regulatory function on T cell activation. Recent evidences also point to a role for THEMIS in peripheral T cells beyond its role on thymic selection. Here, we present an overview of the past research on THEMIS in the context of T cell development and peripheral T cell function and discuss the possible implication of THEMIS-based mechanisms on TCR-dependent and independent signaling outcomes.
Collapse
Affiliation(s)
- Suzanne Mélique
- Infinity, University of Toulouse, CNRS5051, INSERM1291, UPS, Toulouse, France
| | - Cui Yang
- Infinity, University of Toulouse, CNRS5051, INSERM1291, UPS, Toulouse, France
| | - Renaud Lesourne
- Infinity, University of Toulouse, CNRS5051, INSERM1291, UPS, Toulouse, France.
| |
Collapse
|
13
|
Vav Proteins in Development of the Brain: A Potential Relationship to the Pathogenesis of Congenital Zika Syndrome? Viruses 2022; 14:v14020386. [PMID: 35215978 PMCID: PMC8874935 DOI: 10.3390/v14020386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/07/2022] [Accepted: 02/10/2022] [Indexed: 12/07/2022] Open
Abstract
Zika virus (ZIKV) infection during pregnancy can result in a significant impact on the brain and eye of the developing fetus, termed congenital zika syndrome (CZS). At a morphological level, the main serious presentations of CZS are microcephaly and retinal scarring. At a cellular level, many cell types of the brain may be involved, but primarily neuronal progenitor cells (NPC) and developing neurons. Vav proteins have guanine exchange activity in converting GDP to GTP on proteins such as Rac1, Cdc42 and RhoA to stimulate intracellular signaling pathways. These signaling pathways are known to play important roles in maintaining the polarity and self-renewal of NPC pools by coordinating the formation of adherens junctions with cytoskeletal rearrangements. In developing neurons, these same pathways are adopted to control the formation and growth of neurites and mediate axonal guidance and targeting in the brain and retina. This review describes the role of Vavs in these processes and highlights the points of potential ZIKV interaction, such as (i) the binding and entry of ZIKV in cells via TAM receptors, which may activate Vav/Rac/RhoA signaling; (ii) the functional convergence of ZIKV NS2A with Vav in modulating adherens junctions; (iii) ZIKV NS4A/4B protein effects on PI3K/AKT in a regulatory loop via PPI3 to influence Vav/Rac1 signaling in neurite outgrowth; and (iv) the induction of SOCS1 and USP9X following ZIKV infection to regulate Vav protein degradation or activation, respectively, and impact Vav/Rac/RhoA signaling in NPC and neurons. Experiments to define these interactions will further our understanding of the molecular basis of CZS and potentially other developmental disorders stemming from in utero infections. Additionally, Vav/Rac/RhoA signaling pathways may present tractable targets for therapeutic intervention or molecular rationale for disease severity in CZS.
Collapse
|
14
|
Ebstein F, Küry S, Papendorf JJ, Krüger E. Neurodevelopmental Disorders (NDD) Caused by Genomic Alterations of the Ubiquitin-Proteasome System (UPS): the Possible Contribution of Immune Dysregulation to Disease Pathogenesis. Front Mol Neurosci 2021; 14:733012. [PMID: 34566579 PMCID: PMC8455891 DOI: 10.3389/fnmol.2021.733012] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 08/10/2021] [Indexed: 12/15/2022] Open
Abstract
Over thirty years have passed since the first description of ubiquitin-positive structures in the brain of patients suffering from Alzheimer’s disease. Meanwhile, the intracellular accumulation of ubiquitin-modified insoluble protein aggregates has become an indisputable hallmark of neurodegeneration. However, the role of ubiquitin and a fortiori the ubiquitin-proteasome system (UPS) in the pathogenesis of neurodevelopmental disorders (NDD) is much less described. In this article, we review all reported monogenic forms of NDD caused by lesions in genes coding for any component of the UPS including ubiquitin-activating (E1), -conjugating (E2) enzymes, ubiquitin ligases (E3), ubiquitin hydrolases, and ubiquitin-like modifiers as well as proteasome subunits. Strikingly, our analysis revealed that a vast majority of these proteins have a described function in the negative regulation of the innate immune response. In this work, we hypothesize a possible involvement of autoinflammation in NDD pathogenesis. Herein, we discuss the parallels between immune dysregulation and neurodevelopment with the aim at improving our understanding the biology of NDD and providing knowledge required for the design of novel therapeutic strategies.
Collapse
Affiliation(s)
- Frédéric Ebstein
- Institute of Medical Biochemistry and Molecular Biology, University Medicine Greifswald, Greifswald, Germany
| | - Sébastien Küry
- CHU Nantes, Service de Génétique Médicale, Nantes, France.,l'Institut du Thorax, CNRS, INSERM, CHU Nantes, Université de Nantes, Nantes, France
| | - Jonas Johannes Papendorf
- Institute of Medical Biochemistry and Molecular Biology, University Medicine Greifswald, Greifswald, Germany
| | - Elke Krüger
- Institute of Medical Biochemistry and Molecular Biology, University Medicine Greifswald, Greifswald, Germany
| |
Collapse
|
15
|
Ssu72 phosphatase directly binds to ZAP-70, thereby providing fine-tuning of TCR signaling and preventing spontaneous inflammation. Proc Natl Acad Sci U S A 2021; 118:2102374118. [PMID: 34452999 DOI: 10.1073/pnas.2102374118] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
ZAP-70 is required for the initiation of T cell receptor (TCR) signaling, and Ssu72 is a phosphatase that regulates RNA polymerase II activity in the nucleus. However, the mechanism by which ZAP-70 regulates the fine-tuning of TCR signaling remains elusive. Here, we found that Ssu72 contributed to the fine-tuning of TCR signaling by acting as tyrosine phosphatase for ZAP-70. Affinity purification-mass spectrometry and an in vitro assay demonstrated specific interaction between Ssu72 and ZAP-70 in T cells. Upon TCR stimulation, Ssu72-deficient T cells increased the phosphorylation of ZAP-70 and downstream molecules and exhibited hyperresponsiveness, which was restored by reducing ZAP-70 phosphorylation. In vitro assay demonstrated that recombinant Ssu72 reduced tyrosine phosphorylation of ZAP-70 via phosphatase activity. Cd4-CreSsu72 fl/fl mice showed a defect in the thymic development of invariant natural killer T cells and reductions in CD4+ and CD8+ T cell numbers in the periphery but more CD44hiCD62Llo memory T cells and fewer CD44loCD62Lhi naïve T cells, compared with wild-type mice. Furthermore, Cd4-CreSsu72 fl/fl mice developed spontaneous inflammation at 6 mo. In conclusion, Ssu72 phosphatase regulates the fine-tuning of TCR signaling by binding to ZAP-70 and regulating its tyrosine phosphorylation, thereby preventing spontaneous inflammation.
Collapse
|
16
|
Wang Y, Wang F. Post-Translational Modifications of Deubiquitinating Enzymes: Expanding the Ubiquitin Code. Front Pharmacol 2021; 12:685011. [PMID: 34177595 PMCID: PMC8224227 DOI: 10.3389/fphar.2021.685011] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 05/25/2021] [Indexed: 12/14/2022] Open
Abstract
Post-translational modifications such as ubiquitination play important regulatory roles in several biological processes in eukaryotes. This process could be reversed by deubiquitinating enzymes (DUBs), which remove conjugated ubiquitin molecules from target substrates. Owing to their role as essential enzymes in regulating all ubiquitin-related processes, the abundance, localization, and catalytic activity of DUBs are tightly regulated. Dysregulation of DUBs can cause dramatic physiological consequences and a variety of disorders such as cancer, and neurodegenerative and inflammatory diseases. Multiple factors, such as transcription and translation of associated genes, and the presence of accessory domains, binding proteins, and inhibitors have been implicated in several aspects of DUB regulation. Beyond this level of regulation, emerging studies show that the function of DUBs can be regulated by a variety of post-translational modifications, which significantly affect the abundance, localization, and catalytic activity of DUBs. The most extensively studied post-translational modification of DUBs is phosphorylation. Besides phosphorylation, ubiquitination, SUMOylation, acetylation, oxidation, and hydroxylation are also reported in DUBs. In this review, we summarize the current knowledge on the regulatory effects of post-translational modifications of DUBs.
Collapse
Affiliation(s)
- Yanfeng Wang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Feng Wang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, China
| |
Collapse
|
17
|
Kim HR, Tagirasa R, Yoo E. Covalent Small Molecule Immunomodulators Targeting the Protease Active Site. J Med Chem 2021; 64:5291-5322. [PMID: 33904753 DOI: 10.1021/acs.jmedchem.1c00172] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Cells of the immune system utilize multiple proteases to regulate cell functions and orchestrate innate and adaptive immune responses. Dysregulated protease activities are implicated in many immune-related disorders; thus, protease inhibitors have been actively investigated for pharmaceutical development. Although historically considered challenging with concerns about toxicity, compounds that covalently modify the protease active site represent an important class of agents, emerging not only as chemical probes but also as approved drugs. Here, we provide an overview of technologies useful for the study of proteases with the focus on recent advances in chemoproteomic methods and screening platforms. By highlighting covalent inhibitors that have been designed to target immunomodulatory proteases, we identify opportunities for the development of small molecule immunomodulators.
Collapse
Affiliation(s)
- Hong-Rae Kim
- Chemical Biology Laboratory, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Ravichandra Tagirasa
- Chemical Biology Laboratory, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Euna Yoo
- Chemical Biology Laboratory, National Cancer Institute, Frederick, Maryland 21702, United States
| |
Collapse
|
18
|
Regulation of Deubiquitinating Enzymes by Post-Translational Modifications. Int J Mol Sci 2020; 21:ijms21114028. [PMID: 32512887 PMCID: PMC7312083 DOI: 10.3390/ijms21114028] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/01/2020] [Accepted: 06/01/2020] [Indexed: 01/04/2023] Open
Abstract
Ubiquitination and deubiquitination play a critical role in all aspects of cellular processes, and the enzymes involved are tightly regulated by multiple factors including posttranslational modifications like most other proteins. Dysfunction or misregulation of these enzymes could have dramatic physiological consequences, sometimes leading to diseases. Therefore, it is important to have a clear understanding of these regulatory processes. Here, we have reviewed the posttranslational modifications of deubiquitinating enzymes and their consequences on the catalytic activity, stability, abundance, localization, and interaction with the partner proteins.
Collapse
|
19
|
Xiang Y, Zhang S, Lu J, Zhang W, Cai M, Qiu D, Cai D. USP9X promotes LPS-induced pulmonary epithelial barrier breakdown and hyperpermeability by activating an NF-κBp65 feedback loop. Am J Physiol Cell Physiol 2019; 317:C534-C543. [PMID: 31216195 DOI: 10.1152/ajpcell.00094.2019] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
NF-κB is a central regulator of inflammatory and immune responses and has been shown to regulate transcription of several inflammatory factors as well as promote acute lung injury. However, the regulation of NF-κB signaling in acute lung injury has yet to be investigated. Human pulmonary alveolar epithelial cells (HPAEpiC) were treated with LPS to establish an acute lung injury model in vitro in which LPS stimulation resulted in pulmonary epithelial barrier breakdown and hyperpermeability. Cell viability was measured by CCK-8, and the transepithelial permeability was examined by measurement of transepithelial electrical resistance (TEER) and the transepithelial flux. Expression of ubiquitin-specific peptidase 9 X-linked (USP9X), zonula occludens (ZO-1), occludin and NF-κBp65, and the secretion of TNF-α and IL-1β were measured by Western blotting and ELISA, respectively. For in vivo studies, mice were intraperitoneally injected with LPS and/or NF-κB inhibitor pyrrolidine dithiocarbamate (PDTC). Lung tissues were harvested for hematoxylin-eosin staining and Western blotting, and bronchoalveolar lavage fluid (BALF) was harvested for ELISA. We found that treatment with LPS in HPAEpiC inhibited cell viability and induced the expression of USP9X. Interestingly, knockdown of USP9X and treatment with PDTC suppressed LPS-induced HPAEpiC injury. USP9X overexpression promoted NF-κB activation, while NF-κB inactivation inhibited USP9X transcription and HPAEpiC injury induced by USP9X overexpression. Furthermore, LPS also induced the expression of USP9X in lungs, which was inhibited by PDTC. Taken together, these results demonstrate a critical role of USP9X-NF-κBp65 loop in mediating LPS-induced acute lung injury and may serve as a potential therapeutic target in acute lung injury.
Collapse
Affiliation(s)
- Yijin Xiang
- Department of Integrative Medicine, Zhongshan Hospital, Fudan University, Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Shaoyan Zhang
- Department of Respiratory, Longhua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jia Lu
- Department of Traditional Chinese Medicine, Shanghai Jiangwan Town Community Health Service Center, Shanghai, China
| | - Wen Zhang
- Department of Integrative Medicine, Zhongshan Hospital, Fudan University, Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Min Cai
- Department of Integrative Medicine, Zhongshan Hospital, Fudan University, Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Dongze Qiu
- Department of Integrative Medicine, Zhongshan Hospital, Fudan University, Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Dingfang Cai
- Department of Integrative Medicine, Zhongshan Hospital, Fudan University, Institutes of Integrative Medicine, Fudan University, Shanghai, China
| |
Collapse
|
20
|
Akiyama H, Umezawa Y, Ishida S, Okada K, Nogami A, Miura O. Inhibition of USP9X induces apoptosis in FLT3-ITD-positive AML cells cooperatively by inhibiting the mutant kinase through aggresomal translocation and inducing oxidative stress. Cancer Lett 2019; 453:84-94. [DOI: 10.1016/j.canlet.2019.03.046] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 03/12/2019] [Accepted: 03/28/2019] [Indexed: 12/14/2022]
|
21
|
Wang A, Zhu F, Liang R, Li D, Li B. Regulation of T cell differentiation and function by ubiquitin-specific proteases. Cell Immunol 2019; 340:103922. [PMID: 31078284 DOI: 10.1016/j.cellimm.2019.103922] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 05/02/2019] [Indexed: 12/13/2022]
Abstract
T cells play critical roles in immune responses to pathogens, autoimmunity, and antitumor immunity. During the past few decades, increasing numbers of studies have demonstrated the significance of protein ubiquitination in T cell-mediated immunity. Several E3 ubiquitin ligases and deubiquitinases (DUBs) have been identified as either positive or negative regulators of T cell development and function. In this review, we mainly focus on the roles of DUBs (especially ubiquitin-specific proteases (USPs)) in modulating T cell differentiation and function, as well as the molecular mechanisms. Understanding how T cell development and function is regulated by ubiquitination and deubiquitination will provide novel strategies for treating infection, autoimmune diseases, and cancer.
Collapse
Affiliation(s)
- Aiting Wang
- Key Laboratory of Molecular Virology and Immunology, CAS Center for Excellence in Molecular Cell Science, Unit of Molecular Immunology, Institut Pasteur of Shanghai, University of Chinese Academy of Sciences, Shanghai 200031, China; Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai JiaoTong University School of Medicine, Shanghai 200025, China
| | - Fangming Zhu
- Key Laboratory of Molecular Virology and Immunology, CAS Center for Excellence in Molecular Cell Science, Unit of Molecular Immunology, Institut Pasteur of Shanghai, University of Chinese Academy of Sciences, Shanghai 200031, China; Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai JiaoTong University School of Medicine, Shanghai 200025, China; Shanghai Key Laboratory of Bio-energy Crops, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Rui Liang
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai JiaoTong University School of Medicine, Shanghai 200025, China
| | - Dan Li
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai JiaoTong University School of Medicine, Shanghai 200025, China
| | - Bin Li
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai JiaoTong University School of Medicine, Shanghai 200025, China.
| |
Collapse
|
22
|
Abed M, Verschueren E, Budayeva H, Liu P, Kirkpatrick DS, Reja R, Kummerfeld SK, Webster JD, Gierke S, Reichelt M, Anderson KR, Newman RJ, Roose-Girma M, Modrusan Z, Pektas H, Maltepe E, Newton K, Dixit VM. The Gag protein PEG10 binds to RNA and regulates trophoblast stem cell lineage specification. PLoS One 2019; 14:e0214110. [PMID: 30951545 PMCID: PMC6450627 DOI: 10.1371/journal.pone.0214110] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 03/15/2019] [Indexed: 01/03/2023] Open
Abstract
Peg10 (paternally expressed gene 10) is an imprinted gene that is essential for placental development. It is thought to derive from a Ty3-gyspy LTR (long terminal repeat) retrotransposon and retains Gag and Pol-like domains. Here we show that the Gag domain of PEG10 can promote vesicle budding similar to the HIV p24 Gag protein. Expressed in a subset of mouse endocrine organs in addition to the placenta, PEG10 was identified as a substrate of the deubiquitinating enzyme USP9X. Consistent with PEG10 having a critical role in placental development, PEG10-deficient trophoblast stem cells (TSCs) exhibited impaired differentiation into placental lineages. PEG10 expressed in wild-type, differentiating TSCs was bound to many cellular RNAs including Hbegf (Heparin-binding EGF-like growth factor), which is known to play an important role in placentation. Expression of Hbegf was reduced in PEG10-deficient TSCs suggesting that PEG10 might bind to and stabilize RNAs that are critical for normal placental development.
Collapse
Affiliation(s)
- Mona Abed
- Physiological Chemistry Department, Genentech, South San Francisco, California, United States of America
| | - Erik Verschueren
- Protein Chemistry Department, Genentech, South San Francisco, California, United States of America
| | - Hanna Budayeva
- Protein Chemistry Department, Genentech, South San Francisco, California, United States of America
| | - Peter Liu
- Protein Chemistry Department, Genentech, South San Francisco, California, United States of America
| | - Donald S. Kirkpatrick
- Protein Chemistry Department, Genentech, South San Francisco, California, United States of America
| | - Rohit Reja
- Bioinformatics and Computational Biology Department, Genentech, South San Francisco, California, United States of America
| | - Sarah K. Kummerfeld
- Bioinformatics and Computational Biology Department, Genentech, South San Francisco, California, United States of America
| | - Joshua D. Webster
- Pathology Department, Genentech, South San Francisco, California, United States of America
| | - Sarah Gierke
- Pathology Department, Genentech, South San Francisco, California, United States of America
| | - Mike Reichelt
- Pathology Department, Genentech, South San Francisco, California, United States of America
| | - Keith R. Anderson
- Molecular Biology Department, Genentech, South San Francisco, California, United States of America
| | - Robert J. Newman
- Molecular Biology Department, Genentech, South San Francisco, California, United States of America
| | - Merone Roose-Girma
- Molecular Biology Department, Genentech, South San Francisco, California, United States of America
| | - Zora Modrusan
- Molecular Biology Department, Genentech, South San Francisco, California, United States of America
| | - Hazal Pektas
- The Center for Reproductive Sciences, Division of Neonatology, University of California, San Francisco, California, United States of America
| | - Emin Maltepe
- The Center for Reproductive Sciences, Division of Neonatology, University of California, San Francisco, California, United States of America
| | - Kim Newton
- Physiological Chemistry Department, Genentech, South San Francisco, California, United States of America
| | - Vishva M. Dixit
- Physiological Chemistry Department, Genentech, South San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
23
|
Yu SMW, Jean-Charles PY, Abraham DM, Kaur S, Gareri C, Mao L, Rockman HA, Shenoy SK. The deubiquitinase ubiquitin-specific protease 20 is a positive modulator of myocardial β 1-adrenergic receptor expression and signaling. J Biol Chem 2018; 294:2500-2518. [PMID: 30538132 DOI: 10.1074/jbc.ra118.004926] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 11/23/2018] [Indexed: 12/27/2022] Open
Abstract
Reversible ubiquitination of G protein-coupled receptors regulates their trafficking and signaling; whether deubiquitinases regulate myocardial β1-adrenergic receptors (β1ARs) is unknown. We report that ubiquitin-specific protease 20 (USP20) deubiquitinates and attenuates lysosomal trafficking of the β1AR. β1AR-induced phosphorylation of USP20 Ser-333 by protein kinase A-α (PKAα) was required for optimal USP20-mediated regulation of β1AR lysosomal trafficking. Both phosphomimetic (S333D) and phosphorylation-impaired (S333A) USP20 possess intrinsic deubiquitinase activity equivalent to WT activity. However, unlike USP20 WT and S333D, the S333A mutant associated poorly with the β1AR and failed to deubiquitinate the β1AR. USP20-KO mice showed normal baseline systolic function but impaired β1AR-induced contractility and relaxation. Dobutamine stimulation did not increase cAMP in USP20-KO left ventricles (LVs), whereas NKH477-induced adenylyl cyclase activity was equivalent to WT. The USP20 homolog USP33, which shares redundant roles with USP20, had no effect on β1AR ubiquitination, but USP33 was up-regulated in USP20-KO hearts suggesting compensatory regulation. Myocardial β1AR expression in USP20-KO was drastically reduced, whereas β2AR expression was maintained as determined by radioligand binding in LV sarcolemmal membranes. Phospho-USP20 was significantly increased in LVs of wildtype (WT) mice after a 1-week catecholamine infusion and a 2-week chronic pressure overload induced by transverse aortic constriction (TAC). Phospho-USP20 was undetectable in β1AR KO mice subjected to TAC, suggesting a role for USP20 phosphorylation in cardiac response to pressure overload. We conclude that USP20 regulates β1AR signaling in vitro and in vivo Additionally, β1AR-induced USP20 phosphorylation may serve as a feed-forward mechanism to stabilize β1AR expression and signaling during pathological insults to the myocardium.
Collapse
Affiliation(s)
- Samuel Mon-Wei Yu
- From the Department of Medicine, Division of Cardiology, Duke University Medical Center, Durham, North Carolina 27710
| | - Pierre-Yves Jean-Charles
- From the Department of Medicine, Division of Cardiology, Duke University Medical Center, Durham, North Carolina 27710
| | - Dennis M Abraham
- From the Department of Medicine, Division of Cardiology, Duke University Medical Center, Durham, North Carolina 27710
| | - Suneet Kaur
- From the Department of Medicine, Division of Cardiology, Duke University Medical Center, Durham, North Carolina 27710
| | - Clarice Gareri
- From the Department of Medicine, Division of Cardiology, Duke University Medical Center, Durham, North Carolina 27710
| | - Lan Mao
- From the Department of Medicine, Division of Cardiology, Duke University Medical Center, Durham, North Carolina 27710
| | - Howard A Rockman
- From the Department of Medicine, Division of Cardiology, Duke University Medical Center, Durham, North Carolina 27710
| | - Sudha K Shenoy
- From the Department of Medicine, Division of Cardiology, Duke University Medical Center, Durham, North Carolina 27710
| |
Collapse
|
24
|
Haseeb M, Anwar MA, Choi S. Molecular Interactions Between Innate and Adaptive Immune Cells in Chronic Lymphocytic Leukemia and Their Therapeutic Implications. Front Immunol 2018; 9:2720. [PMID: 30542344 PMCID: PMC6277854 DOI: 10.3389/fimmu.2018.02720] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 11/05/2018] [Indexed: 12/15/2022] Open
Abstract
Innate immunity constitutes the first line of host defense against various anomalies in humans, and it also guides the adaptive immune response. The function of innate immune components and adaptive immune components are interlinked in hematological malignancies including chronic lymphocytic leukemia (CLL), and molecular interactions between innate and adaptive immune components are crucial for the development, progression and the therapeutic outcome of CLL. In this leukemia, genetic mutations in B cells and B cell receptors (BCR) are key driving factors along with evasion of cytotoxic T lymphocytes and promotion of regulatory T cells. Similarly, the release of various cytokines from CLL cells triggers the protumor phenotype in macrophages that further edges the CLL cells. Moreover, under the influence of various cytokines, dendritic cells are unable to mature and trigger T cell mediated antitumor response. The phenotypes of these cells are ultimately controlled by respective signaling pathways, the most notables are BCR, Wnt, Notch, and NF-κB, and their activation affects the cytokine profile that controls the pathogenesis of CLL, and challenge its treatment. There are several novel substances for CLL under clinical development, including kinase inhibitors, antibodies, and immune-modulators that offer new hopes. DC-based vaccines and CAR T cell therapy are promising tools; however, further studies are required to precisely dissect the molecular interactions among various molecular entities. In this review, we systematically discuss the involvement, common targets and therapeutic interventions of various cells for the better understanding and therapy of CLL.
Collapse
Affiliation(s)
- Muhammad Haseeb
- Department of Molecular Science and Technology, Ajou University, Suwon, South Korea
| | - Muhammad Ayaz Anwar
- Department of Molecular Science and Technology, Ajou University, Suwon, South Korea
| | - Sangdun Choi
- Department of Molecular Science and Technology, Ajou University, Suwon, South Korea
| |
Collapse
|
25
|
Thys A, Douanne T, Bidère N. Post-translational Modifications of the CARMA1-BCL10-MALT1 Complex in Lymphocytes and Activated B-Cell Like Subtype of Diffuse Large B-Cell Lymphoma. Front Oncol 2018; 8:498. [PMID: 30474008 PMCID: PMC6237847 DOI: 10.3389/fonc.2018.00498] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 10/15/2018] [Indexed: 12/28/2022] Open
Abstract
Piracy of the NF-κB transcription factors signaling pathway, to sustain its activity, is a mechanism often deployed in B-cell lymphoma to promote unlimited growth and survival. The aggressive activated B-cell like (ABC) subtype of diffuse large B-cell lymphoma (DLBCL) exploits a multi-protein complex of CARMA1, BCL10, and MALT1 (CBM complex), which normally conveys NF-κB signaling upon antigen receptors engagement. Once assembled, the CBM also unleashes MALT1 protease activity to finely tune the immune response. As a result, ABC DLBCL tumors develop a profound addiction to NF-κB and to MALT1 enzyme, leaving open a breach for therapeutics. However, the pleiotropic nature of NF-κB jeopardizes the success of its targeting and urges us to develop new strategies. In this review, we discuss how post-translational modifications, such as phosphorylation and ubiquitination of the CBM components, as well as, MALT1 proteolytic activity, shape the CBM activity in lymphocytes and ABC DLBCL, and may provide new avenues to restore vulnerability in lymphoma.
Collapse
Affiliation(s)
- An Thys
- Team SOAP, CRCINA, Institut National de la Santé et de la Recherche Médicale, CNRS, Université de Nantes, Université d'Angers, Nantes, France
| | - Tiphaine Douanne
- Team SOAP, CRCINA, Institut National de la Santé et de la Recherche Médicale, CNRS, Université de Nantes, Université d'Angers, Nantes, France
| | - Nicolas Bidère
- Team SOAP, CRCINA, Institut National de la Santé et de la Recherche Médicale, CNRS, Université de Nantes, Université d'Angers, Nantes, France
| |
Collapse
|
26
|
Yang XD, Sun SC. Deubiquitinases as pivotal regulators of T cell functions. Front Med 2018; 12:451-462. [PMID: 30054854 PMCID: PMC6705128 DOI: 10.1007/s11684-018-0651-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 06/26/2018] [Indexed: 12/11/2022]
Abstract
T cells efficiently respond to foreign antigens to mediate immune responses against infections but are tolerant to self-tissues. Defect in T cell activation is associated with severe immune deficiencies, whereas aberrant T cell activation contributes to the pathogenesis of diverse autoimmune and inflammatory diseases. An emerging mechanism that regulates T cell activation and tolerance is ubiquitination, a reversible process of protein modification that is counter-regulated by ubiquitinating enzymes and deubiquitinases (DUBs). DUBs are isopeptidases that cleave polyubiquitin chains and remove ubiquitin from target proteins, thereby controlling the magnitude and duration of ubiquitin signaling. It is now well recognized that DUBs are crucial regulators of T cell responses and serve as potential therapeutic targets for manipulating immune responses in the treatment of immunological disorders and cancer. This review will discuss the recent progresses regarding the functions of DUBs in T cells.
Collapse
Affiliation(s)
- Xiao-Dong Yang
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Shao-Cong Sun
- Department of Immunology, The University of Texas MD Anderson Cancer Center, 7455 Fannin Street, Box 902, Houston, TX, 77030, USA. .,The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX, 77030, USA.
| |
Collapse
|
27
|
Liu Y, Chen Z, Xu K, Wang Z, Wu C, Sun Z, Ji N, Huang M, Zhang M. Next generation sequencing for miRNA profile of spleen CD4 + T cells in the murine model of acute asthma. Epigenomics 2018; 10:1071-1083. [PMID: 29737865 DOI: 10.2217/epi-2018-0043] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AIM To explore the miRNAs profile of CD4+ T lymphocytes in asthma via next generation sequencing. METHODS In the murine model of acute asthma, spleen CD4+ T lymphocytes were sorted, in which small RNAs were extracted and sequenced. Novel miRNAs were measured with real time quantitative reverse transcription polymerase chain reaction (qRT-PCR). RESULTS A total of 127 miRNAs were found to exhibit at least twofold change. In the 262 predicted novel miRNAs, 14 novel miRNAs were measured in qRT-PCR in the sorted CD4+ T cells or in the differentiated Th1/Th2 cells and novel miR-11 (xxx-m0228-3p) was significantly decreased in the sorted CD4+ T cells from the murine model of asthma and in the Th2 cells. CONCLUSION Aberrant miRNAs profile in the CD4+ T lymphocytes from acute asthma was documented.
Collapse
Affiliation(s)
- Ye Liu
- Department of Geriatrics, Jiangsu Province Geriatric Hospital, Nanjing 210024, PR China
| | - Zhongqi Chen
- Department of Respiratory & Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, PR China
| | - Kun Xu
- Department of Respiratory Medicine, The Affiliated Wuxi No.2 People's Hospital of Nanjing Medical University, Wuxi 214002, PR China
| | - Zhengxia Wang
- Department of Respiratory & Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, PR China
| | - Chaojie Wu
- Department of Respiratory & Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, PR China
| | - Zhixiao Sun
- Department of Respiratory & Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, PR China
| | - Ningfei Ji
- Department of Geriatrics, Jiangsu Province Geriatric Hospital, Nanjing 210024, PR China.,Department of Respiratory & Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, PR China
| | - Mao Huang
- Department of Respiratory & Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, PR China
| | - Mingshun Zhang
- Department of Immunology, Nanjing Medical University, Nanjing 211166, PR China
| |
Collapse
|
28
|
Affiliation(s)
- Byron B. Au-Yeung
- Department of Medicine, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | - Neel H. Shah
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA
| | - Lin Shen
- Division of Rheumatology, Rosalind Russell and Ephraim P. Engleman Rheumatology Research Center, University of California, San Francisco, California 94143, USA;,
| | - Arthur Weiss
- Division of Rheumatology, Rosalind Russell and Ephraim P. Engleman Rheumatology Research Center, University of California, San Francisco, California 94143, USA;,
- Howard Hughes Medical Institute, University of California, San Francisco, California 94143, USA
| |
Collapse
|
29
|
Skowyra A, Allan LA, Saurin AT, Clarke PR. USP9X Limits Mitotic Checkpoint Complex Turnover to Strengthen the Spindle Assembly Checkpoint and Guard against Chromosomal Instability. Cell Rep 2018; 23:852-865. [PMID: 29669289 PMCID: PMC5917450 DOI: 10.1016/j.celrep.2018.03.100] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 02/04/2018] [Accepted: 03/21/2018] [Indexed: 02/09/2023] Open
Abstract
Faithful chromosome segregation during mitosis depends on the spindle assembly checkpoint (SAC), which delays progression through mitosis until every chromosome has stably attached to spindle microtubules via the kinetochore. We show here that the deubiquitinase USP9X strengthens the SAC by antagonizing the turnover of the mitotic checkpoint complex produced at unattached kinetochores. USP9X thereby opposes activation of anaphase-promoting complex/cyclosome (APC/C) and specifically inhibits the mitotic degradation of SAC-controlled APC/C substrates. We demonstrate that depletion or loss of USP9X reduces the effectiveness of the SAC, elevates chromosome segregation defects, and enhances chromosomal instability (CIN). These findings provide a rationale to explain why loss of USP9X could be either pro- or anti-tumorigenic depending on the existing level of CIN.
Collapse
Affiliation(s)
- Agnieszka Skowyra
- Division of Cancer Research, School of Medicine, University of Dundee, Jacqui Wood Cancer Centre, Ninewells Hospital and Medical School, Dundee DD1 9SY, UK
| | - Lindsey A Allan
- Division of Cancer Research, School of Medicine, University of Dundee, Jacqui Wood Cancer Centre, Ninewells Hospital and Medical School, Dundee DD1 9SY, UK
| | - Adrian T Saurin
- Division of Cancer Research, School of Medicine, University of Dundee, Jacqui Wood Cancer Centre, Ninewells Hospital and Medical School, Dundee DD1 9SY, UK.
| | - Paul R Clarke
- Division of Cancer Research, School of Medicine, University of Dundee, Jacqui Wood Cancer Centre, Ninewells Hospital and Medical School, Dundee DD1 9SY, UK; The University of Queensland Diamantina Institute, Faculty of Medicine, Translational Research Institute, 37 Kent Street, Woolloongabba QLD 4102, Australia.
| |
Collapse
|
30
|
Watanabe M, Hatakeyama S. Fine-tuning of thymocyte development by ubiquitination-mediated stability control of the ESCRT protein CHMP5. Cell Mol Immunol 2017; 14:957-959. [PMID: 28890540 DOI: 10.1038/cmi.2017.91] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 08/08/2017] [Indexed: 11/09/2022] Open
Affiliation(s)
- Masashi Watanabe
- Department of Biochemistry, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido 060-8638, Japan
| | - Shigetsugu Hatakeyama
- Department of Biochemistry, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido 060-8638, Japan
| |
Collapse
|
31
|
Garreau A, Blaize G, Argenty J, Rouquié N, Tourdès A, Wood SA, Saoudi A, Lesourne R. Grb2-Mediated Recruitment of USP9X to LAT Enhances Themis Stability following Thymic Selection. THE JOURNAL OF IMMUNOLOGY 2017; 199:2758-2766. [PMID: 28877990 DOI: 10.4049/jimmunol.1700566] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 08/10/2017] [Indexed: 11/19/2022]
Abstract
Themis is a new component of the TCR signaling machinery that plays a critical role during T cell development. The positive selection of immature CD4+CD8+ double-positive thymocytes and their commitment to the CD4+CD8- single-positive stage are impaired in Themis-/- mice, suggesting that Themis might be important to sustain TCR signals during these key developmental processes. However, the analysis of Themis mRNA levels revealed that Themis gene expression is rapidly extinguished during positive selection. We show in this article that Themis protein expression is increased in double-positive thymocytes undergoing positive selection and is sustained in immature single-positive thymocytes, despite the strong decrease in Themis mRNA levels in these subsets. We found that Themis stability is controlled by the ubiquitin-specific protease USP9X, which removes ubiquitin K48-linked chains on Themis following TCR engagement. Biochemical analyses indicate that USP9X binds directly to the N-terminal CABIT domain of Themis and indirectly to the adaptor protein Grb2, with the latter interaction enabling recruitment of Themis/USP9X complexes to LAT, thereby sustaining Themis expression following positive selection. Together, these data suggest that TCR-mediated signals enhance Themis stability upon T cell development and identify USP9X as a key regulator of Themis protein turnover.
Collapse
Affiliation(s)
- Anne Garreau
- Centre de Physiopathologie de Toulouse Purpan, Université de Toulouse, CNRS, INSERM, UPS, 31024 Toulouse, France; and
| | - Gaëtan Blaize
- Centre de Physiopathologie de Toulouse Purpan, Université de Toulouse, CNRS, INSERM, UPS, 31024 Toulouse, France; and
| | - Jérémy Argenty
- Centre de Physiopathologie de Toulouse Purpan, Université de Toulouse, CNRS, INSERM, UPS, 31024 Toulouse, France; and
| | - Nelly Rouquié
- Centre de Physiopathologie de Toulouse Purpan, Université de Toulouse, CNRS, INSERM, UPS, 31024 Toulouse, France; and
| | - Audrey Tourdès
- Centre de Physiopathologie de Toulouse Purpan, Université de Toulouse, CNRS, INSERM, UPS, 31024 Toulouse, France; and
| | - Stephen A Wood
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, Queensland 4111, Australia
| | - Abdelhadi Saoudi
- Centre de Physiopathologie de Toulouse Purpan, Université de Toulouse, CNRS, INSERM, UPS, 31024 Toulouse, France; and
| | - Renaud Lesourne
- Centre de Physiopathologie de Toulouse Purpan, Université de Toulouse, CNRS, INSERM, UPS, 31024 Toulouse, France; and
| |
Collapse
|
32
|
Leznicki P, Kulathu Y. Mechanisms of regulation and diversification of deubiquitylating enzyme function. J Cell Sci 2017; 130:1997-2006. [PMID: 28476940 DOI: 10.1242/jcs.201855] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Deubiquitylating (or deubiquitinating) enzymes (DUBs) are proteases that reverse protein ubiquitylation and therefore modulate the outcome of this post-translational modification. DUBs regulate a variety of intracellular processes, including protein turnover, signalling pathways and the DNA damage response. They have also been linked to a number of human diseases, such as cancer, and inflammatory and neurodegenerative disorders. Although we are beginning to better appreciate the role of DUBs in basic cell biology and their importance for human health, there are still many unknowns. Central among these is the conundrum of how the small number of ∼100 DUBs encoded in the human genome is capable of regulating the thousands of ubiquitin modification sites detected in human cells. This Commentary addresses the biological mechanisms employed to modulate and expand the functions of DUBs, and sets directions for future research aimed at elucidating the details of these fascinating processes.This article is part of a Minifocus on Ubiquitin Regulation and Function. For further reading, please see related articles: 'Exploitation of the host cell ubiquitin machinery by microbial effector proteins' by Yi-Han Lin and Matthias P. Machner (J. Cell Sci.130, 1985-1996). 'Cell scientist to watch - Mads Gyrd-Hansen' (J. Cell Sci.130, 1981-1983).
Collapse
Affiliation(s)
- Pawel Leznicki
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Yogesh Kulathu
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| |
Collapse
|
33
|
Suppressors and activators of JAK-STAT signaling at diagnosis and relapse of acute lymphoblastic leukemia in Down syndrome. Proc Natl Acad Sci U S A 2017; 114:E4030-E4039. [PMID: 28461505 DOI: 10.1073/pnas.1702489114] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Children with Down syndrome (DS) are prone to development of high-risk B-cell precursor ALL (DS-ALL), which differs genetically from most sporadic pediatric ALLs. Increased expression of cytokine receptor-like factor 2 (CRLF2), the receptor to thymic stromal lymphopoietin (TSLP), characterizes about half of DS-ALLs and also a subgroup of sporadic "Philadelphia-like" ALLs. To understand the pathogenesis of relapsed DS-ALL, we performed integrative genomic analysis of 25 matched diagnosis-remission and -relapse DS-ALLs. We found that the CRLF2 rearrangements are early events during DS-ALL evolution and generally stable between diagnoses and relapse. Secondary activating signaling events in the JAK-STAT/RAS pathway were ubiquitous but highly redundant between diagnosis and relapse, suggesting that signaling is essential but that no specific mutations are "relapse driving." We further found that activated JAK2 may be naturally suppressed in 25% of CRLF2pos DS-ALLs by loss-of-function aberrations in USP9X, a deubiquitinase previously shown to stabilize the activated phosphorylated JAK2. Interrogation of large ALL genomic databases extended our findings up to 25% of CRLF2pos, Philadelphia-like ALLs. Pharmacological or genetic inhibition of USP9X, as well as treatment with low-dose ruxolitinib, enhanced the survival of pre-B ALL cells overexpressing mutated JAK2. Thus, somehow counterintuitive, we found that suppression of JAK-STAT "hypersignaling" may be beneficial to leukemic B-cell precursors. This finding and the reduction of JAK mutated clones at relapse suggest that the therapeutic effect of JAK specific inhibitors may be limited. Rather, combined signaling inhibitors or direct targeting of the TSLP receptor may be a useful therapeutic strategy for DS-ALL.
Collapse
|
34
|
Hewings DS, Flygare JA, Bogyo M, Wertz IE. Activity-based probes for the ubiquitin conjugation-deconjugation machinery: new chemistries, new tools, and new insights. FEBS J 2017; 284:1555-1576. [PMID: 28196299 PMCID: PMC7163952 DOI: 10.1111/febs.14039] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 01/21/2017] [Accepted: 02/10/2017] [Indexed: 12/17/2022]
Abstract
The reversible post‐translational modification of proteins by ubiquitin and ubiquitin‐like proteins regulates almost all cellular processes, by affecting protein degradation, localization, and complex formation. Deubiquitinases (DUBs) are proteases that remove ubiquitin modifications or cleave ubiquitin chains. Most DUBs are cysteine proteases, which makes them well suited for study by activity‐based probes. These DUB probes report on deubiquitinase activity by reacting covalently with the active site in an enzyme‐catalyzed manner. They have proven to be important tools to study DUB selectivity and proteolytic activity in different settings, to identify novel DUBs, and to characterize deubiquitinase inhibitors. Inspired by the efficacy of activity‐based probes for DUBs, several groups have recently reported probes for the ubiquitin conjugation machinery (E1, E2, and E3 enzymes). Many of these enzymes, while not proteases, also posses active site cysteine residues and can be targeted by covalent probes. In this review, we will discuss how features of the probe (cysteine‐reactive group, recognition element, and reporter tag) affect reactivity and suitability for certain experimental applications. We will also review the diverse applications of the current probes, and discuss the need for new probe types to study emerging aspects of ubiquitin biology.
Collapse
Affiliation(s)
- David S Hewings
- Discovery Chemistry, Genentech, South San Francisco, CA, USA.,Early Discovery Biochemistry, Genentech, South San Francisco, CA, USA.,Discovery Oncology, Genentech, South San Francisco, CA, USA.,Department of Pathology, Stanford University School of Medicine, CA, USA
| | - John A Flygare
- Discovery Chemistry, Genentech, South San Francisco, CA, USA
| | - Matthew Bogyo
- Department of Pathology, Stanford University School of Medicine, CA, USA
| | - Ingrid E Wertz
- Early Discovery Biochemistry, Genentech, South San Francisco, CA, USA.,Discovery Oncology, Genentech, South San Francisco, CA, USA
| |
Collapse
|
35
|
Somatic Genetic Variation in Solid Pseudopapillary Tumor of the Pancreas by Whole Exome Sequencing. Int J Mol Sci 2017; 18:ijms18010081. [PMID: 28054945 PMCID: PMC5297715 DOI: 10.3390/ijms18010081] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 12/21/2016] [Accepted: 12/28/2016] [Indexed: 12/31/2022] Open
Abstract
Solid pseudopapillary tumor of the pancreas (SPT) is a rare pancreatic disease with a unique clinical manifestation. Although CTNNB1 gene mutations had been universally reported, genetic variation profiles of SPT are largely unidentified. We conducted whole exome sequencing in nine SPT patients to probe the SPT-specific insertions and deletions (indels) and single nucleotide polymorphisms (SNPs). In total, 54 SNPs and 41 indels of prominent variations were demonstrated through parallel exome sequencing. We detected that CTNNB1 mutations presented throughout all patients studied (100%), and a higher count of SNPs was particularly detected in patients with older age, larger tumor, and metastatic disease. By aggregating 95 detected variation events and viewing the interconnections among each of the genes with variations, CTNNB1 was identified as the core portion in the network, which might collaborate with other events such as variations of USP9X, EP400, HTT, MED12, and PKD1 to regulate tumorigenesis. Pathway analysis showed that the events involved in other cancers had the potential to influence the progression of the SNPs count. Our study revealed an insight into the variation of the gene encoding region underlying solid-pseudopapillary neoplasm tumorigenesis. The detection of these variations might partly reflect the potential molecular mechanism.
Collapse
|
36
|
Gao SF, Zhong B, Lin D. Regulation of T helper cell differentiation by E3 ubiquitin ligases and deubiquitinating enzymes. Int Immunopharmacol 2016; 42:150-156. [PMID: 27914308 DOI: 10.1016/j.intimp.2016.11.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Revised: 11/16/2016] [Accepted: 11/16/2016] [Indexed: 12/22/2022]
Abstract
CD4 T cells are essential components of adaptive immunity and play a critical role in anti-pathogenic or anti-tumor responses as well as autoimmune and allergic diseases. Naive CD4 T cells differentiate into distinct subsets of T helper (Th) cells by various signals including TCR, costimulatory and cytokine signals. Accumulating evidence suggests that these signaling pathways are critically regulated by ubiquitination and deubiquitination, two reversible posttranslational modifications mediated by E3 ubiquitin ligases and deubiquitinating enzymes (DUBs), respectively. In this review, we briefly introduce the signaling pathways that control the differentiation of Th cells and then focused on the roles of E3s- and DUBs-mediated ubiquitin modification or demodification in regulating Th cell differentiation.
Collapse
Affiliation(s)
- Si-Fa Gao
- Cancer Center, Renmin Hospital, Wuhan University, Wuhan 430060, China
| | - Bo Zhong
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Dandan Lin
- Cancer Center, Renmin Hospital, Wuhan University, Wuhan 430060, China.
| |
Collapse
|
37
|
Jiang H, Qin XJ, Li WP, Ma R, Wang T, Li ZQ. LncRNAs expression in adjuvant-induced arthritis rats reveals the potential role of LncRNAs contributing to rheumatoid arthritis pathogenesis. Gene 2016; 593:131-142. [PMID: 27511374 DOI: 10.1016/j.gene.2016.08.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 07/28/2016] [Accepted: 08/05/2016] [Indexed: 01/16/2023]
Abstract
BACKGROUND Long non-coding RNAs (LncRNAs) are an important class of widespread molecules involved in diverse biological functions, which are exceptionally expressed in numerous types of diseases. Currently, limited study on LncRNA in rheumatoid arthritis (RA) is available. In this study, we aimed to identify the specifically expressed LncRNA that are relevant to adjuvant-induced arthritis (AA) in rats, and to explore the possible molecular mechanisms of RA pathogenesis. METHODS To identify LncRNAs specifically expressed in rheumatoid arthritis, the expression of LncRNAs in synoviums of rats from the model group (n=3) was compared with that in the control group (n=3) using Arraystar Rat LncRNA/mRNA microarray and real-time polymerase chain reaction (RT-PCR). RESULTS Up to 260 LncRNAs were found to be differentially expressed (≥1.5-fold-change) in the synoviums between AA model and the normal rats (170 up-regulated and 90 down-regulated LncRNAs in AA rats compared with normal rats). Coding-non-coding gene co-expression networks (CNC network) were drawn based on the correlation analysis between the differentially expressed LncRNAs and mRNAs. Six LncRNAs, XR_008357, U75927, MRAK046251, XR_006457, DQ266363 and MRAK003448, were selected to analyze the relationship between LncRNAs and RA via the CNC network and GO analysis. Real-time PCR result confirmed that the six LncRNAs were specifically expressed in the AA rats. CONCLUSIONS These results revealed that clusters of LncRNAs were uniquely expressed in AA rats compared with controls, which manifests that these differentially expressed LncRNAs in AA rats might play a vital role in RA development. Up-regulation or down-regulation of the six LncRNAs might contribute to the molecular mechanism underlying RA. To sum up, our study provides potential targets for treatment of RA and novel profound understanding of the pathogenesis of RA.
Collapse
Affiliation(s)
- Hui Jiang
- College of Basic Medicine, Anhui Medical University, 81 Meishan Road, Hefei, China; Department of Pharmacy, The first affiliated hospital of Anhui university of Chinese medicine, 117 Meishan Road, Hefei, China.
| | - Xiu-Juan Qin
- Department of Pharmacy, The first affiliated hospital of Anhui university of Chinese medicine, 117 Meishan Road, Hefei, China.
| | - Wei-Ping Li
- College of Basic Medicine, Anhui Medical University, 81 Meishan Road, Hefei, China.
| | - Rong Ma
- Department of Integrative Physiology and Cardiovascular Research Institute, University of North Texas Health Sciences Center, 3500 Camp Bowie Boulevard, Fort Worth, TX 76107, USA.
| | - Ting Wang
- Department of Pharmacy, The first affiliated hospital of Anhui university of Chinese medicine, 117 Meishan Road, Hefei, China.
| | - Zhu-Qing Li
- College of Basic Medicine, Anhui Medical University, 81 Meishan Road, Hefei, China.
| |
Collapse
|