1
|
Prince AL, Yin CC, Enos ME, Felices M, Berg LJ. The Tec kinases Itk and Rlk regulate conventional versus innate T-cell development. Immunol Rev 2009; 228:115-31. [PMID: 19290924 PMCID: PMC2669323 DOI: 10.1111/j.1600-065x.2008.00746.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Tec family kinases are important components of antigen receptor signaling pathways in B cells, T cells, and mast cells. In T cells, three members of this family, inducible T-cell kinase (Itk), resting lymphocyte kinase (Rlk), and Tec, are expressed. In the absence of Itk and Rlk, T-cell receptor signaling is impaired, with defects in mitogen-activated protein kinase activation, Ca(2+) mobilization, and actin polymerization. During T-cell development in the thymus, no role has been found for these kinases in the CD4(+) versus CD8(+) T-cell lineage decision; however, several studies indicate that Itk and Rlk contribute to the signaling leading to positive and negative selection. In addition, we and others have recently described an important role for Itk and Rlk in the development of conventional as opposed to innate CD4(+) and CD8(+) T cells. Natural killer T and gammadelta T-cell populations are also altered in Itk- and Rlk/Itk-deficient mice. These findings strongly suggest that the strength of T-cell receptor signaling during development determines whether T cells mature into conventional versus innate lymphocyte lineages. This lineage decision is also influenced by signaling via signaling lymphocytic activation molecule (SLAM) family receptors. Here we discuss these two signaling pathways that each contribute to conventional versus innate T-cell lineage commitment.
Collapse
Affiliation(s)
- Amanda L Prince
- Department of Pathology, University of Massachussets Medical School, Worcester, MA 01655, USA
| | | | | | | | | |
Collapse
|
2
|
Kattman SJ, Lukin KR, Oh JZ, Berg RE, Staerz UD. Maturational stage-dependent thymocyte responses to TCR engagement. Eur J Immunol 2005; 35:2051-60. [PMID: 15915541 DOI: 10.1002/eji.200425293] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Thymocyte positive and negative selection are dependent on avidity-driven TCR-mediated recognition events in the thymus. High-avidity recognition events result in negative selection, while low-avidity recognition events result in positive selection. However, it has not been established how thymocytes maturation stages affect their responses to TCR signals of different avidities. We gained insight into this question when we reduced thymocyte selection to an in vitro system, in which full maturation of developmentally synchronized immature double-positive thymocytes was induced on a cloned line of thymic epithelial cells. Our analysis of the kinetics of thymocyte development supports a multi-phasic model of thymic selection. In it, thymocyte maturation stages as well as interaction avidity control the outcome TCR stimulation. Positive selection is initiated during a primary recognition event that proceeds independently of the TCR avidity. During a secondary recognition event the final fate of thymocyte, full maturation versus negative selection, is determined by TCR avidity.
Collapse
Affiliation(s)
- Steven J Kattman
- Integrated Department of Immunology, National Jewish Medical and Research Center, Denver, CO, USA
| | | | | | | | | |
Collapse
|
3
|
Abstract
Our understanding of the classical MHC class I molecules (MHC class Ia molecules) has long focused on their extreme polymorphism. These molecules present peptides to T cells and are central to discrimination between self and non-self. By contrast, the functions of the non-polymorphic MHC class I molecules (MHC class Ib molecules) have been elusive, but emerging evidence reveals that, in addition to antigen presentation, MHC class Ib molecules are involved in immunoregulation. As we discuss here, the subset of MHC class Ib molecules that presents peptides to T cells bridges innate and acquired immunity, and this provides insights into the origins of acquired immunity.
Collapse
Affiliation(s)
- John R Rodgers
- Department of Immunology, Baylor College of Medicine, Houston, Texas 77030, USA.
| | | |
Collapse
|
4
|
Santori FR, Holmberg K, Ostrov D, Gascoigne NRJ, Vukmanović S. Distinct footprints of TCR engagement with highly homologous ligands. THE JOURNAL OF IMMUNOLOGY 2004; 172:7466-75. [PMID: 15187125 DOI: 10.4049/jimmunol.172.12.7466] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
T cell receptor engagement promotes proliferation, differentiation, survival, or death of T lymphocytes. The affinity/avidity of the TCR ligand and the maturational stage of the T cell are thought to be principal determinants of the outcome of TCR engagement. We demonstrate in this study that the same mouse TCR preferentially uses distinct residues of homologous peptides presented by the MHC molecules to promote specific cellular responses. The preference for distinct TCR contacts depends on neither the affinity/avidity of TCR engagement (except in the most extreme ranges), nor the maturity of engaged T cells. Thus, different portions of the TCR ligand appear capable of biasing T cells toward specific biological responses. These findings explain differences in functional versatility of TCR ligands, as well as anomalies in the relationship between affinity/avidity of the TCR for the peptide/MHC and cellular responses of T cells.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antigen Presentation
- Epitope Mapping
- Epitopes, T-Lymphocyte/chemistry
- Epitopes, T-Lymphocyte/physiology
- Ligands
- Mice
- Mice, Transgenic
- Models, Molecular
- Peptides/chemical synthesis
- Peptides/immunology
- Protein Binding
- Protein Footprinting
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Antigen, T-Cell/physiology
- Structure-Activity Relationship
- T-Lymphocyte Subsets
Collapse
Affiliation(s)
- Fabio R Santori
- Michael Heidelberger Division of Immunology, Department of Pathology and New York University Cancer Center, New York University School of Medicine, New York, NY 10016, USA
| | | | | | | | | |
Collapse
|
5
|
Ploss A, Lauvau G, Contos B, Kerksiek KM, Guirnalda PD, Leiner I, Lenz LL, Bevan MJ, Pamer EG. Promiscuity of MHC class Ib-restricted T cell responses. THE JOURNAL OF IMMUNOLOGY 2004; 171:5948-55. [PMID: 14634106 PMCID: PMC2791464 DOI: 10.4049/jimmunol.171.11.5948] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Murine infection with the Gram-positive intracellular bacterium Listeria monocytogenes activates CD8(+) T cells that recognize bacterially derived N-formyl methionine peptides in the context of H2-M3 MHC class Ib molecules. Three peptides, fMIGWII, fMIVIL, and fMIVTLF, are targets of L. monocytogenes-specific CD8(+) T cells. To investigate epitope cross-recognition by H2-M3-restricted CD8(+) T cells, we deleted the sequence encoding fMIGWII from a virulent strain of L. monocytogenes. Infection with fMIGWII-deficient L. monocytogenes unexpectedly primed CD8(+) T cells that stain with fMIGWII/H2-M3 tetramers and lyse fMIGWII-coated target cells in vivo. Because the fMIGWII sequence is nonredundant, we speculated that other bacterially derived Ags are priming these responses. HPLC peptide fractionation of bacterial culture supernatants revealed several distinct L. monocytogenes-derived peptides that are recognized by fMIGWII-specific T cells. Our results demonstrate that the dominant H2-M3-restricted CD8(+) T cell population, although reactive with fMIGWII, is primed by other, non-fMIGWII peptides derived from L. monocytogenes. Although this degree of Ag receptor promiscuity is unusual for the adaptive immune system, it may be a more common feature of T cell responses restricted by nonpolymorphic MHC class Ib molecules.
Collapse
MESH Headings
- Animals
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- CD8-Positive T-Lymphocytes/microbiology
- Cell Line
- Cell Line, Tumor
- Clone Cells
- Cytotoxicity, Immunologic
- Epitopes, T-Lymphocyte/genetics
- Epitopes, T-Lymphocyte/immunology
- Epitopes, T-Lymphocyte/metabolism
- Female
- Histocompatibility Antigens Class I/genetics
- Histocompatibility Antigens Class I/immunology
- Histocompatibility Antigens Class I/metabolism
- Immunodominant Epitopes/genetics
- Immunodominant Epitopes/immunology
- Immunodominant Epitopes/metabolism
- Injections, Intravenous
- Ligands
- Listeria monocytogenes/genetics
- Listeria monocytogenes/immunology
- Mast-Cell Sarcoma/immunology
- Mice
- Mice, Inbred C57BL
- Sequence Deletion
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- T-Lymphocyte Subsets/microbiology
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Cytotoxic/metabolism
- T-Lymphocytes, Cytotoxic/microbiology
Collapse
Affiliation(s)
- Alexander Ploss
- Infectious Diseases Service, Department of Medicine and Laboratory of Antimicrobial Immunity, Immunology Program, Sloan-Kettering Institute, Memorial Sloan-Kettering Cancer Center, New York, NY 10021
- Weill Graduate School of Medical Sciences of Cornell University, Immunology Program, New York, NY 10021
| | - Gregoire Lauvau
- Institute National de la Santé et de la Recherche Médicale-E0344, Université de Nice-Sophia Antipolis, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne Sophia-Antipolis, France
| | - Brian Contos
- Section of Immunobiology, Yale University School of Medicine, New Haven, CT 06520
| | | | | | - Ingrid Leiner
- Infectious Diseases Service, Department of Medicine and Laboratory of Antimicrobial Immunity, Immunology Program, Sloan-Kettering Institute, Memorial Sloan-Kettering Cancer Center, New York, NY 10021
| | - Laurel L. Lenz
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
| | - Michael J. Bevan
- Department of Immunology and Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195
| | - Eric G. Pamer
- Infectious Diseases Service, Department of Medicine and Laboratory of Antimicrobial Immunity, Immunology Program, Sloan-Kettering Institute, Memorial Sloan-Kettering Cancer Center, New York, NY 10021
- Address correspondence and reprint requests to Dr. Eric G. Pamer, Infectious Diseases Service, Department of Medicine and Laboratory of Antimicrobial Immunity, Immunology Program, Sloan-Kettering Institute, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10021.
| |
Collapse
|
6
|
Abstract
A functional immune system requires the selection of T lymphocytes expressing receptors that are major histocompatibility complex restricted but tolerant to self-antigens. This selection occurs predominantly in the thymus, where lymphocyte precursors first assemble a surface receptor. In this review we summarize the current state of the field regarding the natural ligands and molecular factors required for positive and negative selection and discuss a model for how these disparate outcomes can be signaled via the same receptor. We also discuss emerging data on the selection of regulatory T cells. Such cells require a high-affinity interaction with self-antigens, yet differentiate into regulatory cells instead of being eliminated.
Collapse
Affiliation(s)
- Timothy K Starr
- Center for Immunology and the Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis 55455, USA.
| | | | | |
Collapse
|
7
|
Urdahl KB, Sun JC, Bevan MJ. Positive selection of MHC class Ib-restricted CD8(+) T cells on hematopoietic cells. Nat Immunol 2002; 3:772-9. [PMID: 12089507 PMCID: PMC2782383 DOI: 10.1038/ni814] [Citation(s) in RCA: 132] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Unlike conventional CD8(+) T cells, major histocompatibility complex (MHC) class Ib-restricted CD8(+) T cells show an activated phenotype in uninfected mice and respond rapidly to foreign invaders. The underlying factors that contribute to these differences are not well understood. We show here that the activated phenotype of MHC class Ib-restricted CD8(+) T cells was partially acquired as a result of interactions in the thymus and reflected an increased capacity to be selected via interactions with MHC molecules on hematopoietic cells. Using bone marrow-chimeric mice, we have shown that MHC class Ib-restricted, but not MHC class Ia-restricted, CD8(+) T cells specific for Listeria monocytogenes were efficiently selected when MHC class I was expressed only on hematopoietic cells. Thus, the distinct functional properties of MHC class Ib-restricted versus MHC class Ia-restricted CD8(+) T cells may result, at least in part, from the different ways in which they are positively selected in the thymus.
Collapse
Affiliation(s)
- Kevin B Urdahl
- Department of Immunology and Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| | | | | |
Collapse
|
8
|
Kraj P, Pacholczyk R, Ignatowicz H, Kisielow P, Jensen P, Ignatowicz L. Positive selection of CD4(+) T cells is induced in vivo by agonist and inhibited by antagonist peptides. J Exp Med 2001; 194:407-16. [PMID: 11514598 PMCID: PMC2193504 DOI: 10.1084/jem.194.4.407] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2001] [Accepted: 06/19/2001] [Indexed: 11/04/2022] Open
Abstract
The nature of peptides that positively select T cells in the thymus remains poorly defined. Here we report an in vivo model to study the mechanisms of positive selection of CD4(+) T cells. We have restored positive selection of TCR transgenic CD4(+) thymocytes, arrested at the CD4(+)CD8(+) stage, due to the lack of the endogenously selecting peptide(s), in mice deficient for H2-M and invariant chain. A single injection of soluble agonist peptide(s) initiated positive selection of CD4(+) transgenic T cells that lasted for up to 14 days. Positively selected CD4(+) T cells repopulated peripheral lymphoid organs and could respond to the antigenic peptide. Furthermore, coinjection of the antagonist peptide significantly inhibited agonist-driven positive selection. Hence, contrary to the prevailing view, positive selection of CD4(+) thymocytes can be induced in vivo by agonist peptides and may be a result of accumulation of signals from TCR engaged by different peptides bound to major histocompatibility complex class II molecules. We have also identified a candidate natural agonist peptide that induces positive selection of CD4(+) TCR transgenic thymocytes.
Collapse
Affiliation(s)
- Piotr Kraj
- Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, GA 30912
| | - Rafal Pacholczyk
- Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, GA 30912
| | - Hanna Ignatowicz
- Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, GA 30912
| | - Pawel Kisielow
- Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, 53-114 Wroclaw, Poland
| | - Peter Jensen
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322
| | - Leszek Ignatowicz
- Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, GA 30912
| |
Collapse
|