1
|
Komorowska JA, Grammer C, Bălan M, Swann JB. Ndrg3 is a critical regulator of peripheral T cell maturation and homeostasis. SCIENCE ADVANCES 2025; 11:eads5143. [PMID: 40073135 PMCID: PMC11900881 DOI: 10.1126/sciadv.ads5143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 02/05/2025] [Indexed: 03/14/2025]
Abstract
To provide protection, anticipatory T cell-dependent immunity is reliant on the generation and maintenance of a naïve T cell repertoire, which is sufficiently diverse to ensure recognition of newly encountered antigens. Therefore, under steady-state conditions, a given individual needs to maintain a large pool of naïve T cells, ready to respond to potential threats. Here, we demonstrate that N-myc downstream-regulated gene 3 (Ndrg3) is essential for naïve T cell stability. Mice with T cell-specific Ndrg3 loss are lymphopenic, with reduced numbers of conventional T cells and natural killer T cells. We show that in the absence of Ndrg3, naïve CD8+ T cells exhibit high rates of both proliferation and apoptosis, phenotypes that could be partially rescued by transgenic expression of a high-avidity T cell receptor. Furthermore, Ndrg3-deficient cells were refractory to interleukin-4, resulting in reduced Eomes induction, and a decreased virtual memory population. Our study therefore identifies Ndrg3 as an unexpected, pleiotropic regulator of T cell homeostasis.
Collapse
Affiliation(s)
- Julia A. Komorowska
- Department of Developmental Immunology, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
- Faculty of Biology, Albert Ludwig University, Freiburg, Germany
| | - Christiane Grammer
- Department of Developmental Immunology, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Mirela Bălan
- Bioinformatics Core Facility, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Jeremy B. Swann
- Department of Developmental Immunology, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| |
Collapse
|
2
|
Wang Y, Liu Q, Deng L, Ma X, Gong Y, Wang Y, Zhou F. The roles of epigenetic regulation in graft-versus-host disease. Biomed Pharmacother 2024; 175:116652. [PMID: 38692061 DOI: 10.1016/j.biopha.2024.116652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/18/2024] [Accepted: 04/24/2024] [Indexed: 05/03/2024] Open
Abstract
Allogeneic hematopoietic stem cell transplantation (aHSCT) is utilized as a potential curative treatment for various hematologic malignancies. However, graft-versus-host disease (GVHD) post-aHSCT is a severe complication that significantly impacts patients' quality of life and overall survival, becoming a major cause of non-relapse mortality. In recent years, the association between epigenetics and GVHD has garnered increasing attention. Epigenetics focuses on studying mechanisms that affect gene expression without altering DNA sequences, primarily including DNA methylation, histone modifications, non-coding RNAs (ncRNAs) regulation, and RNA modifications. This review summarizes the role of epigenetic regulation in the pathogenesis of GVHD, with a focus on DNA methylation, histone modifications, ncRNA, RNA modifications and their involvement and applications in the occurrence and development of GVHD. It also highlights advancements in relevant diagnostic markers and drugs, aiming to provide new insights for the clinical diagnosis and treatment of GVHD.
Collapse
Affiliation(s)
- Yimin Wang
- The First Clinical Medical School, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Qi Liu
- The First Clinical Medical School, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lei Deng
- Department of Hematology, the 960th Hospital of the People's Liberation Army Joint Logistics Support Force, Jinan, China
| | - Xiting Ma
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Yuling Gong
- Department of Cardiovascular, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yifei Wang
- Department of Cardiovascular, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China.
| | - Fang Zhou
- Department of Hematology, the 960th Hospital of the People's Liberation Army Joint Logistics Support Force, Jinan, China.
| |
Collapse
|
3
|
Chen H, Xu F, Qin A, Guo S, Zhang G, Yu B, Zheng Q. A pancancer analysis of histone deacetylase 3 in human tumors. Transl Cancer Res 2024; 13:65-80. [PMID: 38410236 PMCID: PMC10894336 DOI: 10.21037/tcr-23-1228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 11/08/2023] [Indexed: 02/28/2024]
Abstract
Background Histone deacetylase 3 (HDAC3) is known to be an important role in various kinds of cancer, but its effect has not been examined on the pancancer level. Thus, a systematic pancancer analysis was conducted to explore its potential role in pancancer diagnosis, prognosis, and immune correlation research. Methods We used a series of databases including The Cancer Genome Atlas (TCGA), Genotype-Tissue Expression (GTEx) Project, The University of Alabama at Birmingham Cancer data analysis portal (UALCAN), Tumor Immune Estimation Resource (TIMER), and Search Tool for the Retrieval of Interacting Genes/Proteins (STRING), among others, to analyze the relationship between the expression of HDAC3 and the diagnosis and prognosis of cancer, the tumor microenvironment (TME), immune infiltration, tumor mutational burden (TMB), microsatellite instability (MSI), mismatch repair (MMR) system using various bioinformatics methods. Downstream pathways of HDAC3 were identified by gene set enrichment analysis (GSEA). Furthermore, the protein expression of HDAC3 in tumor tissues and normal tissues of 17 patients with gliomas was analyzed via western blotting. Results The expression of HDAC3 changed in most types of tumors, which was closely related to most tumor diagnoses and negatively related to some patients' overall survival (OS) and recurrence-free survival (RFS). The pan-cancer analysis demonstrated that it was tightly correlated to DNA methylation and RNA methylation modifications and associated with TMB and MSI. The expression level of HDAC3 was positively correlated with many immune checkpoint molecules and regulators and positively associated with the infiltration levels of immune cells in the TME in most tumor types. Furthermore, enrichment analysis revealed that transcriptional misregulation in cancer and RNA splicing functions were involved in the functional mechanism of HDAC3-related genes. Experimental research showed that the protein expression of HDAC3 was elevated in tumor tissues of patients with glioma. Conclusions Through our comprehensive bioinformatics analysis, we evaluated the role of HDAC3 in pancancer, and our findings suggest that it may be an indicator for some cancer diagnoses and influence immune balance.
Collapse
Affiliation(s)
- Hao Chen
- Hebei Key Laboratory for Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, China
| | - Fan Xu
- Hebei Key Laboratory for Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, China
| | - Anqi Qin
- Hebei Key Laboratory for Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, China
| | - Shuai Guo
- Hebei Key Laboratory for Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, China
| | - Ge Zhang
- Hebei Key Laboratory for Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, China
| | - Bo Yu
- Department of Neurosurgery 1, Tangshan Workers’ Hospital Affiliated to Hebei Medical University, Tangshan, China
| | - Quanhui Zheng
- Hebei Key Laboratory for Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, China
| |
Collapse
|
4
|
Zhang Y, Wu T, He Z, Lai W, Shen X, Lv J, Wang Y, Wu L. Regulation of pDC fate determination by histone deacetylase 3. eLife 2023; 12:e80477. [PMID: 38011375 PMCID: PMC10732571 DOI: 10.7554/elife.80477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 11/22/2023] [Indexed: 11/29/2023] Open
Abstract
Dendritic cells (DCs), the key antigen-presenting cells, are primary regulators of immune responses. Transcriptional regulation of DC development had been one of the major research interests in DC biology; however, the epigenetic regulatory mechanisms during DC development remains unclear. Here, we report that Histone deacetylase 3 (Hdac3), an important epigenetic regulator, is highly expressed in pDCs, and its deficiency profoundly impaired the development of pDCs. Significant disturbance of homeostasis of hematopoietic progenitors was also observed in HDAC3-deficient mice, manifested by altered cell numbers of these progenitors and defective differentiation potentials for pDCs. Using the in vitro Flt3L supplemented DC culture system, we further demonstrated that HDAC3 was required for the differentiation of pDCs from progenitors at all developmental stages. Mechanistically, HDAC3 deficiency resulted in enhanced expression of cDC1-associated genes, owing to markedly elevated H3K27 acetylation (H3K27ac) at these gene sites in BM pDCs. In contrast, the expression of pDC-associated genes was significantly downregulated, leading to defective pDC differentiation.
Collapse
Affiliation(s)
- Yijun Zhang
- Institute for Immunology, Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua UniversityBeijingChina
- Beijing Key Laboratory for Immunological Research on Chronic DiseasesBeijingChina
| | - Tao Wu
- Institute for Immunology, Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua UniversityBeijingChina
- Beijing Key Laboratory for Immunological Research on Chronic DiseasesBeijingChina
| | - Zhimin He
- Institute for Immunology, Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua UniversityBeijingChina
- Beijing Key Laboratory for Immunological Research on Chronic DiseasesBeijingChina
| | - Wenlong Lai
- Institute for Immunology, Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua UniversityBeijingChina
- Beijing Key Laboratory for Immunological Research on Chronic DiseasesBeijingChina
| | - Xiangyi Shen
- Institute for Immunology, Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua UniversityBeijingChina
- Beijing Key Laboratory for Immunological Research on Chronic DiseasesBeijingChina
| | - Jiaoyan Lv
- Institute for Immunology, Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua UniversityBeijingChina
- Beijing Key Laboratory for Immunological Research on Chronic DiseasesBeijingChina
| | - Yuanhao Wang
- Institute for Immunology, Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua UniversityBeijingChina
- Beijing Key Laboratory for Immunological Research on Chronic DiseasesBeijingChina
| | - Li Wu
- Institute for Immunology, Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua UniversityBeijingChina
- Beijing Key Laboratory for Immunological Research on Chronic DiseasesBeijingChina
| |
Collapse
|
5
|
David NA, Lee RD, LaRue RS, Joo S, Farrar MA. Nuclear corepressors NCOR1 and NCOR2 entrain thymocyte signaling, selection, and emigration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.27.559810. [PMID: 37808728 PMCID: PMC10557688 DOI: 10.1101/2023.09.27.559810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
T cell development proceeds via discrete stages that require both gene induction and gene repression. Transcription factors direct gene repression by associating with corepressor complexes containing chromatin-remodeling enzymes; the corepressors NCOR1 and NCOR2 recruit histone deacetylases to these complexes to silence transcription of target genes. Earlier work identified the importance of NCOR1 in promoting the survival of positively-selected thymocytes. Here, we used flow cytometry and single-cell RNA sequencing to identify a broader role for NCOR1 and NCOR2 in regulating thymocyte development. Using Cd4-cre mice, we found that conditional deletion of NCOR2 had no effect on thymocyte development, whereas conditional deletion of NCOR1 had a modest effect. In contrast, Cd4-cre x Ncor1f/f x Ncor2f/f mice exhibited a significant block in thymocyte development at the DP to SP transition. Combined NCOR1/2 deletion resulted in increased signaling through the T cell receptor, ultimately resulting in elevated BIM expression and increased negative selection. The NF-κB, NUR77, and MAPK signaling pathways were also upregulated in the absence of NCOR1/2, contributing to altered CD4/CD8 lineage commitment, TCR rearrangement, and thymocyte emigration. Taken together, our data identify multiple critical roles for the combined action of NCOR1 and NCOR2 over the course of thymocyte development.
Collapse
Affiliation(s)
- Natalie A David
- Center for Immunology, Masonic Cancer Center, Department of Laboratory Medicine and Pathology, Medical School, University of Minnesota, Minneapolis, MN 55455
| | - Robin D Lee
- Center for Immunology, Masonic Cancer Center, Department of Laboratory Medicine and Pathology, Medical School, University of Minnesota, Minneapolis, MN 55455
| | - Rebecca S LaRue
- Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, MN 55455
| | - Sookyong Joo
- Center for Immunology, Masonic Cancer Center, Department of Laboratory Medicine and Pathology, Medical School, University of Minnesota, Minneapolis, MN 55455
| | - Michael A Farrar
- Center for Immunology, Masonic Cancer Center, Department of Laboratory Medicine and Pathology, Medical School, University of Minnesota, Minneapolis, MN 55455
| |
Collapse
|
6
|
Hu C, Wu H, Zhu Q, Cao N, Wang H. Cholesterol metabolism in T-cell aging: Accomplices or victims. FASEB J 2023; 37:e23136. [PMID: 37584624 DOI: 10.1096/fj.202300515r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 07/12/2023] [Accepted: 07/31/2023] [Indexed: 08/17/2023]
Abstract
Aging has a significant impact on the function and metabolism of T cells. Cholesterol, the most important sterol in mammals, is known as the "gold of the body" because it maintains membrane fluidity, rigidity, and signal transduction while also serving as a precursor of oxysterols, bile acids, and steroid hormones. Cholesterol homeostasis is primarily controlled by uptake, biosynthesis, efflux, and regulatory mechanisms. Previous studies have suggested that there are reciprocal interactions between cholesterol metabolism and T lymphocytes. Here, we will summarize the most recent advances in the effects of cholesterol and its derivatives on T-cell aging. We will furthermore discuss interventions that might be used to help older individuals with immune deficiencies or diminishing immune competence.
Collapse
Affiliation(s)
- Cexun Hu
- Department of Clinical Genetics, Yueyang Maternal and Child Health-Care Hospital, Yueyang, P.R. China
- Department of Immunology, Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, P.R. China
| | - Hongliang Wu
- Department of Clinical Genetics, Yueyang Maternal and Child Health-Care Hospital, Yueyang, P.R. China
| | - Qun Zhu
- Department of Clinical Genetics, Yueyang Maternal and Child Health-Care Hospital, Yueyang, P.R. China
| | - Na Cao
- Department of Hematology, Yueyang People's Hospital, Yueyang, P. R. China
- Yueyang Hospital Affiliated to Hunan Normal University, Yueyang, P.R. China
| | - Hui Wang
- Department of Immunology, Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, P.R. China
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, P.R. China
| |
Collapse
|
7
|
Endres T, Duesler L, Corey DA, Kelley TJ. In vivo impact of tubulin polymerization promoting protein (Tppp) knockout to the airway inflammatory response. Sci Rep 2023; 13:12272. [PMID: 37507487 PMCID: PMC10382518 DOI: 10.1038/s41598-023-39443-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 07/25/2023] [Indexed: 07/30/2023] Open
Abstract
Microtubule dysfunction has been implicated as a mediator of inflammation in multiple diseases such as disorders of the cardiovascular and neurologic systems. Tubulin polymerization promoting protein (Tppp) facilitates microtubule elongation and regulates tubulin acetylation through inhibition of cytosolic deacetylase enzymes. Pathologic alterations in microtubule structure and dynamics have been described in cystic fibrosis (CF) and associated with inflammation, however the causality and mechanism remain unclear. Likewise, Tppp has been identified as a potential modifier of CF airway disease severity. Here we directly assess the impact of microtubule dysfunction on infection and inflammation by interrogating wild type and a Tppp knockout mouse model (Tppp - / -). Mice are challenged with a clinical isolate of Pseudomonas aeruginosa-laden agarose beads and assessed for bacterial clearance and inflammatory markers. Tppp - / - mouse model demonstrate impaired bacterial clearance and an elevated inflammatory response compared to control mice. These data are consistent with the hypothesis microtubule dysregulation is sufficient to lead to CF-like airway responses in mice.
Collapse
Affiliation(s)
- Tori Endres
- Department of Pediatrics, Case Western Reserve University, Cleveland, USA
- Rainbow Babies and Children's Hospital, Cleveland, OH, USA
| | - Lori Duesler
- Department of Genetics and Genome Sciences, Case Western Reserve University, 825 BRB, 10900 Euclid Avenue, Cleveland, OH, 44106-4955, USA
| | - Deborah A Corey
- Department of Genetics and Genome Sciences, Case Western Reserve University, 825 BRB, 10900 Euclid Avenue, Cleveland, OH, 44106-4955, USA
| | - Thomas J Kelley
- Department of Genetics and Genome Sciences, Case Western Reserve University, 825 BRB, 10900 Euclid Avenue, Cleveland, OH, 44106-4955, USA.
| |
Collapse
|
8
|
Zhang X, Duan J, Li Y, Jin X, Wu C, Yang X, Lu W, Ge W. NKAP acts with HDAC3 to prevent R-loop associated genome instability. Cell Death Differ 2023; 30:1811-1828. [PMID: 37322264 PMCID: PMC10307950 DOI: 10.1038/s41418-023-01182-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 05/09/2023] [Accepted: 06/07/2023] [Indexed: 06/17/2023] Open
Abstract
Persistent R-loop accumulation can cause DNA damage and lead to genome instability, which contributes to various human diseases. Identification of molecules and signaling pathways in controlling R-loop homeostasis provide important clues about their physiological and pathological roles in cells. Here, we show that NKAP (NF-κB activating protein) is essential for preventing R-loop accumulation and maintaining genome integrity through forming a protein complex with HDAC3. NKAP depletion causes DNA damage and genome instability. Aberrant accumulation of R-loops is present in NKAP-deficient cells and leads to DNA damage and DNA replication fork progression defects. Moreover, NKAP depletion induced R-loops and DNA damage are dependent on transcription. Consistently, the NKAP interacting protein HDAC3 exhibits a similar role in suppressing R-loop associated DNA damage and replication stress. Further analysis uncovers that HDAC3 functions to stabilize NKAP protein, independent of its deacetylase activity. In addition, NKAP prevents R-loop formation by maintaining RNA polymerase II pausing. Importantly, R-loops induced by NKAP or HDAC3 depletion are processed into DNA double-strand breaks by XPF and XPG endonucleases. These findings indicate that both NKAP and HDAC3 are novel key regulators of R-loop homeostasis, and their dysregulation might drive tumorigenesis by causing R-loop associated genome instability.
Collapse
Affiliation(s)
- Xing Zhang
- Division of Human Reproduction and Developmental Genetics, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, China
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, Zhejiang, China
| | - Jingwei Duan
- Division of Human Reproduction and Developmental Genetics, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, China
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, Zhejiang, China
| | - Yang Li
- Zhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, Zhejiang, China
- Department of Gynecologic Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, Zhejiang, China
| | - Xiaoye Jin
- Division of Human Reproduction and Developmental Genetics, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, China
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, China
| | - Cheng Wu
- Division of Human Reproduction and Developmental Genetics, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, China
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, China
| | - Xiaohang Yang
- Division of Human Reproduction and Developmental Genetics, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, China
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, China
| | - Weiguo Lu
- Zhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, Zhejiang, China.
- Department of Gynecologic Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, Zhejiang, China.
- Cancer Center, Zhejiang University, Hangzhou, 310058, Zhejiang, China.
| | - Wanzhong Ge
- Division of Human Reproduction and Developmental Genetics, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, China.
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, China.
- Zhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, Zhejiang, China.
- Cancer Center, Zhejiang University, Hangzhou, 310058, Zhejiang, China.
| |
Collapse
|
9
|
Fernandes Â, Azevedo CM, Silva MC, Faria G, Dantas CS, Vicente MM, Pinho SS. Glycans as shapers of tumour microenvironment: A sweet driver of T-cell-mediated anti-tumour immune response. Immunology 2023; 168:217-232. [PMID: 35574724 DOI: 10.1111/imm.13494] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 04/22/2022] [Indexed: 01/17/2023] Open
Abstract
Essentially all cells are covered with a dense coat of different glycan structures/sugar chains, giving rise to the so-called glycocalyx. Changes in cellular glycosylation are a hallmark of cancer, affecting most of the pathophysiological processes associated with malignant transformation, including tumour immune responses. Glycans are chief macromolecules that define T-cell development, differentiation, fate, activation and signalling. Thus, the diversity of glycans expressed at the surface of T cells constitutes a fundamental molecular interface with the microenvironment by regulating the bilateral interactions between T-cells and cancer cells, fine-tuning the anti-tumour immune response. In this review, we will introduce the power of glycans as orchestrators of T-cell-mediated immune response in physiological conditions and in cancer. We discuss how glycans modulate the glyco-metabolic landscape in the tumour microenvironment, and whether glycans can synergize with immunotherapy as a way of rewiring T-cell effector functions against cancer cells.
Collapse
Affiliation(s)
- Ângela Fernandes
- Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal
| | - Catarina M Azevedo
- Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal.,School of Medicine and Biological Sciences (ICBAS), University of Porto, Porto, Portugal
| | - Mariana C Silva
- Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal.,School of Medicine and Biological Sciences (ICBAS), University of Porto, Porto, Portugal
| | - Guilherme Faria
- Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Carolina S Dantas
- Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal.,School of Medicine and Biological Sciences (ICBAS), University of Porto, Porto, Portugal
| | - Manuel M Vicente
- Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal.,School of Medicine and Biological Sciences (ICBAS), University of Porto, Porto, Portugal
| | - Salomé S Pinho
- Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal.,School of Medicine and Biological Sciences (ICBAS), University of Porto, Porto, Portugal.,Faculty of Medicine, University of Porto, Porto, Portugal
| |
Collapse
|
10
|
Epigenetic Perspective of Immunotherapy for Cancers. Cells 2023; 12:cells12030365. [PMID: 36766706 PMCID: PMC9913322 DOI: 10.3390/cells12030365] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/12/2023] [Accepted: 01/17/2023] [Indexed: 01/20/2023] Open
Abstract
Immunotherapy has brought new hope for cancer patients in recent times. However, despite the promising success of immunotherapy, there is still a need to address major challenges including heterogeneity in response among patients, the reoccurrence of the disease, and iRAEs (immune-related adverse effects). The first critical step towards solving these issues is understanding the epigenomic events that play a significant role in the regulation of specific biomolecules in the context of the immune population present in the tumor immune microenvironment (TIME) during various treatments and responses. A prominent advantage of this step is that it would enable researchers to harness the reversibility of epigenetic modifications for their druggability. Therefore, we reviewed the crucial studies in which varying epigenomic events were captured with immuno-oncology set-ups. Finally, we discuss the therapeutic possibilities of their utilization for the betterment of immunotherapy in terms of diagnosis, progression, and cure for cancer patients.
Collapse
|
11
|
Toma G, Karapetian E, Massa C, Quandt D, Seliger B. Characterization of the effect of histone deacetylation inhibitors on CD8 + T cells in the context of aging. J Transl Med 2022; 20:539. [PMID: 36419167 PMCID: PMC9682763 DOI: 10.1186/s12967-022-03733-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 10/30/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Posttranslational protein modifications regulate essential cellular processes, including the immune cell activation. Despite known age-related alterations of the phenotype, composition and cytokine profiles of immune cells, the role of acetylation in the aging process of the immune system was not broadly investigated. Therefore, in the current study the effect of acetylation on the protein expression profiles and function of CD8+ T cells from donors of distinct age was analyzed using histone deacetylase inhibitors (HDACi). METHODS CD8+ T cells isolated from peripheral blood mononuclear cells of 30 young (< 30 years) and 30 old (> 60 years) healthy donors were activated with anti-CD3/anti-CD28 antibodies in the presence and absence of a cocktail of HDACi. The protein expression profiles of untreated and HDACi-treated CD8+ T cells were analyzed using two-dimensional gel electrophoresis. Proteins with a differential expression level (less than 0.66-fold decrease or more than 1.5-fold increase) between CD8+ T cells of young and old donors were identified by matrix-associated laser desorption ionization-time of flight mass spectrometry. Functional enrichment analysis of proteins identified was performed using the online tool STRING. The function of CD8+ T cells was assessed by analyses of cytokine secretion, surface expression of activation markers, proliferative capacity and apoptosis rate. RESULTS The HDACi treatment of CD8+ T cells increased in an age-independent manner the intracellular acetylation of proteins, in particular cytoskeleton components and chaperones. Despite a strong similarity between the protein expression profiles of both age groups, the functional activity of CD8+ T cells significantly differed with an age-dependent increase in cytokine secretion and expression of activation markers for CD8+ T cells from old donors, which was maintained after HDACi treatment. The proliferation and apoptosis rate of CD8+ T cells after HDACi treatment was equal between both age groups. CONCLUSIONS Despite a comparable effect of HDACi treatment on the protein signature of CD8+ T cells from donors of different ages, an initial higher functionality of CD8+ T cells from old donors when compared to CD8+ T cells from young donors was detected, which might have clinical relevance.
Collapse
Affiliation(s)
- Georgiana Toma
- grid.9018.00000 0001 0679 2801Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 2, 06112 Halle, Germany
| | - Eliza Karapetian
- grid.9018.00000 0001 0679 2801Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 2, 06112 Halle, Germany
| | - Chiara Massa
- grid.9018.00000 0001 0679 2801Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 2, 06112 Halle, Germany
| | - Dagmar Quandt
- grid.9018.00000 0001 0679 2801Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 2, 06112 Halle, Germany
| | - Barbara Seliger
- grid.9018.00000 0001 0679 2801Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 2, 06112 Halle, Germany ,grid.418008.50000 0004 0494 3022Fraunhofer Institute for Cell Therapy and Immunology, 04103 Leipzig, Germany
| |
Collapse
|
12
|
Role of Histone Deacetylases in T-Cell Development and Function. Int J Mol Sci 2022; 23:ijms23147828. [PMID: 35887172 PMCID: PMC9320103 DOI: 10.3390/ijms23147828] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/12/2022] [Accepted: 07/12/2022] [Indexed: 01/27/2023] Open
Abstract
Histone deacetylases (HDACs) are a group of enzymes called “epigenetic erasers”. They remove the acetyl group from histones changing the condensation state of chromatin, leading to epigenetic modification of gene expression and various downstream effects. Eighteen HDACs have been identified and grouped into four classes. The role of HDACs in T-cells has been extensively studied, and it has been proven that many of them are important players in T-cell development and function. In this review, we present the current state of knowledge on the role of HDACs in the early stages of T-cell development but also in the functioning of mature lymphocytes on the periphery, including activation, cytokine production, and metabolism regulation.
Collapse
|
13
|
Liu Y, Wang Y, Zhang C, Feng Q, Hou M, Peng J, Hu X, Wang S. HDAC3 single-nucleotide polymorphism rs2530223 is associated with increased susceptibility and severity of primary immune thrombocytopenia. Int J Lab Hematol 2022; 44:875-882. [PMID: 35484920 DOI: 10.1111/ijlh.13857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 03/03/2022] [Accepted: 04/03/2022] [Indexed: 11/30/2022]
Abstract
INTRODUCTION Primary immune thrombocytopenia (ITP) is an autoimmune hemorrhagic disorder characterized by a low platelet count and increased risk of bleeding. We previously reported that low-dose chidamide, a histone deacetylase (HDAC) inhibitor, restores immune tolerance in patients with ITP. This study aimed to evaluate the association of a single-nucleotide polymorphism (SNP) rs2530223 in the HDAC3 gene with susceptibility to ITP and its clinical features. METHODS Patients with ITP and age-matched healthy participants were recruited for this case-control study. Genotyping of the HDAC3 rs2530223 polymorphism was performed using MassARRAY platform. RESULTS Individuals with T allele of HDAC3 rs2530223 exhibited a 1.472-fold increased risk of ITP susceptibility (OR 1.472; 95% CI 1.100-1.969; p = .009), while ones with the TT genotype under the codominant and recessive models, and the TC/TT genotypes under the dominant model all revealed increased risk of ITP susceptibility (dominant odds ratio[OR] 1.965; 95% CI: 1.046-3.656; p = .036; codominant OR 2.264; 95% CI 1.175-4.360; p = .015; and recessive OR 1.512; 95% CI 1.028-2.224; p = .036, respectively). Regarding platelet counts in ITP patients, we observed that the TC/TT genotypes exhibited a 3.932-fold increased risk for platelet (PLT) <30 × 109 /L (OR 3.932; 95% CI 1.426-10.842; p = .008). CONCLUSION This study indicates that HDAC3 rs2530223 may be an important genetic factor related to ITP susceptibility and platelet count in ITP patients, providing new perspectives on disease progression, new therapeutic targets, and severity prediction.
Collapse
Affiliation(s)
- Yan Liu
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yin Wang
- Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Cheng Zhang
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Qi Feng
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Ming Hou
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jun Peng
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiang Hu
- Shandong Provincial Key Laboratory of Immunohematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Shuwen Wang
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
14
|
Dutta A, Venkataganesh H, Love PE. New Insights into Epigenetic Regulation of T Cell Differentiation. Cells 2021; 10:3459. [PMID: 34943965 PMCID: PMC8700096 DOI: 10.3390/cells10123459] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/03/2021] [Accepted: 12/06/2021] [Indexed: 12/13/2022] Open
Abstract
Immature CD4- CD8- thymocytes progress through several developmental steps in the thymus, ultimately emerging as mature CD4+ (helper) or CD8+ (cytotoxic) T cells. Activation of naïve CD4+ and CD8+ T cells in the presence of specific cytokines results in the induction of transcriptional programs that result in their differentiation into effector or memory cells and in the case of CD4+ T cells, the adoption of distinct T-helper fates. Previous studies have shown that histone modification and DNA methylation play important roles in each of these events. More recently, the roles of specific epigenetic regulators in T cell differentiation have been clarified. The identification of the epigenetic modifications and modifiers that control mature T cell differentiation and specification has also provided further insights into how dysregulation of these processes can lead to cancer or autoimmune diseases. In this review, we summarize recent findings that have provided new insights into epigenetic regulation of T cell differentiation in both mice and humans.
Collapse
Affiliation(s)
- Avik Dutta
- Section on Hematopoiesis and Lymphocyte Biology, Eunice Kennedy Shriver, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA; (A.D.); (H.V.)
| | - Harini Venkataganesh
- Section on Hematopoiesis and Lymphocyte Biology, Eunice Kennedy Shriver, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA; (A.D.); (H.V.)
- Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Paul E. Love
- Section on Hematopoiesis and Lymphocyte Biology, Eunice Kennedy Shriver, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA; (A.D.); (H.V.)
| |
Collapse
|
15
|
Wilfahrt D, Philips RL, Lama J, Kizerwetter M, Shapiro MJ, McCue SA, Kennedy MM, Rajcula MJ, Zeng H, Shapiro VS. Histone deacetylase 3 represses cholesterol efflux during CD4 + T-cell activation. eLife 2021; 10:e70978. [PMID: 34854376 PMCID: PMC8639145 DOI: 10.7554/elife.70978] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 11/15/2021] [Indexed: 12/14/2022] Open
Abstract
After antigenic activation, quiescent naive CD4+ T cells alter their metabolism to proliferate. This metabolic shift increases production of nucleotides, amino acids, fatty acids, and sterols. Here, we show that histone deacetylase 3 (HDAC3) is critical for activation of murine peripheral CD4+ T cells. HDAC3-deficient CD4+ T cells failed to proliferate and blast after in vitro TCR/CD28 stimulation. Upon T-cell activation, genes involved in cholesterol biosynthesis are upregulated while genes that promote cholesterol efflux are repressed. HDAC3-deficient CD4+ T cells had reduced levels of cellular cholesterol both before and after activation. HDAC3-deficient cells upregulate cholesterol synthesis appropriately after activation, but fail to repress cholesterol efflux; notably, they overexpress cholesterol efflux transporters ABCA1 and ABCG1. Repression of these genes is the primary function for HDAC3 in peripheral CD4+ T cells, as addition of exogenous cholesterol restored proliferative capacity. Collectively, these findings demonstrate HDAC3 is essential during CD4+ T-cell activation to repress cholesterol efflux.
Collapse
Affiliation(s)
- Drew Wilfahrt
- Department of Immunology, Mayo ClinicRochesterUnited States
| | | | - Jyoti Lama
- Department of Immunology, Mayo ClinicRochesterUnited States
| | | | | | | | | | | | - Hu Zeng
- Department of Immunology, Mayo ClinicRochesterUnited States
- Division of Rheumatology, Department of Medicine, Mayo ClinicRochesterUnited States
| | | |
Collapse
|
16
|
Ma F, Vayalil J, Lee G, Wang Y, Peng G. Emerging role of tumor-derived extracellular vesicles in T cell suppression and dysfunction in the tumor microenvironment. J Immunother Cancer 2021; 9:jitc-2021-003217. [PMID: 34642246 PMCID: PMC8513270 DOI: 10.1136/jitc-2021-003217] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2021] [Indexed: 02/07/2023] Open
Abstract
Immunotherapeutic drugs including immune checkpoint blockade antibodies have been approved to treat patients in many types of cancers. However, some patients have little or no reaction to the immunotherapy drugs. The mechanisms underlying resistance to tumor immunotherapy are complicated and involve multiple aspects, including tumor-intrinsic factors, formation of immunosuppressive microenvironment, and alteration of tumor and stromal cell metabolism in the tumor microenvironment. T cell is critical and participates in every aspect of antitumor response, and T cell dysfunction is a severe barrier for effective immunotherapy for cancer. Emerging evidence indicates that extracellular vesicles (EVs) secreted by tumor is one of the major factors that can induce T cell dysfunction. Tumor-derived EVs are widely distributed in serum, tissues, and the tumor microenvironment of patients with cancer, which serve as important communication vehicles for cancer cells. In addition, tumor-derived EVs can carry a variety of immune suppressive signals driving T cell dysfunction for tumor immunity. In this review, we explore the potential mechanisms employed by tumor-derived EVs to control T cell development and effector function within the tumor microenvironment. Especially, we focus on current understanding of how tumor-derived EVs molecularly and metabolically reprogram T cell fates and functions for tumor immunity. In addition, we discuss potential translations of targeting tumor-derived EVs to reconstitute suppressive tumor microenvironment or to develop antigen-based vaccines and drug delivery systems for cancer immunotherapy.
Collapse
Affiliation(s)
- Feiya Ma
- Biology, Saint Louis University, Saint Louis, Missouri, USA
| | - Jensen Vayalil
- Biology, Saint Louis University, Saint Louis, Missouri, USA
| | - Grace Lee
- Biology, Saint Louis University, Saint Louis, Missouri, USA
| | - Yuqi Wang
- Biology, Saint Louis University, Saint Louis, Missouri, USA
| | - Guangyong Peng
- Internal Medicine, Saint Louis University, Saint Louis, Missouri, USA
| |
Collapse
|
17
|
Mehrpouri M, Pourbagheri-Sigaroodi A, Bashash D. The contributory roles of histone deacetylases (HDACs) in hematopoiesis regulation and possibilities for pharmacologic interventions in hematologic malignancies. Int Immunopharmacol 2021; 100:108114. [PMID: 34492531 DOI: 10.1016/j.intimp.2021.108114] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 08/27/2021] [Accepted: 08/28/2021] [Indexed: 12/17/2022]
Abstract
Although the definitive role of epigenetic modulations in a wide range of hematologic malignancies, spanning from leukemia to lymphoma and multiple myeloma, has been evidenced, few articles reviewed the task. Given the high accessibility of histone deacetylase (HDACs) to necessary transcription factors involved in hematopoiesis, this review aims to outline physiologic impacts of these enzymes in normal hematopoiesis, and also to outline the original data obtained from international research laboratories on their regulatory role in the differentiation and maturation of different hematopoietic lineages. Questions on how aberrant expression of HDACs contributes to the formation of hematologic malignancies are also responded, because these classes of enzymes have a respectable share in the development, progression, and recurrence of leukemia, lymphoma, and multiple myeloma. The last section provides a special focus on the therapeutic perspectiveof HDACs inhibitors, either as single agents or in a combined-modal strategy, in these neoplasms. In conclusion, optimizing the dose and the design of more patient-tailored inhibitors, while maintaining low toxicity against normal cells, will help improve clinical outcomes of HDAC inhibitors in hematologic malignancies.
Collapse
Affiliation(s)
- Mahdieh Mehrpouri
- Department of Laboratory Sciences, School of Allied Medical Sciences, Alborz University of Medical Sciences, Karaj, Iran
| | - Atieh Pourbagheri-Sigaroodi
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
18
|
Chiara VD, Daxinger L, Staal FJT. The Route of Early T Cell Development: Crosstalk between Epigenetic and Transcription Factors. Cells 2021; 10:1074. [PMID: 33946533 PMCID: PMC8147249 DOI: 10.3390/cells10051074] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/25/2021] [Accepted: 04/26/2021] [Indexed: 12/21/2022] Open
Abstract
Hematopoietic multipotent progenitors seed the thymus and then follow consecutive developmental stages until the formation of mature T cells. During this process, phenotypic changes of T cells entail stage-specific transcriptional programs that underlie the dynamic progression towards mature lymphocytes. Lineage-specific transcription factors are key drivers of T cell specification and act in conjunction with epigenetic regulators that have also been elucidated as crucial players in the establishment of regulatory networks necessary for proper T cell development. In this review, we summarize the activity of transcription factors and epigenetic regulators that together orchestrate the intricacies of early T cell development with a focus on regulation of T cell lineage commitment.
Collapse
Affiliation(s)
- Veronica Della Chiara
- Department of Human Genetics, Leiden University Medical Centre (LUMC), 2300 RC Leiden, The Netherlands; (V.D.C.); (L.D.)
| | - Lucia Daxinger
- Department of Human Genetics, Leiden University Medical Centre (LUMC), 2300 RC Leiden, The Netherlands; (V.D.C.); (L.D.)
| | - Frank J. T. Staal
- Department of Immunology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| |
Collapse
|
19
|
Lin SC, Lin CC, Li S, Lin WY, Lehman CW, Bracci NR, Tsai SW. Alleviation of Collagen-Induced Arthritis by Crotonoside through Modulation of Dendritic Cell Differentiation and Activation. PLANTS 2020; 9:plants9111535. [PMID: 33182776 PMCID: PMC7698099 DOI: 10.3390/plants9111535] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 11/09/2020] [Accepted: 11/09/2020] [Indexed: 12/22/2022]
Abstract
Crotonoside, a guanosine analog originally isolated from Croton tiglium, is reported to be a potent tyrosine kinase inhibitor with immunosuppressive effects on immune cells. Due to its potential immunotherapeutic effects, we aimed to evaluate the anti-arthritic activity of crotonoside and explore its immunomodulatory properties in alleviating the severity of arthritic symptoms. To this end, we implemented the treatment of crotonoside on collagen-induced arthritic (CIA) DBA/1 mice and investigated its underlying mechanisms towards pathogenic dendritic cells (DCs). Our results suggest that crotonoside treatment remarkably improved clinical arthritic symptoms in this CIA mouse model as indicated by decreased pro-inflammatory cytokine production in the serum and suppressed expression of co-stimulatory molecules, CD40, CD80, and MHC class II, on CD11c+ DCs from the CIA mouse spleens. Additionally, crotonoside treatment significantly reduced the infiltration of CD11c+ DCs into the synovial tissues. Our in vitro study further demonstrated that bone marrow-derived DCs (BMDCs) exhibited lower yield in numbers and expressed lower levels of CD40, CD80, and MHC-II when incubated with crotonoside. Furthermore, LPS-stimulated mature DCs exhibited limited capability to prime antigen-specific CD4+ and T-cell proliferation, cytokine secretions, and co-stimulatory molecule expressions when treated with crotonoside. Our pioneer study highlights the immunotherapeutic role of crotonoside in the alleviation of the CIA via modulation of pathogenic DCs, thus creating possible applications of crotonoside as an immunosuppressive agent that could be utilized and further explored in treating autoimmune disorders in the future.
Collapse
Affiliation(s)
- Shih-Chao Lin
- Bachelor Degree Program in Marine Biotechnology, National Taiwan Ocean University, Keelung 202301, Taiwan;
| | - Chi-Chien Lin
- Institute of Biomedical Science, The iEGG and Animal Biotechnology Center, National Chung-Hsing University, Taichung 402204, Taiwan; (C.-C.L.); (W.-Y.L.)
- Department of Medical Research, China Medical University Hospital, Taichung 404, Taiwan
- Department of Medical Research, Taichung Veterans General Hospital, Taichung 40705, Taiwan
- Department of Pharmacology, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Shiming Li
- Hubei Key Laboratory for Processing and Application of Catalytic Materials, College of Chemistry and Chemical Engineering, Huanggang Normal University, Hubei 438000, China;
| | - Wan-Yi Lin
- Institute of Biomedical Science, The iEGG and Animal Biotechnology Center, National Chung-Hsing University, Taichung 402204, Taiwan; (C.-C.L.); (W.-Y.L.)
| | - Caitlin W. Lehman
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA 24063, USA; (C.W.L.); (N.R.B.)
| | - Nicole R. Bracci
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA 24063, USA; (C.W.L.); (N.R.B.)
| | - Sen-Wei Tsai
- Department of Physical Medicine and Rehabilitation, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung 427, Taiwan
- Department of Physical Medicine and Rehabilitation, School of Medicine, Tzu Chi University, Hualien 97004, Taiwan
- Correspondence:
| |
Collapse
|
20
|
Li G, Tian Y, Zhu WG. The Roles of Histone Deacetylases and Their Inhibitors in Cancer Therapy. Front Cell Dev Biol 2020; 8:576946. [PMID: 33117804 PMCID: PMC7552186 DOI: 10.3389/fcell.2020.576946] [Citation(s) in RCA: 181] [Impact Index Per Article: 36.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 09/04/2020] [Indexed: 12/14/2022] Open
Abstract
Genetic mutations and abnormal gene regulation are key mechanisms underlying tumorigenesis. Nucleosomes, which consist of DNA wrapped around histone cores, represent the basic units of chromatin. The fifth amino group (Nε) of histone lysine residues is a common site for post-translational modifications (PTMs), and of these, acetylation is the second most common. Histone acetylation is modulated by histone acetyltransferases (HATs) and histone deacetylases (HDACs), and is involved in the regulation of gene expression. Over the past two decades, numerous studies characterizing HDACs and HDAC inhibitors (HDACi) have provided novel and exciting insights concerning their underlying biological mechanisms and potential anti-cancer treatments. In this review, we detail the diverse structures of HDACs and their underlying biological functions, including transcriptional regulation, metabolism, angiogenesis, DNA damage response, cell cycle, apoptosis, protein degradation, immunity and other several physiological processes. We also highlight potential avenues to use HDACi as novel, precision cancer treatments.
Collapse
Affiliation(s)
- Guo Li
- Guangdong Key Laboratory for Genome Stability and Human Disease Prevention, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shenzhen University Health Science Center, Shenzhen, China
| | - Yuan Tian
- Guangdong Key Laboratory for Genome Stability and Human Disease Prevention, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shenzhen University Health Science Center, Shenzhen, China
- Shenzhen Bay Laboratory, Shenzhen, China
| | - Wei-Guo Zhu
- Guangdong Key Laboratory for Genome Stability and Human Disease Prevention, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shenzhen University Health Science Center, Shenzhen, China
- Shenzhen Bay Laboratory, Shenzhen, China
| |
Collapse
|
21
|
Chen IC, Sethy B, Liou JP. Recent Update of HDAC Inhibitors in Lymphoma. Front Cell Dev Biol 2020; 8:576391. [PMID: 33015069 PMCID: PMC7494784 DOI: 10.3389/fcell.2020.576391] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 08/18/2020] [Indexed: 12/12/2022] Open
Abstract
Modulating epigenetic modification has been recognized for over a decade as an effective therapeutic approach to cancer and many studies of histone deacetylase (HDAC), one of the best known epigenetic modulators, have been published. HDAC modulates cell proliferation and angiogenesis and plays an essential role in cell growth. Research shows that up-regulated HDACs are present in many cancer types and synthetic or natural HDAC inhibitors have been used to silence overregulated HDACs. Inhibiting HDACs may cause arrest of cell proliferation, angiogenesis reduction and cell apoptosis. Recent studies indicate that HDAC inhibitors can provide a therapeutic effect in various cancers, such as B-cell lymphoma, leukemia, multiple myeloma and some virus-associated cancers. Some evidence has demonstrated that HDAC inhibitors can increase the expression of immune-related molecules leading to accumulation of CD8 + T cells and causing unresponsive tumor cells to be recognized by the immune system, reducing tumor immunity. This may be a solution for the blockade of PD-1. Here, we review the emerging development of HDAC inhibitors in various cancer treatments and reduction of tumor immunity.
Collapse
Affiliation(s)
- I-Chung Chen
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Bidyadhar Sethy
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Jing-Ping Liou
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
22
|
Tay RE, Olawoyin O, Cejas P, Xie Y, Meyer CA, Ito Y, Weng QY, Fisher DE, Long HW, Brown M, Kim HJ, Wucherpfennig KW. Hdac3 is an epigenetic inhibitor of the cytotoxicity program in CD8 T cells. J Exp Med 2020; 217:151741. [PMID: 32374402 PMCID: PMC7336313 DOI: 10.1084/jem.20191453] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 01/15/2020] [Accepted: 03/04/2020] [Indexed: 12/11/2022] Open
Abstract
Cytotoxic T cells play a key role in adaptive immunity by killing infected or cancerous cells. While the transcriptional control of CD8 T cell differentiation and effector function following T cell activation has been extensively studied, little is known about epigenetic regulation of these processes. Here we show that the histone deacetylase HDAC3 inhibits CD8 T cell cytotoxicity early during activation and is required for persistence of activated CD8 T cells following resolution of an acute infection. Mechanistically, HDAC3 inhibits gene programs associated with cytotoxicity and effector differentiation of CD8 T cells including genes encoding essential cytotoxicity proteins and key transcription factors. These data identify HDAC3 as an epigenetic regulator of the CD8 T cell cytotoxicity program.
Collapse
Affiliation(s)
- Rong En Tay
- Department of Immunology, Harvard Medical School, Boston, MA.,Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA
| | - Olamide Olawoyin
- Department of Immunology, Harvard Medical School, Boston, MA.,Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA
| | - Paloma Cejas
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA
| | - Yingtian Xie
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA
| | - Clifford A Meyer
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA
| | | | - Qing Yu Weng
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA
| | - David E Fisher
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA
| | - Henry W Long
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA
| | - Myles Brown
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA.,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Hye-Jung Kim
- Department of Immunology, Harvard Medical School, Boston, MA.,Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA
| | - Kai W Wucherpfennig
- Department of Immunology, Harvard Medical School, Boston, MA.,Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA
| |
Collapse
|
23
|
Yun J, Yang H, Li X, Sun H, Xu J, Meng Q, Wu S, Zhang X, Yang X, Li B, Chen R. Up-regulation of miR-297 mediates aluminum oxide nanoparticle-induced lung inflammation through activation of Notch pathway. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 259:113839. [PMID: 31918133 DOI: 10.1016/j.envpol.2019.113839] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 10/23/2019] [Accepted: 12/16/2019] [Indexed: 06/10/2023]
Abstract
Exposure to Aluminum oxide nanoparticles (Al2O3 NPs) has been associated with pulmonary inflammation in recent years; however, the underlying mechanism that causes adverse effects remains unclear. In the present study, we characterized microRNA (miRNA) expression profiling in human bronchial epithelial (HBE) cells exposed to Al2O3 NPs by miRNA microarray. Among the differentially expressed miRNAs, miR-297, a homologous miRNA in Homo sapiens and Mus musculus, was significantly up-regulated following exposure to Al2O3 NPs, compared with that in control. On combined bioinformatic analysis, proteomics analysis, and mRNA microarray, NF-κB-activating protein (NKAP) was found to be a target gene of miR-297 and it was significantly down-regulated in Al2O3 NPs-exposed HBE cells and murine lungs, compared with that in control. Meanwhile, inflammatory cytokines, including IL-1β and TNF-α, were significantly increased in bronchoalveolar lavage fluid (BALF) from mice exposed to Al2O3 NPs. Then we set up a mouse model with intranasal instillation of antagomiR-297 to further confirm that inhibition of miR-297 expression can rescue pulmonary inflammation via Notch pathway suppression. Collectively, our findings suggested that up-regulation of miR-297 expression was an upstream driver of Notch pathway activation, which might be the underlying mechanism involved in lung inflammation induced by exposure to Al2O3 NPs.
Collapse
Affiliation(s)
- Jun Yun
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Hongbao Yang
- Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing, 211198, China
| | - Xiaobo Li
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Hao Sun
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Jie Xu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Qingtao Meng
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Shenshen Wu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Xinwei Zhang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Xi Yang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Bin Li
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Rui Chen
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China; Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou, 511436, China.
| |
Collapse
|
24
|
Abstract
T cell development involves stepwise progression through defined stages that give rise to multiple T cell subtypes, and this is accompanied by the establishment of stage-specific gene expression. Changes in chromatin accessibility and chromatin modifications accompany changes in gene expression during T cell development. Chromatin-modifying enzymes that add or reverse covalent modifications to DNA and histones have a critical role in the dynamic regulation of gene expression throughout T cell development. As each chromatin-modifying enzyme has multiple family members that are typically all coexpressed during T cell development, their function is sometimes revealed only when two related enzymes are concurrently deleted. This work has also revealed that the biological effects of these enzymes often involve regulation of a limited set of targets. The growing diversity in the types and sites of modification, as well as the potential for a single enzyme to catalyze multiple modifications, is also highlighted.
Collapse
Affiliation(s)
- Michael J Shapiro
- Department of Immunology, Mayo Clinic, Rochester, Minnesota 55905, USA; ,
| | | |
Collapse
|
25
|
Wang P, Wang Z, Liu J. Role of HDACs in normal and malignant hematopoiesis. Mol Cancer 2020; 19:5. [PMID: 31910827 PMCID: PMC6945581 DOI: 10.1186/s12943-019-1127-7] [Citation(s) in RCA: 138] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 12/26/2019] [Indexed: 01/09/2023] Open
Abstract
Normal hematopoiesis requires the accurate orchestration of lineage-specific patterns of gene expression at each stage of development, and epigenetic regulators play a vital role. Disordered epigenetic regulation has emerged as a key mechanism contributing to hematological malignancies. Histone deacetylases (HDACs) are a series of key transcriptional cofactors that regulate gene expression by deacetylation of lysine residues on histone and nonhistone proteins. In normal hematopoiesis, HDACs are widely involved in the development of various lineages. Their functions involve stemness maintenance, lineage commitment determination, cell differentiation and proliferation, etc. Deregulation of HDACs by abnormal expression or activity and oncogenic HDAC-containing transcriptional complexes are involved in hematological malignancies. Currently, HDAC family members are attractive targets for drug design, and a variety of HDAC-based combination strategies have been developed for the treatment of hematological malignancies. Drug resistance and limited therapeutic efficacy are key issues that hinder the clinical applications of HDAC inhibitors (HDACis). In this review, we summarize the current knowledge of how HDACs and HDAC-containing complexes function in normal hematopoiesis and highlight the etiology of HDACs in hematological malignancies. Moreover, the implication and drug resistance of HDACis are also discussed. This review presents an overview of the physiology and pathology of HDACs in the blood system.
Collapse
Affiliation(s)
- Pan Wang
- The Xiangya Hospital, Central South University, Changsha, 410005, Hunan, China.,Molecular Biology Research Center and Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, 410078, Hunan, China
| | - Zi Wang
- The Xiangya Hospital, Central South University, Changsha, 410005, Hunan, China. .,Molecular Biology Research Center and Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, 410078, Hunan, China.
| | - Jing Liu
- Molecular Biology Research Center and Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, 410078, Hunan, China.
| |
Collapse
|
26
|
Emmett MJ, Lazar MA. Integrative regulation of physiology by histone deacetylase 3. Nat Rev Mol Cell Biol 2019; 20:102-115. [PMID: 30390028 DOI: 10.1038/s41580-018-0076-0] [Citation(s) in RCA: 126] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Cell-type-specific gene expression is physiologically modulated by the binding of transcription factors to genomic enhancer sequences, to which chromatin modifiers such as histone deacetylases (HDACs) are recruited. Drugs that inhibit HDACs are in clinical use but lack specificity. HDAC3 is a stoichiometric component of nuclear receptor co-repressor complexes whose enzymatic activity depends on this interaction. HDAC3 is required for many aspects of mammalian development and physiology, for example, for controlling metabolism and circadian rhythms. In this Review, we discuss the mechanisms by which HDAC3 regulates cell type-specific enhancers, the structure of HDAC3 and its function as part of nuclear receptor co-repressors, its enzymatic activity and its post-translational modifications. We then discuss the plethora of tissue-specific physiological functions of HDAC3.
Collapse
Affiliation(s)
- Matthew J Emmett
- Institute for Diabetes, Obesity, and Metabolism, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.,Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Mitchell A Lazar
- Institute for Diabetes, Obesity, and Metabolism, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA. .,Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
27
|
Stengel KR, Bhaskara S, Wang J, Liu Q, Ellis JD, Sampathi S, Hiebert SW. Histone deacetylase 3 controls a transcriptional network required for B cell maturation. Nucleic Acids Res 2019; 47:10612-10627. [PMID: 31586401 PMCID: PMC6847391 DOI: 10.1093/nar/gkz816] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 09/03/2019] [Accepted: 09/26/2019] [Indexed: 11/15/2022] Open
Abstract
Histone deacetylase 3 (Hdac3) is a target of the FDA approved HDAC inhibitors, which are used for the treatment of lymphoid malignancies. Here, we used Cd19-Cre to conditionally delete Hdac3 to define its role in germinal center B cells, which represent the cell of origin for many B cell malignancies. Cd19-Cre-Hdac3-/- mice showed impaired germinal center formation along with a defect in plasmablast production. Analysis of Hdac3-/- germinal centers revealed a reduction in dark zone centroblasts and accumulation of light zone centrocytes. RNA-seq revealed a significant correlation between genes up-regulated upon Hdac3 loss and those up-regulated in Foxo1-deleted germinal center B cells, even though Foxo1 typically activates transcription. Therefore, to determine whether gene expression changes observed in Hdac3-/- germinal centers were a result of direct effects of Hdac3 deacetylase activity, we used an HDAC3 selective inhibitor and examined nascent transcription in germinal center-derived cell lines. Transcriptional changes upon HDAC3 inhibition were enriched for light zone gene signatures as observed in germinal centers. Further comparison of PRO-seq data with ChIP-seq/exo data for BCL6, SMRT, FOXO1 and H3K27ac identified direct targets of HDAC3 function including CD86, CD83 and CXCR5 that are likely responsible for driving the light zone phenotype observed in vivo.
Collapse
Affiliation(s)
- Kristy R Stengel
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Srividya Bhaskara
- Department of Radiation Oncology and Oncological Sciences, Univ. of Utah School of Medicine and the Huntsman Cancer Institute, Salt Lake City, UT, USA
| | - Jing Wang
- Department of Biostatistics, Vanderbilt School of Medicine, Nashville, TN 37203, USA
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Qi Liu
- Department of Biostatistics, Vanderbilt School of Medicine, Nashville, TN 37203, USA
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37027, USA
| | - Jacob D Ellis
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Shilpa Sampathi
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Scott W Hiebert
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
- Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37027, USA
| |
Collapse
|
28
|
Dash B, Shapiro MJ, Thapa P, Romero Arocha S, Chung JY, Schwab AD, McCue SA, Rajcula MJ, Shapiro VS. The Interaction between NKAP and HDAC3 Is Critical for T Cell Maturation. Immunohorizons 2019; 3:352-367. [PMID: 31387873 DOI: 10.4049/immunohorizons.1900052] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 07/09/2019] [Indexed: 12/14/2022] Open
Abstract
NKAP and HDAC3 are critical for T cell maturation. NKAP and HDAC3 physically associate, and a point mutation in NKAP, NKAP(Y352A), abrogates this interaction. To evaluate the significance of NKAP and HDAC3 association in T cell maturation, transgenic mice were engineered for cre-mediated endogenous NKAP gene deletion coupled to induction of NKAP(Y352A) or a wild type (WT) control transgene, NKAP(WT), in double positive thymocytes or regulatory T cells (Tregs). T cell maturation was normal in mice with endogenous NKAP deletion coupled to NKAP(WT) induction. However, severe defects occurred in T cell and Treg maturation and in iNKT cell development when NKAP(Y352A) was induced, recapitulating NKAP deficiency. Conventional T cells expressing NKAP(Y352A) failed to enter the long-term T cell pool, did not produce cytokines, and remained complement susceptible, whereas Tregs expressing NKAP(Y352A) were eliminated as recent thymic emigrants leading to lethal autoimmunity. Overall, these results demonstrate the significance of NKAP-HDAC3 association in T cells.
Collapse
Affiliation(s)
- Barsha Dash
- Department of Immunology, Mayo Clinic, Rochester, MN 55905
| | | | - Puspa Thapa
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY 10032; and.,Department of Medicine, Columbia University Medical Center, New York, NY 10032
| | | | - Ji-Young Chung
- Department of Immunology, Mayo Clinic, Rochester, MN 55905
| | - Aaron D Schwab
- Department of Immunology, Mayo Clinic, Rochester, MN 55905
| | | | | | | |
Collapse
|
29
|
Analyzing pharmacological intervention points: A method to calculate external stimuli to switch between steady states in regulatory networks. PLoS Comput Biol 2019; 15:e1007075. [PMID: 31310618 PMCID: PMC6660093 DOI: 10.1371/journal.pcbi.1007075] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 07/26/2019] [Accepted: 05/07/2019] [Indexed: 11/21/2022] Open
Abstract
Once biological systems are modeled by regulatory networks, the next step is to include external stimuli, which model the experimental possibilities to affect the activity level of certain network’s nodes, in a mathematical framework. Then, this framework can be interpreted as a mathematical optimal control framework such that optimization algorithms can be used to determine external stimuli which cause a desired switch from an initial state of the network to another final state. These external stimuli are the intervention points for the corresponding biological experiment to obtain the desired outcome of the considered experiment. In this work, the model of regulatory networks is extended to controlled regulatory networks. For this purpose, external stimuli are considered which can affect the activity of the network’s nodes by activation or inhibition. A method is presented how to calculate a selection of external stimuli which causes a switch between two different steady states of a regulatory network. A software solution based on Jimena and Mathworks Matlab is provided. Furthermore, numerical examples are presented to demonstrate application and scope of the software on networks of 4 nodes, 11 nodes and 36 nodes. Moreover, we analyze the aggregation of platelets and the behavior of a basic T-helper cell protein-protein interaction network and its maturation towards Th0, Th1, Th2, Th17 and Treg cells in accordance with experimental data. Organisms can be seen as molecular networks being able to react on external stimuli. Experiments are performed to understand the underlying regulating mechanisms within the molecular network. A common purpose for these efforts is to reveal mechanisms with which the molecular networks can be affected to achieve a desired behavior. To cover the complexity of life these models of molecular networks often need to be quite huge and need to have many cross connections between the different agents of the network that regulate the behavior of the network. A useful tool to structure this complexity are mathematical methods. Once the model based on experiments is set up the experimental data can be further processed by mathematical methods. As experiments are cumbersome, the present work provides a framework that can be used to systematically figure out intervention points in molecular networks to cause a desired effect. In this way promising intervention strategies can be obtained. For instance the process of obtaining new drugs for pharmacological modulation can be shortened as in the best case the calculated intervention strategy just has to be validated with one experiment and the time consuming procedure of searching an intervention strategy with several experiments can be saved.
Collapse
|
30
|
Dash B, Belmonte PJ, Fine SR, Shapiro MJ, Chung JY, Schwab AD, McCue SA, Rajcula MJ, Shapiro VS. Murine T Cell Maturation Entails Protection from MBL2, but Complement Proteins Do Not Drive Clearance of Cells That Fail Maturation in the Absence of NKAP. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2019; 203:408-417. [PMID: 31175160 PMCID: PMC6615991 DOI: 10.4049/jimmunol.1801443] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 05/09/2019] [Indexed: 12/13/2022]
Abstract
Recent thymic emigrants that fail postpositive selection maturation are targeted by complement proteins. T cells likely acquire complement resistance during maturation in the thymus, a complement-privileged organ. To test this, thymocytes and fresh serum were separately obtained and incubated together in vitro to assess complement deposition. Complement binding decreased with development and maturation. Complement binding decreased from the double-positive thymocyte to the single-positive stage, and within single-positive thymocytes, complement binding gradually decreased with increasing intrathymic maturation. Binding of the central complement protein C3 to wild-type immature thymocytes required the lectin but not the classical pathway. Specifically, MBL2 but not MBL1 was required, demonstrating a unique function for MBL2. Previous studies demonstrated that the loss of NKAP, a transcriptional regulator of T cell maturation, caused peripheral T cell lymphopenia and enhanced complement susceptibility. To determine whether complement causes NKAP-deficient T cell disappearance, both the lectin and classical pathways were genetically ablated. This blocked C3 deposition on NKAP-deficient T cells but failed to restore normal cellularity, indicating that complement contributes to clearance but is not the primary cause of peripheral T cell lymphopenia. Rather, the accumulation of lipid peroxides in NKAP-deficient T cells was observed. Lipid peroxidation is a salient feature of ferroptosis, an iron-dependent nonapoptotic cell death. Thus, wild-type thymocytes naturally acquire the ability to protect themselves from complement targeting by MBL2 with maturation. However, NKAP-deficient immature peripheral T cells remain scarce in complement-deficient mice likely due to ferroptosis.
Collapse
Affiliation(s)
- Barsha Dash
- Department of Immunology, Mayo Clinic, Rochester, MN 55905
| | | | - Sydney R Fine
- Department of Immunology, Mayo Clinic, Rochester, MN 55905
| | | | - Ji Young Chung
- Department of Immunology, Mayo Clinic, Rochester, MN 55905
| | - Aaron D Schwab
- Department of Immunology, Mayo Clinic, Rochester, MN 55905
| | | | | | | |
Collapse
|
31
|
Shapiro MJ, Lehrke MJ, Chung JY, Romero Arocha S, Shapiro VS. NKAP Must Associate with HDAC3 to Regulate Hematopoietic Stem Cell Maintenance and Survival. THE JOURNAL OF IMMUNOLOGY 2019; 202:2287-2295. [PMID: 30804042 DOI: 10.4049/jimmunol.1800862] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 02/04/2019] [Indexed: 12/30/2022]
Abstract
NKAP is a multifunctional nuclear protein that associates with the histone deacetylase HDAC3. Although both NKAP and HDAC3 are critical for hematopoietic stem cell (HSC) maintenance and survival, it was not known whether these two proteins work together. To assess the importance of their association in vivo, serial truncation and alanine scanning was performed on NKAP to identify the minimal binding site for HDAC3. Mutation of either Y352 or F347 to alanine abrogated the association of NKAP with HDAC3, but did not alter NKAP localization or expression. Using a linked conditional deletion/re-expression system in vivo, we demonstrated that re-expression of the Y352A NKAP mutant failed to restore HSC maintenance and survival in mice when endogenous NKAP expression was eliminated using Mx1-cre and poly-IC, whereas re-expression of wild type NKAP maintained the HSC pool. However, Y352A NKAP did restore proliferation in murine embryonic fibroblasts when endogenous NKAP expression was eliminated using ER-cre and tamoxifen. Therefore, Y352 in NKAP is critical for association with HDAC3 and for HSC maintenance and survival but is not important for proliferation of murine embryonic fibroblasts, demonstrating that NKAP functions in different complexes in different cell types.
Collapse
Affiliation(s)
| | | | - Ji Young Chung
- Department of Immunology, Mayo Clinic, Rochester, MN 55905
| | | | | |
Collapse
|
32
|
Nijhuis L, Peeters JGC, Vastert SJ, van Loosdregt J. Restoring T Cell Tolerance, Exploring the Potential of Histone Deacetylase Inhibitors for the Treatment of Juvenile Idiopathic Arthritis. Front Immunol 2019; 10:151. [PMID: 30792714 PMCID: PMC6374297 DOI: 10.3389/fimmu.2019.00151] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 01/17/2019] [Indexed: 12/24/2022] Open
Abstract
Juvenile Idiopathic Arthritis (JIA) is characterized by a loss of immune tolerance. Here, the balance between the activity of effector T (Teff) cells and regulatory T (Treg) cells is disturbed resulting in chronic inflammation in the joints. Presently, therapeutic strategies are predominantly aimed at suppressing immune activation and pro-inflammatory effector mechanisms, ignoring the opportunity to also promote tolerance by boosting the regulatory side of the immune balance. Histone deacetylases (HDACs) can deacetylate both histone and non-histone proteins and have been demonstrated to modulate epigenetic regulation as well as cellular signaling in various cell types. Importantly, HDACs are potent regulators of both Teff cell and Treg cell function and can thus be regarded as attractive therapeutic targets in chronic inflammatory arthritis. HDAC inhibitors (HDACi) have proven therapeutic potential in the cancer field, and are presently being explored for their potential in the treatment of autoimmune diseases. Specific HDACi have already been demonstrated to reduce the secretion of pro-inflammatory cytokines by Teff cells, and promote Treg numbers and suppressive capacity in vitro and in vivo. In this review, we outline the role of the different classes of HDACs in both Teff cell and Treg cell function. Furthermore, we will review the effect of different HDACi on T cell tolerance and explore their potential as a therapeutic strategy for the treatment of oligoarticular and polyarticular JIA.
Collapse
Affiliation(s)
- Lotte Nijhuis
- Laboratory of Translational Immunology, Department of Pediatric Immunology & Rheumatology, University Medical Center Utrecht, University of Utrecht, Utrecht, Netherlands
| | - Janneke G C Peeters
- Laboratory of Translational Immunology, Department of Pediatric Immunology & Rheumatology, University Medical Center Utrecht, University of Utrecht, Utrecht, Netherlands
| | - Sebastiaan J Vastert
- Laboratory of Translational Immunology, Department of Pediatric Immunology & Rheumatology, University Medical Center Utrecht, University of Utrecht, Utrecht, Netherlands
| | - Jorg van Loosdregt
- Laboratory of Translational Immunology, Department of Pediatric Immunology & Rheumatology, University Medical Center Utrecht, University of Utrecht, Utrecht, Netherlands
| |
Collapse
|
33
|
Philips RL, Lee JH, Gaonkar K, Chanana P, Chung JY, Romero Arocha SR, Schwab A, Ordog T, Shapiro VS. HDAC3 restrains CD8-lineage genes to maintain a bi-potential state in CD4 +CD8 + thymocytes for CD4-lineage commitment. eLife 2019; 8:43821. [PMID: 30657451 PMCID: PMC6338460 DOI: 10.7554/elife.43821] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 12/30/2018] [Indexed: 12/20/2022] Open
Abstract
CD4 and CD8 T cells are vital components of the immune system. We found that histone deacetylase 3 (HDAC3) is critical for the development of CD4 T cells, as HDAC3-deficient DP thymocytes generate only CD8SP thymocytes in mice. In the absence of HDAC3, MHC Class II-restricted OT-II thymocytes are redirected to the CD8 cytotoxic lineage, which occurs with accelerated kinetics. Analysis of histone acetylation and RNA-seq reveals that HDAC3-deficient DP thymocytes are biased towards the CD8 lineage prior to positive selection. Commitment to the CD4 or CD8 lineage is determined by whether persistent TCR signaling or cytokine signaling predominates, respectively. Despite elevated IL-21R/γc/STAT5 signaling in HDAC3-deficient DP thymocytes, blocking IL-21R does not restore CD4 lineage commitment. Instead, HDAC3 binds directly to CD8-lineage promoting genes. Thus, HDAC3 is required to restrain CD8-lineage genes in DP thymocytes for the generation of CD4 T cells.
Collapse
Affiliation(s)
| | - Jeong-Heon Lee
- Epigenomics Program, Center for Individualized Medicine, Mayo Clinic, Rochester, United States
| | - Krutika Gaonkar
- Department of Health Science Research, Division of Biostatistics and Informatics, Mayo Clinic, Rochester, United States
| | - Pritha Chanana
- Department of Health Science Research, Division of Biostatistics and Informatics, Mayo Clinic, Rochester, United States
| | - Ji Young Chung
- Department of Immunology, Mayo Clinic, Rochester, United States
| | | | - Aaron Schwab
- Department of Immunology, Mayo Clinic, Rochester, United States
| | - Tamas Ordog
- Epigenomics Program, Center for Individualized Medicine, Mayo Clinic, Rochester, United States
| | | |
Collapse
|
34
|
Abstract
The differentiation of T helper cell subsets and their acquisition of effector functions are accompanied by changes in gene expression programmes, which in part are regulated and maintained by epigenetic processes. Histone deacetylases (HDACs) and histone acetyltransferases (HATs) are key epigenetic regulators that function by mediating dynamic changes in the acetylation of histones at lysine residues. In addition, many non-histone proteins are also acetylated, and reversible acetylation affects their functional properties, demonstrating that HDACs mediate effects beyond the epigenetic regulation of gene expression. In this Review, we discuss studies revealing that HDACs are key regulators of CD4+ T cell-mediated immunity in mice and humans and that HDACs are promising targets in T cell-mediated immune diseases. Finally, we discuss unanswered questions and future research directions to promote the concept that isoform-selective HDAC inhibitors might broaden the clinical application of HDAC inhibitors beyond their current use in certain types of cancer.
Collapse
Affiliation(s)
- Wilfried Ellmeier
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria.
| | - Christian Seiser
- Division of Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
35
|
Müller L, Hainberger D, Stolz V, Ellmeier W. NCOR1-a new player on the field of T cell development. J Leukoc Biol 2018; 104:1061-1068. [PMID: 30117609 DOI: 10.1002/jlb.1ri0418-168r] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 07/18/2018] [Accepted: 07/21/2018] [Indexed: 12/27/2022] Open
Abstract
Nuclear receptor corepressor 1 (NCOR1) is a transcriptional corepressor that links chromatin-modifying enzymes with gene-specific transcription factors. Although identified more than 20 years ago as a corepressor of nuclear receptors, the role of NCOR1 in T cells remained only poorly understood. However, recent studies indicate that the survival of developing thymocytes is regulated by NCOR1, revealing an essential role for NCOR1 in the T cell lineage. In this review, we will briefly summarize basic facts about NCOR1 structure and functions. We will further summarize studies demonstrating an essential role for NCOR1 in controlling positive and negative selection of thymocytes during T cell development. Finally, we will discuss similarities and differences between the phenotypes of mice with a T cell-specific deletion of NCOR1 or histone deacetylase 3 (HDAC3), because HDAC3 is the predominant member of the HDAC family that interacts with NCOR1 corepressor complexes. With this review we aim to introduce NCOR1 as a new player in the team of transcriptional coregulators that control T cell development and thus the generation of the peripheral T cell pool.
Collapse
Affiliation(s)
- Lena Müller
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Daniela Hainberger
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Valentina Stolz
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Wilfried Ellmeier
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
36
|
The Therapeutic Strategy of HDAC6 Inhibitors in Lymphoproliferative Disease. Int J Mol Sci 2018; 19:ijms19082337. [PMID: 30096875 PMCID: PMC6121661 DOI: 10.3390/ijms19082337] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 08/02/2018] [Accepted: 08/03/2018] [Indexed: 12/15/2022] Open
Abstract
Histone deacetylases (HDACs) are master regulators of chromatin remodeling, acting as epigenetic regulators of gene expression. In the last decade, inhibition of HDACs has become a target for specific epigenetic modifications related to cancer development. Overexpression of HDAC has been observed in several hematologic malignancies. Therefore, the observation that HDACs might play a role in various hematologic malignancies has brought to the development of HDAC inhibitors as potential antitumor agents. Recently, the class IIb, HDAC6, has emerged as one potential selective HDACi. This isoenzyme represents an important pharmacological target for selective inhibition. Its selectivity may reduce the toxicity related to the off-target effects of pan-HDAC inhibitors. HDAC6 has also been studied in cancer especially for its ability to coordinate a variety of cellular processes that are important for cancer pathogenesis. HDAC6 has been reported to be overexpressed in lymphoid cells and its inhibition has demonstrated activity in preclinical and clinical study of lymphoproliferative disease. Various studies of HDAC6 inhibitors alone and in combination with other agents provide strong scientific rationale for the evaluation of these new agents in the clinical setting of hematological malignancies. In this review, we describe the HDACs, their inhibitors, and the recent advances of HDAC6 inhibitors, their mechanisms of action and role in lymphoproliferative disorders.
Collapse
|
37
|
Cunningham CA, Helm EY, Fink PJ. Reinterpreting recent thymic emigrant function: defective or adaptive? Curr Opin Immunol 2018; 51:1-6. [PMID: 29257954 PMCID: PMC5943149 DOI: 10.1016/j.coi.2017.12.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 12/06/2017] [Indexed: 11/30/2022]
Abstract
Recent thymic emigrants (RTEs) are those peripheral T cells that have most recently completed thymic development and egress. Over the past decade, significant advances have been made in understanding the cell-extrinsic and cell-intrinsic requirements for RTE maturation to mature naïve (MN) T cells and in detailing the functional differences that characterize these two T cell populations. Much of this work has suggested that RTEs are hypo-functional versions of more mature T cells. However, recent evidence has indicated that rather than being defective T cells, RTEs are exquisitely adapted to their cellular niche. In this review, we argue that RTEs are not flawed mature T cells but are adapted to fill an underpopulated T cell compartment, while maintaining self tolerance and possessing the capacity to mount robust immune responses.
Collapse
Affiliation(s)
- Cody A Cunningham
- Department of Immunology, University of Washington, Seattle, WA 98109, United States
| | - Eric Y Helm
- Department of Immunology, University of Washington, Seattle, WA 98109, United States
| | - Pamela J Fink
- Department of Immunology, University of Washington, Seattle, WA 98109, United States.
| |
Collapse
|
38
|
Dash B, Shapiro MJ, Chung JY, Romero Arocha S, Shapiro VS. Treg-specific deletion of NKAP results in severe, systemic autoimmunity due to peripheral loss of Tregs. J Autoimmun 2018; 89:139-148. [PMID: 29366602 DOI: 10.1016/j.jaut.2017.12.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 12/15/2017] [Accepted: 12/18/2017] [Indexed: 01/22/2023]
Abstract
Regulatory T cells are critical for the generation and maintenance of peripheral tolerance. Conditional deletion of the transcriptional repressor NKAP in Tregs using Foxp3-YFP-cre NKAP conditional knockout mice causes aggressive autoimmunity characterized by thymic atrophy, lymphadenopathy, peripheral T cell activation, generation of autoantibodies, immune infiltration into several organs, and crusty skin at 3 weeks of age, similar to that of "scurfy" Foxp3-mutant mice. While Treg development in the thymus proceeds normally in the absence of NKAP, there is a severe loss of thymically-derived Tregs in the periphery. NKAP-deficient Tregs have a recent thymic emigrant phenotype, and are attacked by complement in a cell-intrinsic manner in the periphery. Previously, we demonstrated that NKAP is required for conventional T cell maturation as it prevents complement-mediated attack in the periphery. We now show that Tregs undergo a similar maturation process as conventional T cells, requiring NKAP to acquire complement resistance after thymic egress.
Collapse
Affiliation(s)
- Barsha Dash
- Department of Immunology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Michael J Shapiro
- Department of Immunology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Ji Young Chung
- Department of Immunology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | | | | |
Collapse
|
39
|
Müller L, Hainberger D, Stolz V, Hamminger P, Hassan H, Preglej T, Boucheron N, Sakaguchi S, Wiegers GJ, Villunger A, Auwerx J, Ellmeier W. The corepressor NCOR1 regulates the survival of single-positive thymocytes. Sci Rep 2017; 7:15928. [PMID: 29162920 PMCID: PMC5698297 DOI: 10.1038/s41598-017-15918-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 11/03/2017] [Indexed: 01/09/2023] Open
Abstract
Nuclear receptor corepressor 1 (NCOR1) is a transcriptional regulator bridging repressive chromatin modifying enzymes with transcription factors. NCOR1 regulates many biological processes, however its role in T cells is not known. Here we show that Cd4-Cre-mediated deletion of NCOR1 (NCOR1 cKOCd4) resulted in a reduction of peripheral T cell numbers due to a decrease in single-positive (SP) thymocytes. In contrast, double-positive (DP) thymocyte numbers were not affected in the absence of NCOR1. The reduction in SP cells was due to diminished survival of NCOR1-null postselection TCRβhiCD69+ and mature TCRβhiCD69- thymocytes. NCOR1-null thymocytes expressed elevated levels of the pro-apoptotic factor BIM and showed a higher fraction of cleaved caspase 3-positive cells upon TCR stimulation ex vivo. However, staphylococcal enterotoxin B (SEB)-mediated deletion of Vβ8+ CD4SP thymocytes was normal, suggesting that negative selection is not altered in the absence of NCOR1. Finally, transgenic expression of the pro-survival protein BCL2 restored the population of CD69+ thymocytes in NCOR1 cKOCd4 mice to a similar percentage as observed in WT mice. Together, these data identify NCOR1 as a crucial regulator of the survival of SP thymocytes and revealed that NCOR1 is essential for the proper generation of the peripheral T cell pool.
Collapse
Affiliation(s)
- Lena Müller
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090, Vienna, Austria
| | - Daniela Hainberger
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090, Vienna, Austria
| | - Valentina Stolz
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090, Vienna, Austria
| | - Patricia Hamminger
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090, Vienna, Austria
| | - Hammad Hassan
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090, Vienna, Austria
- Department of Biochemistry (Shankar Campus), Abdul Wali Khan University (AWKUM) Mardan, KPK, Pakistan
| | - Teresa Preglej
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090, Vienna, Austria
| | - Nicole Boucheron
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090, Vienna, Austria
| | - Shinya Sakaguchi
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090, Vienna, Austria
| | - G Jan Wiegers
- Innsbruck Medical University, Biocenter, Division of Developmental Immunology, Innsbruck, Austria
| | - Andreas Villunger
- Innsbruck Medical University, Biocenter, Division of Developmental Immunology, Innsbruck, Austria
| | - Johan Auwerx
- Ecole Polytechnique Fédérale de Lausanne, Laboratory of Integrative and Systems Physiology, Lausanne, Switzerland
| | - Wilfried Ellmeier
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090, Vienna, Austria.
| |
Collapse
|
40
|
Wang J, He N, Zhang N, Quan D, Zhang S, Zhang C, Yu RT, Atkins AR, Zhu R, Yang C, Cui Y, Liddle C, Downes M, Xiao H, Zheng Y, Auwerx J, Evans RM, Leng Q. NCoR1 restrains thymic negative selection by repressing Bim expression to spare thymocytes undergoing positive selection. Nat Commun 2017; 8:959. [PMID: 29038463 PMCID: PMC5643384 DOI: 10.1038/s41467-017-00931-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 08/07/2017] [Indexed: 11/09/2022] Open
Abstract
Thymocytes must pass both positive and negative selections to become mature T cells. Negative selection purges thymocytes whose T-cell receptors (TCR) exhibit high affinity to self-peptide MHC complexes (self pMHC) to avoid autoimmune diseases, while positive selection ensures the survival and maturation of thymocytes whose TCRs display intermediate affinity to self pMHCs for effective immunity, but whether transcriptional regulation helps conserve positively selected thymocytes from being purged by negative selection remains unclear. Here we show that the specific deletion of nuclear receptor co-repressor 1 (NCoR1) in T cells causes excessive negative selection to reduce mature thymocyte numbers. Mechanistically, NCoR1 protects positively selected thymocytes from negative selection by suppressing Bim expression. Our study demonstrates a critical function of NCoR1 in coordinated positive and negative selections in the thymus.Thymocytes are screened by two processes, termed positive and negative selections, which are permissive only for immature thymocytes with intermediate avidity to the selecting ligands. Here the authors show that the nuclear receptor NCoR1 suppresses Bim1 to inhibit negative selection and promote thymocyte survival.
Collapse
Affiliation(s)
- Jianrong Wang
- CAS Key Laboratory of Molecular Virology & Immunology, Unit of Immune Regulation, Institut Pasteur of Shanghai, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, 200031 China
| | - Nanhai He
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037 USA
| | - Na Zhang
- CAS Key Laboratory of Molecular Virology & Immunology, Unit of Immune Regulation, Institut Pasteur of Shanghai, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, 200031 China
- Obstetrics and Gynecology Hospital, Shanghai Key Laboratory of Female Reproductive Endocrine-related Disease, the Academy of Integrative Medicine, Fudan University, Shanghai, 200011 China
| | - Dexian Quan
- CAS Key Laboratory of Molecular Virology & Immunology, Unit of Immune Regulation, Institut Pasteur of Shanghai, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, 200031 China
| | - Shuo Zhang
- CAS Key Laboratory of Molecular Virology & Immunology, Unit of Immune Regulation, Institut Pasteur of Shanghai, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, 200031 China
| | - Caroline Zhang
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037 USA
| | - Ruth T. Yu
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037 USA
| | - Annette R. Atkins
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037 USA
| | - Ruihong Zhu
- CAS Key Laboratory of Molecular Virology & Immunology, Unit of Immune Regulation, Institut Pasteur of Shanghai, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, 200031 China
| | - Chunhui Yang
- CAS Key Laboratory of Molecular Virology & Immunology, Unit of Immune Regulation, Institut Pasteur of Shanghai, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, 200031 China
| | - Ying Cui
- CAS Key Laboratory of Molecular Virology & Immunology, Unit of Immune Regulation, Institut Pasteur of Shanghai, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, 200031 China
| | - Christopher Liddle
- Storr Liver Centre, Westmead Millennium Institute, Sydney Medical School, University of Sydney, Sydney, NSW 2006 Australia
| | - Michael Downes
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037 USA
| | - Hui Xiao
- CAS Key Laboratory of Molecular Virology & Immunology, Unit of Immune Regulation, Institut Pasteur of Shanghai, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, 200031 China
| | - Ye Zheng
- Immunobiology and Microbial Pathogenesis Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037 USA
| | - Johan Auwerx
- Laboratory of Integrative and Systems Physiology, École Polytechnique Fédérale de Lausanne, Station 15, Lausanne, CH-1015 Switzerland
| | - Ronald M. Evans
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037 USA
| | - Qibin Leng
- CAS Key Laboratory of Molecular Virology & Immunology, Unit of Immune Regulation, Institut Pasteur of Shanghai, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, 200031 China
| |
Collapse
|
41
|
HDAC4 is expressed on multiple T cell lineages but dispensable for their development and function. Oncotarget 2017; 8:17562-17572. [PMID: 28177888 PMCID: PMC5392269 DOI: 10.18632/oncotarget.15077] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 01/11/2017] [Indexed: 01/08/2023] Open
Abstract
Histone deacetylation, reciprocally mediated by histone deacetylases (HDAC) and acetyltransferases, represents one major form of post-translational modification. Previous research indicates that HDACs play an essential regulatory role in the development of various immune cells. However, the specific function of individual HDACs remains largely unexplored. HDAC4, a member of class II HDACs, profoundly investigated in the nervous system, while the expression profile and function of HDAC4 in T cells are barely known. For the first time, we report here that HDAC4 is expressed in the multiple T cell lineages. Using T-cell-specific HDAC4-deficient mice, we discovered that lack of HDAC4 did not alter the frequencies of conventional T cells, invariant NKT (iNKT) cells or regulatory T cells within both the thymus and secondary lymphoid organs. Moreover, conventional T cells and iNKT cells from wild-type and HDAC4-deficient mice displayed no significant difference in cytokine production. In conclusion, our results imply that under steady stage, HDAC4 is not required for the development and function of multiple T cell lineages, including conventional T cells and iNKT cells.
Collapse
|
42
|
Dirice E, Ng RWS, Martinez R, Hu J, Wagner FF, Holson EB, Wagner BK, Kulkarni RN. Isoform-selective inhibitor of histone deacetylase 3 (HDAC3) limits pancreatic islet infiltration and protects female nonobese diabetic mice from diabetes. J Biol Chem 2017; 292:17598-17608. [PMID: 28860191 DOI: 10.1074/jbc.m117.804328] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 08/29/2017] [Indexed: 12/19/2022] Open
Abstract
Preservation of insulin-secreting β-cells is an important goal for therapies aimed at restoring normoglycemia in patients with diabetes. One approach, the inhibition of histone deacetylases (HDACs), has been reported to suppress pancreatic islet inflammation and β-cell apoptosis in vitro In this report, we demonstrate the efficacy of HDAC inhibitors (HDACi) in vivo We show that daily administration of BRD3308, an isoform-selective HDAC3 inhibitor, for 2 weeks to female nonobese diabetic (NOD) mice, beginning at 3 weeks of age, followed by twice-weekly injections until age 25 weeks, protects the animals from diabetes. The preservation of β-cells was because of a significant decrease in islet infiltration of mononuclear cells. Moreover, the BRD3308 treatment increased basal insulin secretion from islets cultured in vitro All metabolic tissues tested in vehicle- or BRD3308-treated groups showed virtually no sign of immune cell infiltration, except minimal infiltration in white adipose tissue in animals treated with the highest BRD3308 dose (10 mg/kg), providing additional evidence of protection from immune attack in the treated groups. Furthermore, pancreata from animals treated with 10 mg/kg BRD3308 exhibited significantly decreased numbers of apoptotic β-cells compared with those treated with vehicle or low-dose BRD3308. Finally, animals treated with 1 or 10 mg/kg BRD3308 had enhanced β-cell proliferation. These in vivo results point to the potential use of selective HDAC3 inhibitors as a therapeutic approach to suppress pancreatic islet infiltration and prevent β-cell death with the long-term goal of limiting the progression of type 1 diabetes.
Collapse
Affiliation(s)
- Ercument Dirice
- From the Department of Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, Massachusetts 02215
| | - Raymond W S Ng
- From the Department of Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, Massachusetts 02215
| | - Rachael Martinez
- From the Department of Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, Massachusetts 02215
| | - Jiang Hu
- From the Department of Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, Massachusetts 02215
| | | | - Edward B Holson
- Chemical Biology and Therapeutics Science Program, Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142
| | - Bridget K Wagner
- Chemical Biology and Therapeutics Science Program, Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142,
| | - Rohit N Kulkarni
- From the Department of Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, Massachusetts 02215, .,Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02215, and.,Harvard Stem Cell Institute, Boston Massachusetts 02215
| |
Collapse
|
43
|
Deacetylase activity of histone deacetylase 3 is required for productive VDJ recombination and B-cell development. Proc Natl Acad Sci U S A 2017; 114:8608-8613. [PMID: 28739911 DOI: 10.1073/pnas.1701610114] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Histone deacetylase 3 (HDAC3) is the catalytic component of NCoR/SMRT corepressor complexes that mediate the actions of transcription factors implicated in the regulation of B-cell development and function. We crossed Hdac3 conditional knockout mice with Mb1-Cre knockin animals to delete Hdac3 in early progenitor B cells. The spleens of Hdac3F/-Mb1-Cre+/- mice were virtually devoid of mature B cells, and B220+CD43+ B-cell progenitors accumulated within the bone marrow. Quantitative deep sequencing of the Ig heavy chain locus from B220+CD43+ populations identified a defect in VHDJH recombination with a severe reduction in productive rearrangements, which directly corresponded to the loss of pre-B cells from Hdac3Δ/- bone marrow. For Hdac3Δ/- B cells that did show productive VDJ rearrangement, there was significant skewing toward the incorporation of proximal VH gene segments and a corresponding reduction in distal VH gene segment use. Although transcriptional effects within these loci were modest, Hdac3Δ/- progenitor cells displayed global changes in chromatin structure that likely hindered effective distal V-DJ recombination. Reintroduction of wild-type Hdac3 restored normal B-cell development, whereas an Hdac3 point mutant lacking deacetylase activity failed to complement this defect. Thus, the deacetylase activity of Hdac3 is required for the generation of mature B cells.
Collapse
|
44
|
Thapa P, Romero Arocha S, Chung JY, Sant'Angelo DB, Shapiro VS. Histone deacetylase 3 is required for iNKT cell development. Sci Rep 2017; 7:5784. [PMID: 28724935 PMCID: PMC5517478 DOI: 10.1038/s41598-017-06102-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 06/07/2017] [Indexed: 12/16/2022] Open
Abstract
NKT cells are a distinct subset that have developmental requirements that often differ from conventional T cells. Here, we show that NKT-specific deletion of Hdac3 results in a severe reduction in the number of iNKT cells, particularly of NKT1 cells. In addition, there is decreased cytokine production by Hdac3-deficient NKT2 and NKT17 cells. Hdac3-deficient iNKT cells have increased cell death that is not rescued by transgenic expression of Bcl-2 or Bcl-xL. Hdac3-deficient iNKT cells have less Cyto-ID staining and lower LC3A/B expression, indicative of reduced autophagy. Interestingly, Hdac3-deficient iNKT cells also have lower expression of the nutrient receptors GLUT1, CD71 and CD98, which would increase the need for autophagy when nutrients are limiting. Therefore, Hdac3 is required for iNKT cell development and differentiation.
Collapse
Affiliation(s)
- Puspa Thapa
- Department of Immunology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | | | - Ji Young Chung
- Department of Immunology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Derek B Sant'Angelo
- Department of Pediatrics, Rutgers Robert Wood Johnson Medical School and The Children's Health Institute of New Jersey, 89 French Street, Room 4273, New Brunswick, NJ, 08901, USA
| | | |
Collapse
|
45
|
Philips RL, Chen MW, McWilliams DC, Belmonte PJ, Constans MM, Shapiro VS. HDAC3 Is Required for the Downregulation of RORγt during Thymocyte Positive Selection. THE JOURNAL OF IMMUNOLOGY 2016; 197:541-54. [PMID: 27279370 DOI: 10.4049/jimmunol.1502529] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 05/09/2016] [Indexed: 12/31/2022]
Abstract
To generate functional peripheral T cells, proper gene regulation during T cell development is critical. In this study, we found that histone deacetylase (HDAC) 3 is required for T cell development. T cell development in CD2-icre HDAC3 conditional knockout (cKO) mice (HDAC3-cKO) was blocked at positive selection, resulting in few CD4 and CD8 T cells, and it could not be rescued by a TCR transgene. These single-positive thymocytes failed to upregulate Bcl-2, leading to increased apoptosis. HDAC3-cKO mice failed to downregulate retinoic acid-related orphan receptor (ROR) γt during positive selection, similar to the block in positive selection in RORγt transgenic mice. In the absence of HDAC3, the RORC promoter was hyperacetylated. In the periphery, the few CD4 T cells present were skewed toward RORγt(+) IL-17-producing Th17 cells, leading to inflammatory bowel disease. Positive selection of CD8 single-positive thymocytes was restored in RORγt-KO Bcl-xL transgenic HDAC3-cKO mice, demonstrating that HDAC3 is required at positive selection to downregulate RORγt.
Collapse
Affiliation(s)
| | - Meibo W Chen
- Department of Immunology, Mayo Clinic, Rochester, MN 55905
| | | | | | | | | |
Collapse
|
46
|
Hsu FC, Shapiro MJ, Dash B, Chen CC, Constans MM, Chung JY, Romero Arocha SR, Belmonte PJ, Chen MW, McWilliams DC, Shapiro VS. An Essential Role for the Transcription Factor Runx1 in T Cell Maturation. Sci Rep 2016; 6:23533. [PMID: 27020276 PMCID: PMC4810436 DOI: 10.1038/srep23533] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 03/08/2016] [Indexed: 12/26/2022] Open
Abstract
The transcription factor Runx1 has essential roles throughout hematopoiesis. Here, we demonstrate that Runx1 is critical for T cell maturation. Peripheral naïve CD4(+) T cells from CD4-cre Runx1 cKO mice are phenotypically and functionally immature as shown by decreased production of TNF-α upon TCR stimulation. The loss of peripheral CD4(+) T cells in CD4-cre Runx1 cKO mice is not due to defects in homeostasis or decreased expression of IL-7Rα, as transgenic expression of IL-7Rα does not rescue the loss of CD4(+) T cells. Rather, immature Runx1-deficient CD4(+) T cells are eliminated in the periphery by the activation and fixation of the classical complement pathway. In the thymus, there is a severe block in all aspects of intrathymic T cell maturation, although both positive and negative selection are unaltered. Thus, loss of Runx1 leads to the earliest characterized block in post-positive selection intrathymic maturation of CD4 T cells.
Collapse
Affiliation(s)
- Fan-Chi Hsu
- Department of Immunology, Mayo Clinic, Rochester, MN, United States
| | | | - Barsha Dash
- Department of Immunology, Mayo Clinic, Rochester, MN, United States
| | - Chien-Chang Chen
- Department of Immunology, Mayo Clinic, Rochester, MN, United States
| | - Megan M Constans
- Department of Immunology, Mayo Clinic, Rochester, MN, United States
| | - Ji Young Chung
- Department of Immunology, Mayo Clinic, Rochester, MN, United States
| | | | - Paul J Belmonte
- Department of Immunology, Mayo Clinic, Rochester, MN, United States
| | - Meibo W Chen
- Department of Immunology, Mayo Clinic, Rochester, MN, United States
| | | | | |
Collapse
|
47
|
Hogquist KA, Xing Y, Hsu FC, Shapiro VS. T Cell Adolescence: Maturation Events Beyond Positive Selection. THE JOURNAL OF IMMUNOLOGY 2015; 195:1351-7. [PMID: 26254267 DOI: 10.4049/jimmunol.1501050] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Single-positive thymocytes that successfully complete positive and negative selection must still undergo one final step, generally termed T cell maturation, before they gain functional competency and enter the long-lived T cell pool. Maturation initiates after positive selection in single-positive thymocytes and continues in the periphery in recent thymic emigrants, before these newly produced T cells gain functional competency and are ready to participate in the immune response as peripheral naive T cells. Recent work using genetically altered mice demonstrates that T cell maturation is not a single process, but a series of steps that occur independently and sequentially after positive selection. This review focuses on the changes that occur during T cell maturation, as well as the molecules and pathways that are critical at each step.
Collapse
Affiliation(s)
- Kristin A Hogquist
- Center for Immunology, University of Minnesota, Minneapolis, MN 55455; and
| | - Yan Xing
- Center for Immunology, University of Minnesota, Minneapolis, MN 55455; and
| | - Fan-Chi Hsu
- Department of Immunology, Mayo Clinic, Rochester, MN 55905
| | | |
Collapse
|