1
|
Chear CT, Ismail IH, Chan KC, Noh LM, Kassim A, Latiff AHA, Gill SS, Ramly NH, Tan KK, Sundaraj C, Choo CM, Mohamed SAS, Baharin MF, Zamri AS, Yahya SNHS, Mohamad SB, Ripen AM. Clinical features and mutational analysis of X-linked agammaglobulinemia patients in Malaysia. Front Immunol 2023; 14:1252765. [PMID: 37809070 PMCID: PMC10560089 DOI: 10.3389/fimmu.2023.1252765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 09/05/2023] [Indexed: 10/10/2023] Open
Abstract
BACKGROUND Bruton's tyrosine kinase (BTK) is a cytoplasmic protein involved in the B cell development. X-linked agammaglobulinemia (XLA) is caused by mutation in the BTK gene, which results in very low or absent B cells. Affected males have markedly reduced immunoglobulin levels, which render them susceptible to recurrent and severe bacterial infections. Methods: Patients suspected with X-linked agammaglobulinemia were enrolled during the period of 2010-2018. Clinical summary, and immunological profiles of these patients were recorded. Peripheral blood samples were collected for monocyte BTK protein expression detection and BTK genetic analysis. The medical records between January 2020 and June 2023 were reviewed to investigate COVID-19 in XLA. RESULTS Twenty-two patients (from 16 unrelated families) were molecularly diagnosed as XLA. Genetic testing revealed fifteen distinct mutations, including four splicing mutations, four missense mutations, three nonsense mutations, three short deletions, and one large indel mutation. These mutations scattered throughout the BTK gene and mostly affected the kinase domain. All mutations including five novel mutations were predicted to be pathogenic or deleterious by in silico prediction tools. Genetic testing confirmed that eleven mothers and seven sisters were carriers for the disease, while three mutations were de novo. Flow cytometric analysis showed that thirteen patients had minimal BTK expression (0-15%) while eight patients had reduced BTK expression (16-64%). One patient was not tested for monocyte BTK expression due to insufficient sample. Pneumonia (n=13) was the most common manifestation, while Pseudomonas aeruginosa was the most frequently isolated pathogen from the patients (n=4). Mild or asymptomatic COVID-19 was reported in four patients. CONCLUSION This report provides the first overview of demographic, clinical, immunological and genetic data of XLA in Malaysia. The combination of flow cytometric assessment and BTK genetic analysis provides a definitive diagnosis for XLA patients, especially with atypical clinical presentation. In addition, it may also allow carrier detection and assist in genetic counselling and prenatal diagnosis.
Collapse
Affiliation(s)
- Chai Teng Chear
- Primary Immunodeficiency Unit, Allergy and Immunology Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health, Shah Alam, Selangor, Malaysia
| | - Intan Hakimah Ismail
- Clinical Immunology Unit, Department of Paediatrics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Kwai Cheng Chan
- Pediatric Department, Penang General Hospital, Ministry of Health, George Town, Penang, Malaysia
| | - Lokman Mohd Noh
- Pediatric Department, Tunku Azizah Hospital (Women and Children Hospital Kuala Lumpur), Ministry of Health, Kuala Lumpur, Malaysia
| | - Asiah Kassim
- Pediatric Department, Tunku Azizah Hospital (Women and Children Hospital Kuala Lumpur), Ministry of Health, Kuala Lumpur, Malaysia
| | | | - Sandeep Singh Gill
- Pediatric Department, Hospital Wanita Dan Kanak-Kanak Sabah, Ministry of Health, Kota Kinabalu, Sabah, Malaysia
| | - Nazatul Haslina Ramly
- Pediatric Department, Tunku Azizah Hospital (Women and Children Hospital Kuala Lumpur), Ministry of Health, Kuala Lumpur, Malaysia
| | - Kah Kee Tan
- Pediatric Department, Perdana University and Royal College of Surgeons in Ireland (PURCSI), School of Medicine, Perdana University, Kuala Lumpur, Malaysia
| | - Charlotte Sundaraj
- Pediatric Department, Hospital Putrajaya, Ministry of Health, Putrajaya, Malaysia
| | - Chong Ming Choo
- Pediatric Department, Hospital Sultan Abdul Halim, Ministry of Health, Sungai Petani, Kedah, Malaysia
| | | | - Mohd Farid Baharin
- Primary Immunodeficiency Unit, Allergy and Immunology Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health, Shah Alam, Selangor, Malaysia
| | - Amelia Suhana Zamri
- Primary Immunodeficiency Unit, Allergy and Immunology Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health, Shah Alam, Selangor, Malaysia
| | - Sharifah Nurul Husna Syed Yahya
- Primary Immunodeficiency Unit, Allergy and Immunology Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health, Shah Alam, Selangor, Malaysia
| | - Saharuddin Bin Mohamad
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur, Malaysia
- Centre of Research in Systems Biology, Structural Bioinformatics and Human Digital Imaging (CRYSTAL), Universiti Malaya, Kuala Lumpur, Malaysia
| | - Adiratna Mat Ripen
- Primary Immunodeficiency Unit, Allergy and Immunology Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health, Shah Alam, Selangor, Malaysia
| |
Collapse
|
2
|
Rivière JG, Franco-Jarava C, Martínez-Gallo M, Aguiló-Cucurull A, Blasco-Pérez L, Paramonov I, Antolín M, Martín-Nalda A, Soler-Palacín P, Colobran R. Uncovering Low-Level Maternal Gonosomal Mosaicism in X-Linked Agammaglobulinemia: Implications for Genetic Counseling. Front Immunol 2020; 11:46. [PMID: 32117230 PMCID: PMC7028698 DOI: 10.3389/fimmu.2020.00046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 01/09/2020] [Indexed: 11/20/2022] Open
Abstract
X-linked agammaglobulinemia (XLA) is a clinically and genetically well-defined immunodeficiency and the most common form of agammaglobulinemia. It is characterized by susceptibility to recurrent bacterial infections, profound hypogammaglobulinemia, and few or no circulating B cells. XLA is caused by mutations in the BTK gene, which encodes Bruton's tyrosine kinase (BTK). Because of its X-linked recessive inheritance pattern, XLA virtually only affects males, and the mother is the carrier of the mutation in 80–85% of the males with this condition. In the remaining 15–20% of the cases, the affected male is considered to have a de novo mutation. Here, we present the case of a child with a diagnosis of XLA caused by a missense mutation in the BTK gene (c.494G>A/p.C165Y). Apparently, his mother was wild type for this gene, which implied that the mutation was de novo, but careful analysis of Sanger electropherograms and the use of high-coverage massive parallel sequencing revealed low-level maternal gonosomal mosaicism. The mutation was detected in various samples from the mother (blood, urine, buccal swab, and vaginal swab) at a low frequency of 2–5%, and the status of the patient's mutation changed from de novo to inherited. This study underscores the importance of accurately establishing the parents' status on detection of an apparently de novo mutation in a patient, as inadvertent low-level mosaicism may lead to misinterpretation of the risk of recurrence, vital for genetic counseling.
Collapse
Affiliation(s)
- Jacques G Rivière
- Pediatric Infectious Diseases and Immunodeficiencies Unit, Vall d'Hebron Research Institute, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain.,Jeffrey Model Foundation Excellence Center, Barcelona, Spain
| | - Clara Franco-Jarava
- Jeffrey Model Foundation Excellence Center, Barcelona, Spain.,Immunology Division, Department of Cell Biology, Physiology and Immunology, Vall d'Hebron Research Institute, Hospital Universitari Vall d'Hebron, Autonomous University of Barcelona, Barcelona, Spain
| | - Mónica Martínez-Gallo
- Jeffrey Model Foundation Excellence Center, Barcelona, Spain.,Immunology Division, Department of Cell Biology, Physiology and Immunology, Vall d'Hebron Research Institute, Hospital Universitari Vall d'Hebron, Autonomous University of Barcelona, Barcelona, Spain
| | - Aina Aguiló-Cucurull
- Jeffrey Model Foundation Excellence Center, Barcelona, Spain.,Immunology Division, Department of Cell Biology, Physiology and Immunology, Vall d'Hebron Research Institute, Hospital Universitari Vall d'Hebron, Autonomous University of Barcelona, Barcelona, Spain
| | - Laura Blasco-Pérez
- Department of Clinical and Molecular Genetics, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Ida Paramonov
- Department of Clinical and Molecular Genetics, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - María Antolín
- Department of Clinical and Molecular Genetics, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Andrea Martín-Nalda
- Pediatric Infectious Diseases and Immunodeficiencies Unit, Vall d'Hebron Research Institute, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain.,Jeffrey Model Foundation Excellence Center, Barcelona, Spain
| | - Pere Soler-Palacín
- Pediatric Infectious Diseases and Immunodeficiencies Unit, Vall d'Hebron Research Institute, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain.,Jeffrey Model Foundation Excellence Center, Barcelona, Spain
| | - Roger Colobran
- Jeffrey Model Foundation Excellence Center, Barcelona, Spain.,Immunology Division, Department of Cell Biology, Physiology and Immunology, Vall d'Hebron Research Institute, Hospital Universitari Vall d'Hebron, Autonomous University of Barcelona, Barcelona, Spain.,Department of Clinical and Molecular Genetics, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| |
Collapse
|
3
|
Zhang YN, Gao YY, Yang SD, Cao BB, Zheng KL, Wei P, Chen LF, Chen WX. Delayed diagnosis of X-linked agammaglobulinaemia in a boy with recurrent meningitis. BMC Neurol 2019; 19:320. [PMID: 31830942 PMCID: PMC6907138 DOI: 10.1186/s12883-019-1536-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 11/19/2019] [Indexed: 02/05/2023] Open
Abstract
Background X-linked agammaglobulinaemia (XLA) is a rare inherited primary immunodeficiency disease characterized by the B cell developmental defect, caused by mutations in the gene coding for Bruton’s tyrosine kinase (BTK), which may cause serious recurrent infections. The diagnosis of XLA is sometimes challenging because a few number of patients have higher levels of serum immunoglobulins than expected. In this study, we reported an atypical case with recurrent meningitis, delayed diagnosis with XLA by genetic analysis at the second episode of meningitis at the age of 8 years. Case report An 8-year-old Chinese boy presented with fever, dizziness and recurrent vomiting for 3 days. The cerebrospinal fluid (CSF) and magnetic resonance imaging (MRI) results were suggestive of bacterial meningoencephalitis, despite the negative gram staining and cultures of the CSF. The patient was treated with broad-spectrum antibiotics and responded well to the treatment. He had history of another episode of acute pneumococci meningitis 4 years before. The respective level of Immunoglobulin G (IgG), Immunoglobulin A (IgA) and Immunoglobulin M (IgM) was 4.85 g/L, 0.93 g/L and 0.1 g/L at 1st episode, whereas 1.9 g/L, 0.27 g/L and 0 g/L at second episode. The B lymphocytes were 0.21 and 0.06% of peripheral blood lymphocytes at first and second episode respectively. Sequencing of the BTK coding regions showed that the patient had a point mutation in the intron 14, hemizyous c.1349 + 5G > A, while his mother had a heterozygous mutation. It was a splice site mutation predicted to lead to exon skipping and cause a truncated BTK protein. Conclusion Immunity function should be routinely checked in patients with severe intracranial bacterial infection. Absence of B cells even with normal level of serum immunoglobulin suggests the possibility of XLA, although this happens only in rare instances. Mutational analysis of BTK gene is crucial for accurate diagnosis to atypical patients with XLA.
Collapse
Affiliation(s)
- Ya-Ni Zhang
- Department of Neurology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9# Jin Sui Road, 510623, Guangzhou City, Guangdong Province, People's Republic of China
| | - Yuan-Yuan Gao
- Department of Neurology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9# Jin Sui Road, 510623, Guangzhou City, Guangdong Province, People's Republic of China
| | - Si-Da Yang
- Department of Neurology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9# Jin Sui Road, 510623, Guangzhou City, Guangdong Province, People's Republic of China
| | - Bin-Bin Cao
- Department of Neurology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9# Jin Sui Road, 510623, Guangzhou City, Guangdong Province, People's Republic of China
| | - Ke-Lu Zheng
- Department of Neurology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9# Jin Sui Road, 510623, Guangzhou City, Guangdong Province, People's Republic of China
| | - Ping Wei
- Department of Neurology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9# Jin Sui Road, 510623, Guangzhou City, Guangdong Province, People's Republic of China
| | - Lian-Feng Chen
- Department of Neurology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9# Jin Sui Road, 510623, Guangzhou City, Guangdong Province, People's Republic of China
| | - Wen-Xiong Chen
- Department of Neurology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9# Jin Sui Road, 510623, Guangzhou City, Guangdong Province, People's Republic of China.
| |
Collapse
|
4
|
An intron mutation in the ACVRL1 may be associated with a transcriptional regulation defect in a Chinese family with hereditary hemorrhagic telangiectasia. PLoS One 2013; 8:e58031. [PMID: 23460919 PMCID: PMC3584037 DOI: 10.1371/journal.pone.0058031] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2011] [Accepted: 01/30/2013] [Indexed: 11/27/2022] Open
Abstract
Purpose To identify a novel pathogenic gene mutation present in a Chinese family with hereditary hemorrhagic telangiectasia (HHT) and to determine if an intron mutation may influence the transcriptional activity of the ACVRL1 gene. Methods HHT family members were ascertained following the presentation of proband and involved subjects. All family members (n = 5) and 113 healthy individuals were genotyped for the variant in intron 6 c.772+27G>C of ACVRL1 gene. The genomic structure of ACVRL1 in affected HHT patients and healthy individuals was determined by long range PCR and sequencing. The expression of ACVRL1 mRNA and protein in patients with HHT was evaluated using real-time polymerase chain reaction and immunoblot analysis. Luciferase activity assay and electrophoretic mobility shift assay (EMSA) were performed to uncover the mechanism of intron-related transcriptional regulation. Results Only one novel mutation in intron 6 (c.772+27G>C) of ACVRL1 gene, no other mutation, abnormal splice, gross genomic deletion or rearrangement was found in this HHT2 family. Compared with healthy individuals, ACVRL1 mRNA and protein were significantly decreased in affected HHT2 individuals. Luciferase activity assay demonstrated that the transcriptional activity of the mutated ACVRL1 was significantly lower than that of the wild-type of intron 6; EMSA results showed that intron 6 c.772+27G>C mutation was able to inhibit the binding of transcriptional factor Sp1. Conclusions A novel intron mutation in ACVRL1 gene is associated with familial HHT2. The mechanisms may be involved in the down-regulation of ACVRL1 gene transcription.
Collapse
|
5
|
B cell-specific lentiviral gene therapy leads to sustained B-cell functional recovery in a murine model of X-linked agammaglobulinemia. Blood 2010; 115:2146-55. [PMID: 20093406 DOI: 10.1182/blood-2009-09-241869] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The immunodeficiency disorder, X-linked agammaglobulinemia (XLA), results from mutations in the gene encoding Bruton tyrosine kinase (Btk). Btk is required for pre-B cell clonal expansion and B-cell antigen receptor signaling. XLA patients lack mature B cells and immunoglobulin and experience recurrent bacterial infections only partially mitigated by life-long antibody replacement therapy. In pursuit of definitive therapy for XLA, we tested ex vivo gene therapy using a lentiviral vector (LV) containing the immunoglobulin enhancer (Emu) and Igbeta (B29) minimal promoter to drive B lineage-specific human Btk expression in Btk/Tec(-/-) mice, a strain that reproduces the features of human XLA. After transplantation of EmuB29-Btk-LV-transduced stem cells, treated mice showed significant, albeit incomplete, rescue of mature B cells in the bone marrow, peripheral blood, spleen, and peritoneal cavity, and improved responses to T-independent and T-dependent antigens. LV-treated B cells exhibited enhanced B-cell antigen receptor signaling and an in vivo selective advantage in the peripheral versus central B-cell compartment. Secondary transplantation showed sustained Btk expression, viral integration, and partial functional responses, consistent with long-term stem cell marking; and serial transplantation revealed no evidence for cellular or systemic toxicity. These findings strongly support pursuit of B lineage-targeted LV gene therapy in human XLA.
Collapse
|
6
|
Shin DM, Jo EK, Kanegane H, Futatani T, Zhao M, Song CH, Yamagishi A, Miyawaki T. Transcriptional regulatory defects in the first intron of Bruton's tyrosine kinase. Pediatr Int 2008; 50:801-5. [PMID: 19067895 DOI: 10.1111/j.1442-200x.2008.02739.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND X-linked agammaglobulinemia (XLA), characterized by the early onset of recurrent bacterial infections, profound hypogammaglobulinemia, and a markedly diminished number of peripheral B lymphocytes, is caused by mutations in the Bruton's tyrosine kinase (BTK) gene. The >600 unique mutations identified to date include single base pair substitutions, small insertions or deletions, and gross deletions. A few cases, however, have been found to have no mutations in the coding region even with reduced BTK mRNA or protein expression. Mutations in intron 1 positions +5 (G-->A) and +6 (T-->G) of the BTK gene have been identified, and these changes were associated with reduced transcriptional activity. METHODS In the present study a novel mutation in intron 1 position +5 (G-->T) was identified in a Japanese patient with XLA. The reporter constructs containing these mutations were made, and the reporter activities were measured using a luciferase assay. RESULTS All the mutant constructs were demonstrated to have reduced transcriptional activity. CONCLUSIONS Positions +5 and +6 in intron 1 of the BTK gene are critical for transcriptional activity, and defects in these regions cause XLA.
Collapse
Affiliation(s)
- Dong-Min Shin
- Department of Microbiology, College of Medicine, Chungnam National University, Daejon, Korea
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Sironi M, Menozzi G, Comi GP, Cagliani R, Bresolin N, Pozzoli U. Analysis of intronic conserved elements indicates that functional complexity might represent a major source of negative selection on non-coding sequences. Hum Mol Genet 2005; 14:2533-46. [PMID: 16037065 DOI: 10.1093/hmg/ddi257] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The non-coding portion of human genome is punctuated by a large number of multispecies conserved sequence (MCS) elements with largely unknown function. We demonstrate that MCSs are unevenly distributed in human introns with the majority of relatively short introns (< 9 kb long) displaying no or a few MCSs and that MCS density reaching up to 10% of total size in longer introns. After correction for intron length, MCSs were found to be enriched within genes involved in development and transcription, whereas depleted in immune response loci. Moreover, many central nervous system tissues show a preferential expression of MCS-rich genes and MCS enrichment significantly correlates with gene functional complexity in terms of distinct protein domains. Analysis of human-mouse orthologous pairs indicated a significant association between intronic MCS density and conservation of protein sequence, promoter regions and untranslated sequences. Moreover, MCS density correlates with the predicted occurrence of human-mouse conserved alternative splicing events. These observations suggest that evolution acts on human genes as integrated units of coding and regulatory capacity and that functional complexity might represent a major source of negative selection on non-coding sequences. To substantiate our result, we also searched previously experimentally identified intronic regulatory elements and indicate that about half of these sequences map to an MCS; in particular, support to the notion whereby mutations in MCSs can result in human genetic diseases is provided, because three previously identified intronic pathological variations were found to occur within MCSs, and human disease and cancer genes were found significantly enriched in MCSs.
Collapse
Affiliation(s)
- Manuela Sironi
- Scientific Institute IRCCS E. Medea, 23842 Bosisio Parini (LC), Italy
| | | | | | | | | | | |
Collapse
|
8
|
Jo EK, Wang Y, Kanegane H, Futatani T, Song CH, Park JK, Kim JS, Kim DS, Ahn KM, Lee SI, Park HJ, Hahn YS, Lee JH, Miyawaki T. Identification of mutations in the Bruton's tyrosine kinase gene, including a novel genomic rearrangements resulting in large deletion, in Korean X-linked agammaglobulinemia patients. J Hum Genet 2004; 48:322-326. [PMID: 12768435 DOI: 10.1007/s10038-003-0032-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2003] [Accepted: 04/08/2003] [Indexed: 10/25/2022]
Abstract
Mutations in the Bruton's tyrosine kinase ( BTK) gene are responsible for X-linked agammaglobulinemia (XLA). We identified BTK mutations in six patients with presumed XLA from unrelated Korean families. Four out of six mutations were novel: two missense mutations (P565T, C154Y), a point mutation in a splicing donor site (IVS11+1G>A), and a large deletion (a 6.1-kb deletion including BTK exons 11-18). The large deletion, identified by long-distance PCR, revealed Alu-Alu mediated recombination extended from an Alu sequence in intron 10 to another Alu sequence in intron 18, spanning a distance of 6.1 kb. The two known mutations consisted of one missense (G462D) mutation, and a point mutation in a splicing acceptor site (IVS7-9A>G). This study suggests that large genomic rearrangements involving Alu repeats are few but an important component of the spectrum of BTK mutations.
Collapse
Affiliation(s)
- Eun-Kyeong Jo
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon, Korea
| | - Yue Wang
- Department of Pediatrics, Faculty of Medicine, Toyama Medical and Pharmaceutical University, 2630 Sugitani, Toyama 930-0194, Japan
| | - Hirokazu Kanegane
- Department of Pediatrics, Faculty of Medicine, Toyama Medical and Pharmaceutical University, 2630 Sugitani, Toyama 930-0194, Japan.
| | - Takeshi Futatani
- Department of Pediatrics, Faculty of Medicine, Toyama Medical and Pharmaceutical University, 2630 Sugitani, Toyama 930-0194, Japan
| | - Chang-Hwa Song
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon, Korea
| | - Jeong-Kyu Park
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon, Korea
| | - Jung Soo Kim
- Department of Pediatrics, Chonbuk National University Medical School, Jeonbuk, Korea
| | - Dong Soo Kim
- Department of Pediatrics, Yonsei University College of Medicine, Seoul, Korea
| | - Kang-Mo Ahn
- Department of Pediatrics, Samsung Medical Center, Seoul, Korea
| | - Sang-Il Lee
- Department of Pediatrics, Samsung Medical Center, Seoul, Korea
| | - Hyeon Jin Park
- Department of Pediatrics, College of Medicine, Chungbuk National University, Chungbuk, Korea
| | - Youn Soo Hahn
- Department of Pediatrics, College of Medicine, Chungbuk National University, Chungbuk, Korea
| | - Jae-Ho Lee
- Department of Pediatrics, College of Medicine, Chungnam National University, Daejeon, Korea
| | - Toshio Miyawaki
- Department of Pediatrics, Faculty of Medicine, Toyama Medical and Pharmaceutical University, 2630 Sugitani, Toyama 930-0194, Japan
| |
Collapse
|