1
|
Sant'Anna MRV, Pereira-Filho AA, Mendes-Sousa AF, Silva NCS, Gontijo NF, Pereira MH, Koerich LB, D'Avila Pessoa GC, Andersen J, Araujo RN. Inhibition of vertebrate complement system by hematophagous arthropods: inhibitory molecules, mechanisms, physiological roles, and applications. INSECT SCIENCE 2024; 31:1334-1352. [PMID: 38246860 DOI: 10.1111/1744-7917.13317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/28/2023] [Accepted: 12/07/2023] [Indexed: 01/23/2024]
Abstract
In arthropods, hematophagy has arisen several times throughout evolution. This specialized feeding behavior offered a highly nutritious diet obtained during blood feeds. On the other hand, blood-sucking arthropods must overcome problems brought on by blood intake and digestion. Host blood complement acts on the bite site and is still active after ingestion, so complement activation is a potential threat to the host's skin feeding environment and to the arthropod gut enterocytes. During evolution, blood-sucking arthropods have selected, either in their saliva or gut, anticomplement molecules that inactivate host blood complement. This review presents an overview of the complement system and discusses the arthropod's salivary and gut anticomplement molecules studied to date, exploring their mechanism of action and other aspects related to the arthropod-host-pathogen interface. The possible therapeutic applications of arthropod's anticomplement molecules are also discussed.
Collapse
Affiliation(s)
- Mauricio Roberto Vianna Sant'Anna
- Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, RJ, Brazil
| | - Adalberto Alves Pereira-Filho
- Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | | | - Naylene Carvalho Sales Silva
- Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Nelder Figueiredo Gontijo
- Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, RJ, Brazil
| | - Marcos Horácio Pereira
- Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, RJ, Brazil
| | - Leonardo Barbosa Koerich
- Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, RJ, Brazil
| | - Grasielle Caldas D'Avila Pessoa
- Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, RJ, Brazil
| | - John Andersen
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA
| | - Ricardo Nascimento Araujo
- Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
2
|
Andersen JF, Lei H, Strayer EC, Pham V, Ribeiro JMC. Mechanism of complement inhibition by a mosquito protein revealed through cryo-EM. Commun Biol 2024; 7:649. [PMID: 38802531 PMCID: PMC11130238 DOI: 10.1038/s42003-024-06351-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 05/17/2024] [Indexed: 05/29/2024] Open
Abstract
Salivary complement inhibitors occur in many of the blood feeding arthropod species responsible for transmission of pathogens. During feeding, these inhibitors prevent the production of proinflammatory anaphylatoxins, which may interfere with feeding, and limit formation of the membrane attack complex which could damage arthropod gut tissues. Salivary inhibitors are, in many cases, novel proteins which may be pharmaceutically useful or display unusual mechanisms that could be exploited pharmaceutically. Albicin is a potent inhibitor of the alternative pathway of complement from the saliva of the malaria transmitting mosquito, Anopheles albimanus. Here we describe the cryo-EM structure of albicin bound to C3bBb, the alternative C3 convertase, a proteolytic complex that is responsible for cleavage of C3 and amplification of the complement response. Albicin is shown to induce dimerization of C3bBb, in a manner similar to the bacterial inhibitor SCIN, to form an inactive complex unable to bind the substrate C3. Size exclusion chromatography and structures determined after 30 minutes of incubation of C3b, factor B (FB), factor D (FD) and albicin indicate that FBb dissociates from the inhibited dimeric complex leaving a C3b-albicin dimeric complex which apparently decays more slowly.
Collapse
Affiliation(s)
- John F Andersen
- NIH-NIAID, Laboratory of Malaria and Vector Research, Rockville, MD, USA.
| | - Haotian Lei
- NIH-NIAID, Research Technologies Branch, Bethesda, MD, USA
| | - Ethan C Strayer
- NIH-NIAID, Laboratory of Malaria and Vector Research, Rockville, MD, USA
- Biological and Biomedical Sciences Program, Yale University, New Haven, CT, USA
| | - Van Pham
- NIH-NIAID, Laboratory of Malaria and Vector Research, Rockville, MD, USA
| | - José M C Ribeiro
- NIH-NIAID, Laboratory of Malaria and Vector Research, Rockville, MD, USA
| |
Collapse
|
3
|
Kolodziejek AM, Bearden SW, Maes S, Montenieri JM, Gage KL, Hovde CJ, Minnich SA. Yersinia pestis Δ ail Mutants Are Not Susceptible to Human Complement Bactericidal Activity in the Flea. Appl Environ Microbiol 2023; 89:e0124422. [PMID: 36744930 PMCID: PMC9973026 DOI: 10.1128/aem.01244-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 01/09/2023] [Indexed: 02/07/2023] Open
Abstract
Ail confers serum resistance in humans and is a critical virulence factor of Y. pestis, the causative agent of plague. Here, the contribution of Ail for Y. pestis survival in the flea vector was examined. Rat or human but not mouse sera were bactericidal against a Y. pestis Δail mutant at 28°C in vitro. Complement components deposited rapidly on the Y. pestis surface as measured by immunofluorescent microscopy. Ail reduced the amount of active C3b on the Y. pestis surface. Human sera retained bactericidal activity against a Y. pestis Δail mutant in the presence of mouse sera. However, in the flea vector, the serum protective properties of Ail were not required. Flea colonization studies using murine sera and Y. pestis KIM6+ wild type, a Δail mutant, and the Δail/ail+ control showed no differences in bacterial prevalence or numbers during the early stage of flea colonization. Similarly, flea studies with human blood showed Ail was not required for serum resistance. Finally, a variant of Ail (AilF100V E108_S109insS) from a human serum-sensitive Y. pestis subsp. microtus bv. Caucasica 1146 conferred resistance to human complement when expressed in the Y. pestis KIM6+ Δail mutant. This indicated that Ail activity was somehow blocked, most likely by lipooligosaccharide, in this serum sensitive strain. IMPORTANCE This work contributes to our understanding of how highly virulent Y. pestis evolved from its innocuous enteric predecessor. Among identified virulence factors is the attachment invasion locus protein, Ail, that is required to protect Y. pestis from serum complement in all mammals tested except mice. Murine sera is not bactericidal. In this study, we asked, is bactericidal sera from humans active in Y. pestis colonized fleas? We found it was not. The importance of this observation is that it identifies a protective niche for the growth of serum sensitive and nonsensitive Y. pestis strains.
Collapse
Affiliation(s)
- Anna M. Kolodziejek
- Department of Animal, Veterinary and Food Science, University of Idaho, Moscow, Idaho, USA
| | - Scott W. Bearden
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado, USA
| | - Sarah Maes
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado, USA
| | - John M. Montenieri
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado, USA
| | - Kenneth L. Gage
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado, USA
| | - Carolyn J. Hovde
- Department of Animal, Veterinary and Food Science, University of Idaho, Moscow, Idaho, USA
| | - Scott A. Minnich
- Department of Animal, Veterinary and Food Science, University of Idaho, Moscow, Idaho, USA
| |
Collapse
|
4
|
Inklaar MR, Barillas-Mury C, Jore MM. Deceiving and escaping complement - the evasive journey of the malaria parasite. Trends Parasitol 2022; 38:962-974. [PMID: 36089499 PMCID: PMC9588674 DOI: 10.1016/j.pt.2022.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 08/03/2022] [Accepted: 08/19/2022] [Indexed: 01/13/2023]
Abstract
During its life cycle, Plasmodium, the malaria parasite, is exposed to the human and mosquito complement systems. Early experiments demonstrated that activation of complement can pose a serious threat to parasites, but recent studies revealed complement-evasion mechanisms important for parasite survival. Blood-stage parasites and gametes recruit regulators to neutralize human complement activation, while ookinetes inhibit mosquito complement by disrupting epithelial nitration in response to midgut invasion. Here we provide an in-depth overview of the evasion mechanisms currently known and speculate on the existence of others not yet identified. Finally, we discuss how these mechanisms could provide novel targets for urgently needed malaria vaccines and therapeutics.
Collapse
Affiliation(s)
| | - Carolina Barillas-Mury
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA.
| | - Matthijs M Jore
- Department of Medical Microbiology, Radboudumc, The Netherlands.
| |
Collapse
|
5
|
Barillas-Mury C, Ribeiro JMC, Valenzuela JG. Understanding pathogen survival and transmission by arthropod vectors to prevent human disease. Science 2022; 377:eabc2757. [PMID: 36173836 DOI: 10.1126/science.abc2757] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Many endemic poverty-associated diseases, such as malaria and leishmaniasis, are transmitted by arthropod vectors. Pathogens must interact with specific molecules in the vector gut, the microbiota, and the vector immune system to survive and be transmitted. The vertebrate host, in turn, is infected when the pathogen and vector-derived factors, such as salivary proteins, are delivered into the skin by a vector bite. Here, we review recent progress in our understanding of the biology of pathogen transmission from the human to the vector and back, from the vector to the host. We also highlight recent advances in the biology of vector-borne disease transmission, which have translated into additional strategies to prevent human disease by either reducing vector populations or by disrupting their ability to transmit pathogens.
Collapse
Affiliation(s)
- Carolina Barillas-Mury
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, Rockville, MD 20852, USA
| | - José M C Ribeiro
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, Rockville, MD 20852, USA
| | - Jesus G Valenzuela
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, Rockville, MD 20852, USA
| |
Collapse
|
6
|
Garrigues RJ, Powell-Pierce AD, Hammel M, Skare JT, Garcia BL. A Structural Basis for Inhibition of the Complement Initiator Protease C1r by Lyme Disease Spirochetes. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2021; 207:2856-2867. [PMID: 34759015 PMCID: PMC8612984 DOI: 10.4049/jimmunol.2100815] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 09/23/2021] [Indexed: 12/26/2022]
Abstract
Complement evasion is a hallmark of extracellular microbial pathogens such as Borrelia burgdorferi, the causative agent of Lyme disease. Lyme disease spirochetes express nearly a dozen outer surface lipoproteins that bind complement components and interfere with their native activities. Among these, BBK32 is unique in its selective inhibition of the classical pathway. BBK32 blocks activation of this pathway by selectively binding and inhibiting the C1r serine protease of the first component of complement, C1. To understand the structural basis for BBK32-mediated C1r inhibition, we performed crystallography and size-exclusion chromatography-coupled small angle X-ray scattering experiments, which revealed a molecular model of BBK32-C in complex with activated human C1r. Structure-guided site-directed mutagenesis was combined with surface plasmon resonance binding experiments and assays of complement function to validate the predicted molecular interface. Analysis of the structures shows that BBK32 inhibits activated forms of C1r by occluding substrate interaction subsites (i.e., S1 and S1') and reveals a surprising role for C1r B loop-interacting residues for full inhibitory activity of BBK32. The studies reported in this article provide for the first time (to our knowledge) a structural basis for classical pathway-specific inhibition by a human pathogen.
Collapse
Affiliation(s)
- Ryan J Garrigues
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC
| | - Alexandra D Powell-Pierce
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M University, Bryan/College Station, TX; and
| | - Michal Hammel
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA
| | - Jon T Skare
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M University, Bryan/College Station, TX; and
| | - Brandon L Garcia
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC;
| |
Collapse
|
7
|
Bevivino G, Arcà B, Lombardo F. Effects of Local and Systemic Immune Challenges on the Expression of Selected Salivary Genes in the Malaria Mosquito Anopheles coluzzii. Pathogens 2021; 10:pathogens10101300. [PMID: 34684249 PMCID: PMC8540153 DOI: 10.3390/pathogens10101300] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/04/2021] [Accepted: 10/06/2021] [Indexed: 11/16/2022] Open
Abstract
Salivary glands play a crucial tripartite role in mosquito physiology. First, they secrete factors that greatly facilitate both sugar and blood meal acquisition. Second, the transmission of pathogens (parasites, bacteria and viruses) to the vertebrate host requires both the recognition and invasion of the salivary glands. Third, they produce immune factors that both protect the organ from invading pathogens and are also able to exert their activity in the crop and the midgut when saliva is re-ingested during feeding. Studies on mosquito sialomes have revealed the presence of several female and/or male salivary gland-specific or enriched genes whose function is completely unknown so far. We focused our attention on these orphan genes, and we selected, according to sequence and structural features, a shortlist of 11 candidates with potential antimicrobial properties. Afterwards, using qPCR, we investigated their expression profile at 5 and 24 h after an infectious sugar meal (local challenge) or thoracic microinjection (systemic challenge) of Gram-negative (Escherichia coli, EC) or Gram-positive (Staphylococcus aureus, SA) bacteria. We observed a general increase in the transcript abundance of our salivary candidates between 5 and 24 h after local challenge. Moreover, transcriptional modulation was determined by the nature of the stimulus, with salivary gland-enriched genes (especially hyp15 upon SA stimulus) upregulated shortly after the local challenge and later after the systemic challenge. Overall, this work provides one of the first contributions to the understanding of the immune role of mosquito salivary glands. Further characterization of salivary candidates whose expression is modulated by immune challenge may help in the identification of possible novel antimicrobial peptides.
Collapse
|
8
|
Schneider CA, Calvo E, Peterson KE. Arboviruses: How Saliva Impacts the Journey from Vector to Host. Int J Mol Sci 2021; 22:ijms22179173. [PMID: 34502092 PMCID: PMC8431069 DOI: 10.3390/ijms22179173] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/19/2021] [Accepted: 08/22/2021] [Indexed: 12/21/2022] Open
Abstract
Arthropod-borne viruses, referred to collectively as arboviruses, infect millions of people worldwide each year and have the potential to cause severe disease. They are predominately transmitted to humans through blood-feeding behavior of three main groups of biting arthropods: ticks, mosquitoes, and sandflies. The pathogens harbored by these blood-feeding arthropods (BFA) are transferred to animal hosts through deposition of virus-rich saliva into the skin. Sometimes these infections become systemic and can lead to neuro-invasion and life-threatening viral encephalitis. Factors intrinsic to the arboviral vectors can greatly influence the pathogenicity and virulence of infections, with mounting evidence that BFA saliva and salivary proteins can shift the trajectory of viral infection in the host. This review provides an overview of arbovirus infection and ways in which vectors influence viral pathogenesis. In particular, we focus on how saliva and salivary gland extracts from the three dominant arbovirus vectors impact the trajectory of the cellular immune response to arbovirus infection in the skin.
Collapse
Affiliation(s)
- Christine A. Schneider
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA;
| | - Eric Calvo
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA;
| | - Karin E. Peterson
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA;
- Correspondence:
| |
Collapse
|
9
|
Demarta-Gatsi C, Mécheri S. Vector saliva controlled inflammatory response of the host may represent the Achilles heel during pathogen transmission. J Venom Anim Toxins Incl Trop Dis 2021; 27:e20200155. [PMID: 34035796 PMCID: PMC8128132 DOI: 10.1590/1678-9199-jvatitd-2020-0155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Infection with vector-borne pathogens starts with the inoculation of these pathogens during blood feeding. In endemic regions, the population is regularly bitten by naive vectors, implicating a permanent stimulation of the immune system by the vector saliva itself (pre-immune context). Comparatively, the number of bites received by exposed individuals from non-infected vectors is much higher than the bites from infected ones. Therefore, vector saliva and the immunological response in the skin may play an important role, so far underestimated, in the establishment of anti-pathogen immunity in endemic areas. Hence, the parasite biology and the disease pathogenesis in “saliva-primed” and “saliva-unprimed” individuals must be different. This integrated view on how the pathogen evolves within the host together with vector salivary components, which are known to be endowed with a variety of pharmacological and immunological properties, must remain the focus of any investigational study dealing with vector-borne diseases. Considering this three-way partnership, the host skin (immune system), the pathogen, and the vector saliva, the approach that consists in the validation of vector saliva as a source of molecular entities with anti-disease vaccine potential has been recently a subject of active and fruitful investigation. As an example, the vaccination with maxadilan, a potent vasodilator peptide extracted from the saliva of the sand fly Lutzomyia longipalpis, was able to protect against infection with various leishmanial parasites. More interestingly, a universal mosquito saliva vaccine that may potentially protect against a range of mosquito-borne infections including malaria, dengue, Zika, chikungunya and yellow fever. In this review, we highlight the key role played by the immunobiology of vector saliva in shaping the outcome of vector-borne diseases and discuss the value of studying diseases in the light of intimate cross talk among the pathogen, the vector saliva, and the host immune mechanisms.
Collapse
Affiliation(s)
- Claudia Demarta-Gatsi
- Institut Pasteur, Unité de Biologie des Interactions Hôte Parasites, Paris, France.,CNRS ERL9195, Paris, France.,INSERM U1201, Paris, France.,Medicines for Malaria Venture (MMV), Geneva, Switzerland.,Institut Pasteur, Unité de Biologie des Interactions Hôte Parasites, Paris, France
| | - Salah Mécheri
- Institut Pasteur, Unité de Biologie des Interactions Hôte Parasites, Paris, France.,CNRS ERL9195, Paris, France.,INSERM U1201, Paris, France
| |
Collapse
|
10
|
Strayer EC, Lu S, Ribeiro J, Andersen JF. Salivary complement inhibitors from mosquitoes: Structure and mechanism of action. J Biol Chem 2020; 296:100083. [PMID: 33199367 PMCID: PMC7948415 DOI: 10.1074/jbc.ra120.015230] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 11/12/2020] [Accepted: 11/16/2020] [Indexed: 12/20/2022] Open
Abstract
Inhibition of the alternative pathway (AP) of complement by saliva from Anopheles mosquitoes facilitates feeding by blocking production of the anaphylatoxins C3a and C5a, which activate mast cells leading to plasma extravasation, pain, and itching. We have previously shown that albicin, a member of the SG7 protein family from An. Albimanus, blocks the AP by binding to and inhibiting the function of the C3 convertase, C3bBb. Here we show that SG7.AF, the albicin homolog from An. freeborni, has a similar potency to albicin but is more active in the presence of properdin, a plasma protein that acts to stabilize C3bBb. Conversely, albicin is highly active in the absence or presence of properdin. Albicin and SG7.AF stabilize the C3bBb complex in a form that accumulates on surface plasmon resonance (SPR) surfaces coated with properdin, but SG7.AF binds with lower affinity than albicin. Albicin induces oligomerization of the complex in solution, suggesting that it is oligomerization that leads to stabilization on SPR surfaces. Anophensin, the albicin ortholog from An. stephensi, is only weakly active as an inhibitor of the AP, suggesting that the SG7 family may play a different functional role in this species and other species of the subgenus Cellia, containing the major malaria vectors in Africa and Asia. Crystal structures of albicin and SG7.AF reveal a novel four-helix bundle arrangement that is stabilized by an N-terminal hydrogen bonding network. These structures provide insight into the SG7 family and related mosquito salivary proteins including the platelet-inhibitory 30 kDa family.
Collapse
Affiliation(s)
- Ethan C Strayer
- Laboratory of Malaria and Vector Research, NIH-NIAID, Rockville, Maryland, USA
| | - Stephen Lu
- Laboratory of Malaria and Vector Research, NIH-NIAID, Rockville, Maryland, USA
| | - Jose Ribeiro
- Laboratory of Malaria and Vector Research, NIH-NIAID, Rockville, Maryland, USA
| | - John F Andersen
- Laboratory of Malaria and Vector Research, NIH-NIAID, Rockville, Maryland, USA.
| |
Collapse
|
11
|
Guerrero D, Cantaert T, Missé D. Aedes Mosquito Salivary Components and Their Effect on the Immune Response to Arboviruses. Front Cell Infect Microbiol 2020; 10:407. [PMID: 32850501 PMCID: PMC7426362 DOI: 10.3389/fcimb.2020.00407] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 06/30/2020] [Indexed: 12/25/2022] Open
Abstract
Vector-borne diseases are responsible for over a billion infections each year and nearly one million deaths. Mosquito-borne dengue virus, West Nile, Japanese encephalitis, Zika, Chikungunya, and Rift Valley Fever viruses constitute major public health problems in regions with high densities of arthropod vectors. During the initial step of the transmission cycle, vector, host, and virus converge at the bite site, where local immune cells interact with the vector's saliva. Hematophagous mosquito saliva is a mixture of bioactive components known to modulate vertebrate hemostasis, immunity, and inflammation during the insect's feeding process. The capacity of mosquito saliva to modulate the host immune response has been well-studied over the last few decades and has led to the consensus that the presence of saliva is linked to the enhancement of virus transmission, host susceptibility, disease progression, viremia levels, and mortality. We review some of the major aspects of the interactions between mosquito saliva and the host immune response that may be useful for future studies on the control of arboviruses.
Collapse
Affiliation(s)
- David Guerrero
- Immunology Unit, Institut Pasteur du Cambodge, Institut Pasteur International Network, Phnom Penh, Cambodia
| | - Tineke Cantaert
- Immunology Unit, Institut Pasteur du Cambodge, Institut Pasteur International Network, Phnom Penh, Cambodia
| | - Dorothée Missé
- MIVEGEC, IRD, University of Montpellier, CNRS, Montpellier, France
| |
Collapse
|
12
|
Saab NAA, Nascimento AAS, Queiroz DC, da Cunha IGM, Filho AAP, D'Ávila Pessoa GC, Koerich LB, Pereira MH, Sant'Anna MRV, Araújo RN, Gontijo NF. How Lutzomyia longipalpis deals with the complement system present in the ingested blood: The role of soluble inhibitors and the adsorption of factor H by midgut. JOURNAL OF INSECT PHYSIOLOGY 2020; 120:103992. [PMID: 31816296 DOI: 10.1016/j.jinsphys.2019.103992] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 12/03/2019] [Accepted: 12/04/2019] [Indexed: 06/10/2023]
Abstract
Complement inhibitors are present in all hematophagous arthropods. Lutzomyia longipalpis is an important vector of Leishmania infantum, the etiologic agent of visceral leishmaniasis in the Americas. Studies with this vector identified complement inhibitors and respective inhibitory mechanisms. Despite the studies conducted with L. longipalpis, there is a gap in the knowledge about what happens in vivo with the complement present in the blood ingested. The experiments reported here show that the soluble inhibitor present in the intestinal lumen can act on the classical pathway of the human complement system by inhibiting the cascade soon after the activation of the C4 component. This means that this inhibitor can inhibit both the classical and lectin pathways. In the absence of salivary or gut inhibitors, the intestinal epithelium can activate the alternative pathway. At the same time, it can activate the lectin and the classical pathways by binding of MBL as well as by an antibody-independent C1 deposition mechanism. Without the salivary and intestinal inhibitors, the sand fly midgut epithelium may be more susceptible to complement attack as indicated by the C9/C3 deposition ratio when compared with intestines after a blood feed on a human host. In L. longipalpis, most of the C3 molecules present inside the midgut after a blood meal are found in their native form (not activated C3) or are present as iC3b (its inactivated form). C3b inactivation to iC3b, on the intestinal surface, is probably performed by a mechanism involving the uptake of factor H by the intestinal epithelium. Factor H is a negative complement regulator present in the plasma. Collectively, these results indicate how the complement inhibitors are necessary for a successful hematophagy in a sand fly model.
Collapse
Affiliation(s)
- Natália Alvim Araújo Saab
- Laboratório de Fisiologia de Insetos Hematófagos, Departamento de Parasitologia/ICB, Universidade Federal de Minas Gerais, Caixa Postal 486, 31270-901 Belo Horizonte, MG, Brazil
| | - Alexandre Alves Souza Nascimento
- Laboratório de Fisiologia de Insetos Hematófagos, Departamento de Parasitologia/ICB, Universidade Federal de Minas Gerais, Caixa Postal 486, 31270-901 Belo Horizonte, MG, Brazil
| | - Daniel Costa Queiroz
- Laboratório de Fisiologia de Insetos Hematófagos, Departamento de Parasitologia/ICB, Universidade Federal de Minas Gerais, Caixa Postal 486, 31270-901 Belo Horizonte, MG, Brazil
| | - Isabella Goés Mantini da Cunha
- Laboratório de Fisiologia de Insetos Hematófagos, Departamento de Parasitologia/ICB, Universidade Federal de Minas Gerais, Caixa Postal 486, 31270-901 Belo Horizonte, MG, Brazil
| | - Adalberto Alves Pereira Filho
- Laboratório de Fisiologia de Insetos Hematófagos, Departamento de Parasitologia/ICB, Universidade Federal de Minas Gerais, Caixa Postal 486, 31270-901 Belo Horizonte, MG, Brazil
| | - Grasielle Caldas D'Ávila Pessoa
- Laboratório de Fisiologia de Insetos Hematófagos, Departamento de Parasitologia/ICB, Universidade Federal de Minas Gerais, Caixa Postal 486, 31270-901 Belo Horizonte, MG, Brazil
| | - Leonardo Barbosa Koerich
- Laboratório de Fisiologia de Insetos Hematófagos, Departamento de Parasitologia/ICB, Universidade Federal de Minas Gerais, Caixa Postal 486, 31270-901 Belo Horizonte, MG, Brazil
| | - Marcos Horácio Pereira
- Laboratório de Fisiologia de Insetos Hematófagos, Departamento de Parasitologia/ICB, Universidade Federal de Minas Gerais, Caixa Postal 486, 31270-901 Belo Horizonte, MG, Brazil.
| | - Mauricio Roberto Viana Sant'Anna
- Laboratório de Fisiologia de Insetos Hematófagos, Departamento de Parasitologia/ICB, Universidade Federal de Minas Gerais, Caixa Postal 486, 31270-901 Belo Horizonte, MG, Brazil
| | - Ricardo Nascimento Araújo
- Laboratório de Fisiologia de Insetos Hematófagos, Departamento de Parasitologia/ICB, Universidade Federal de Minas Gerais, Caixa Postal 486, 31270-901 Belo Horizonte, MG, Brazil.
| | - Nelder Figueiredo Gontijo
- Laboratório de Fisiologia de Insetos Hematófagos, Departamento de Parasitologia/ICB, Universidade Federal de Minas Gerais, Caixa Postal 486, 31270-901 Belo Horizonte, MG, Brazil.
| |
Collapse
|
13
|
Mendes-Sousa AF, Rocha Filho EDA, Macêdo MA, Barros VC. Anti-complement activity in salivary glands and midgut of Chagas disease vector, Panstrongylus megistus (Hemiptera, Triatominae). Rev Inst Med Trop Sao Paulo 2019; 61:e38. [PMID: 31411268 PMCID: PMC6690578 DOI: 10.1590/s1678-9946201961038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 07/01/2019] [Indexed: 11/21/2022] Open
Abstract
The triatomine insect Panstrongylus megistus , one of the most
important Chagas disease vectors in Brazil, presents salivary molecules
pharmacologically active to counteract homeostatic responses from the host,
including inhibitors of the human complement system, a major effector of immune
responses. The aim of the present study was to investigate the effect of
P. megistus salivary gland extract (SGE) on the complement
system from different host species and characterize the inhibitory effect of SGE
and intestinal contents on human complement. Glands and midguts from fourth
instar nymphs were used. Hemolytic assays were performed with sheep erythrocytes
as complement activators by using human, rats and chickens sera in the presence
or absence of SGE. An ELISA assay was carried out detect deposition of the C3b
component on IgG- or agarose-sensitized microplates, in the presence or absence
of SGE or midgut contents. P. megistus SGE was able to
significantly inhibit the complement of the three studied species (human, rat
and chiken). Both, SGE and midgut contents inhibited C3b deposition in either
the classical or the alternative pathways. As conclusions, SGE and midgut from
P. megistus possess anti-complement activity. The
inhibitors are effective against different host species and act on the initial
steps of the complement system cascade. These inhibitors may have a role in
blood feeding and Trypanosoma cruzi transmission by the
vector.
Collapse
|
14
|
Scarpassa VM, Debat HJ, Alencar RB, Saraiva JF, Calvo E, Arcà B, Ribeiro JMC. An insight into the sialotranscriptome and virome of Amazonian anophelines. BMC Genomics 2019; 20:166. [PMID: 30832587 PMCID: PMC6399984 DOI: 10.1186/s12864-019-5545-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 02/18/2019] [Indexed: 01/17/2023] Open
Abstract
Background Saliva of mosquitoes contains anti-platelet, anti-clotting, vasodilatory, anti-complement and anti-inflammatory substances that help the blood feeding process. The salivary polypeptides are at a fast pace of evolution possibly due to their relative lack of structural constraint and possibly also by positive selection on their genes leading to evasion of host immune pressure. Results In this study, we used deep mRNA sequence to uncover for the first time the sialomes of four Amazonian anophelines species (Anopheles braziliensis, A. marajorara, A. nuneztovari and A. triannulatus) and extend the knowledge of the A. darlingi sialome. Two libraries were generated from A. darlingi mosquitoes, sampled from two localities separated ~ 1100 km apart. A total of 60,016 sequences were submitted to GenBank, which will help discovery of novel pharmacologically active polypeptides and the design of specific immunological markers of mosquito exposure. Additionally, in these analyses we identified and characterized novel phasmaviruses and anpheviruses associated to the sialomes of A. triannulatus, A. marajorara and A. darlingi species. Conclusions Besides their pharmacological properties, which may be exploited for the development of new drugs (e.g. anti-thrombotics), salivary proteins of blood feeding arthropods may be turned into tools to prevent and/or better control vector borne diseases; for example, through the development of vaccines or biomarkers to evaluate human exposure to vector bites. The sialotranscriptome study reported here provided novel data on four New World anopheline species and allowed to extend our knowledge on the salivary repertoire of A. darlingi. Additionally, we discovered novel viruses following analysis of the transcriptomes, a procedure that should become standard within future RNAseq studies. Electronic supplementary material The online version of this article (10.1186/s12864-019-5545-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Vera Margarete Scarpassa
- Laboratório de Genética de Populações e Evolução de Mosquitos Vetores de Malária e Dengue, Coordenação de Biodiversidade, Instituto Nacional de Pesquisas da Amazônia, Manaus, Amazonas, Brazil
| | - Humbeto Julio Debat
- Instituto de Patología Vegetal, Centro de Investigaciones Agropecuarias, Instituto Nacional de Tecnología Agropecuaria (IPAVE-CIAP-INTA), Córdoba, Argentina
| | - Ronildo Baiatone Alencar
- Laboratório de Genética de Populações e Evolução de Mosquitos Vetores de Malária e Dengue, Coordenação de Biodiversidade, Instituto Nacional de Pesquisas da Amazônia, Manaus, Amazonas, Brazil
| | - José Ferreira Saraiva
- Laboratório de Genética de Populações e Evolução de Mosquitos Vetores de Malária e Dengue, Coordenação de Biodiversidade, Instituto Nacional de Pesquisas da Amazônia, Manaus, Amazonas, Brazil
| | - Eric Calvo
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Bruno Arcà
- Department of Public Health and Infectious Diseases, Division of Parasitology, Sapienza University of Rome, Rome, Italy
| | - José M C Ribeiro
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA.
| |
Collapse
|
15
|
Arcà B, Ribeiro JM. Saliva of hematophagous insects: a multifaceted toolkit. CURRENT OPINION IN INSECT SCIENCE 2018; 29:102-109. [PMID: 30551815 DOI: 10.1016/j.cois.2018.07.012] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 07/20/2018] [Indexed: 06/09/2023]
Abstract
Transcriptomic, proteomic and genomic studies significantly improved our understanding of the complexity of blood feeding insect saliva providing unparalleled evolutionary insights. Salivary genes appeared to be under strong selective pressure with gene duplication and functional diversification being a powerful driver in the evolution of novel salivary genes/functions. The first insect salivary proteins responsible for complement inhibition were identified and a widespread mechanism of action shared by unrelated salivary protein families was recognized and named kratagonism. microRNAs were for the first time described in the saliva of a few blood feeding arthropods raising intriguing questions on their possible contribution to vertebrate host manipulation and pathogen transmission and further emphasizing how much we still have to learn on blood feeding insect saliva.
Collapse
Affiliation(s)
- Bruno Arcà
- Department of Public Health and Infectious Diseases, "Sapienza" University, Piazzale Aldo Moro 5, 00185 Rome, Italy.
| | - Josè Mc Ribeiro
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, 12735 Twinbrook Parkway, Rockville, MD 20852, USA
| |
Collapse
|
16
|
Mendes-Sousa AF, Vale VF, Queiroz DC, Pereira-Filho AA, da Silva NCS, Koerich LB, Moreira LA, Pereira MH, Sant'Anna MR, Araújo RN, Andersen J, Valenzuela JG, Gontijo NF. Inhibition of the complement system by saliva of Anopheles (Nyssorhynchus) aquasalis. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2018; 92:12-20. [PMID: 29128668 PMCID: PMC6318795 DOI: 10.1016/j.ibmb.2017.11.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 10/19/2017] [Accepted: 11/07/2017] [Indexed: 06/07/2023]
Abstract
Anopheline mosquitoes are vectors of malaria parasites. Their saliva contains anti-hemostatic and immune-modulator molecules that favor blood feeding and parasite transmission. In this study, we describe the inhibition of the alternative pathway of the complement system (AP) by Anopheles aquasalis salivary gland extracts (SGE). According to our results, the inhibitor present in SGE acts on the initial step of the AP blocking deposition of C3b on the activation surfaces. Properdin, which is a positive regulatory molecule of the AP, binds to SGE. When SGE was treated with an excess of properdin, it was unable to inhibit the AP. Through SDS-PAGE analysis, A. aquasalis presented a salivary protein with the same molecular weight as recombinant complement inhibitors belonging to the SG7 family described in the saliva of other anopheline species. At least some SG7 proteins bind to properdin and are AP inhibitors. Searching for SG7 proteins in the A. aquasalis genome, we retrieved a salivary protein that shared an 85% identity with albicin, which is the salivary alternative pathway inhibitor from A. albimanus. This A. aquasalis sequence was also very similar (81% ID) to the SG7 protein from A. darlingi, which is also an AP inhibitor. Our results suggest that the salivary complement inhibitor from A. aquasalis is an SG7 protein that can inhibit the AP by binding to properdin and abrogating its stabilizing activity. Albicin, which is the SG7 from A. albimanus, can directly inhibit AP convertase. Given the high similarity of SG7 proteins, the SG7 from A. aquasalis may also directly inhibit AP convertase in the absence of properdin.
Collapse
Affiliation(s)
| | - Vladimir Fazito Vale
- Departamento de Parasitologia, Instituto de Ciências Biológicas, UFMG, Belo Horizonte, MG, Brazil.
| | - Daniel Costa Queiroz
- Departamento de Parasitologia, Instituto de Ciências Biológicas, UFMG, Belo Horizonte, MG, Brazil.
| | | | | | - Leonardo Barbosa Koerich
- Departamento de Parasitologia, Instituto de Ciências Biológicas, UFMG, Belo Horizonte, MG, Brazil.
| | | | - Marcos Horácio Pereira
- Departamento de Parasitologia, Instituto de Ciências Biológicas, UFMG, Belo Horizonte, MG, Brazil.
| | | | | | - John Andersen
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA.
| | - Jesus Gilberto Valenzuela
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA.
| | | |
Collapse
|
17
|
Mendes-Sousa AF, do Vale VF, Silva NCS, Guimaraes-Costa AB, Pereira MH, Sant'Anna MRV, Oliveira F, Kamhawi S, Ribeiro JMC, Andersen JF, Valenzuela JG, Araujo RN. The Sand Fly Salivary Protein Lufaxin Inhibits the Early Steps of the Alternative Pathway of Complement by Direct Binding to the Proconvertase C3b-B. Front Immunol 2017; 8:1065. [PMID: 28912782 PMCID: PMC5583147 DOI: 10.3389/fimmu.2017.01065] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 08/16/2017] [Indexed: 02/03/2023] Open
Abstract
Saliva of the blood feeding sand fly Lutzomyia longipalpis was previously shown to inhibit the alternative pathway (AP) of the complement system. Here, we have identified Lufaxin, a protein component in saliva, as the inhibitor of the AP. Lufaxin inhibited the deposition of C3b, Bb, Properdin, C5b, and C9b on agarose-coated plates in a dose-dependent manner. It also inhibited the activation of factor B in normal serum, but had no effect on the components of the membrane attack complex. Surface plasmon resonance (SPR) experiments demonstrated that Lufaxin stabilizes the C3b-B proconvertase complex when passed over a C3b surface in combination with factor B. Lufaxin was also shown to inhibit the activation of factor B by factor D in a reconstituted C3b-B, but did not inhibit the activation of C3 by reconstituted C3b-Bb. Proconvertase stabilization does not require the presence of divalent cations, but addition of Ni2+ increases the stability of complexes formed on SPR surfaces. Stabilization of the C3b-B complex to prevent C3 convertase formation (C3b-Bb formation) is a novel mechanism that differs from previously described strategies used by other organisms to inhibit the AP of the host complement system.
Collapse
Affiliation(s)
- Antonio F Mendes-Sousa
- Physiology of Hematophagous Insects Laboratory, Department of Parasitology, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.,Campus Senador Helvídio Nunes de Barros, Universidade Federal do Piauí, Picos, Piauí, Brazil
| | - Vladimir Fazito do Vale
- Physiology of Hematophagous Insects Laboratory, Department of Parasitology, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.,Laboratory of Simuliids and Onchocerciasis, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Naylene C S Silva
- Physiology of Hematophagous Insects Laboratory, Department of Parasitology, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Anderson B Guimaraes-Costa
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, United States
| | - Marcos H Pereira
- Physiology of Hematophagous Insects Laboratory, Department of Parasitology, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.,Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Mauricio R V Sant'Anna
- Physiology of Hematophagous Insects Laboratory, Department of Parasitology, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.,Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fabiano Oliveira
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, United States
| | - Shaden Kamhawi
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, United States
| | - José M C Ribeiro
- Vector Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, United States
| | - John F Andersen
- Vector Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, United States
| | - Jesus G Valenzuela
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, United States
| | - Ricardo N Araujo
- Physiology of Hematophagous Insects Laboratory, Department of Parasitology, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.,Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
18
|
Arcà B, Lombardo F, Struchiner CJ, Ribeiro JMC. Anopheline salivary protein genes and gene families: an evolutionary overview after the whole genome sequence of sixteen Anopheles species. BMC Genomics 2017; 18:153. [PMID: 28193177 PMCID: PMC5307786 DOI: 10.1186/s12864-017-3579-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 02/09/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Mosquito saliva is a complex cocktail whose pharmacological properties play an essential role in blood feeding by counteracting host physiological response to tissue injury. Moreover, vector borne pathogens are transmitted to vertebrates and exposed to their immune system in the context of mosquito saliva which, in virtue of its immunomodulatory properties, can modify the local environment at the feeding site and eventually affect pathogen transmission. In addition, the host antibody response to salivary proteins may be used to assess human exposure to mosquito vectors. Even though the role of quite a few mosquito salivary proteins has been clarified in the last decade, we still completely ignore the physiological role of many of them as well as the extent of their involvement in the complex interactions taking place between the mosquito vectors, the pathogens they transmit and the vertebrate host. The recent release of the genomes of 16 Anopheles species offered the opportunity to get insights into function and evolution of salivary protein families in anopheline mosquitoes. RESULTS Orthologues of fifty three Anopheles gambiae salivary proteins were retrieved and annotated from 18 additional anopheline species belonging to the three subgenera Cellia, Anopheles, and Nyssorhynchus. Our analysis included 824 full-length salivary proteins from 24 different families and allowed the identification of 79 novel salivary genes and re-annotation of 379 wrong predictions. The comparative, structural and phylogenetic analyses yielded an unprecedented view of the anopheline salivary repertoires and of their evolution over 100 million years of anopheline radiation shedding light on mechanisms and evolutionary forces that contributed shaping the anopheline sialomes. CONCLUSIONS We provide here a comprehensive description, classification and evolutionary overview of the main anopheline salivary protein families and identify two novel candidate markers of human exposure to malaria vectors worldwide. This anopheline sialome catalogue, which is easily accessible as hyperlinked spreadsheet, is expected to be useful to the vector biology community and to improve the capacity to gain a deeper understanding of mosquito salivary proteins facilitating their possible exploitation for epidemiological and/or pathogen-vector-host interaction studies.
Collapse
Affiliation(s)
- Bruno Arcà
- Department of Public Health and Infectious Diseases - Division of Parasitology, Sapienza University, Piazzale Aldo Moro 5, 00185, Rome, Italy.
| | - Fabrizio Lombardo
- Department of Public Health and Infectious Diseases - Division of Parasitology, Sapienza University, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Claudio J Struchiner
- Fundação Oswaldo Cruz, Avenida Brasil, 4365, Rio de Janeiro, Brazil.,Instituto de Medicina Social, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - José M C Ribeiro
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, 12735 Twinbrook Parkway, Rockville, MD, 20852, USA
| |
Collapse
|