1
|
Skorokhod O, Barrera V, Mandili G, Costanza F, Valente E, Ulliers D, Schwarzer E. Malaria Pigment Hemozoin Impairs GM-CSF Receptor Expression and Function by 4-Hydroxynonenal. Antioxidants (Basel) 2021; 10:antiox10081259. [PMID: 34439507 PMCID: PMC8389202 DOI: 10.3390/antiox10081259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/30/2021] [Accepted: 08/04/2021] [Indexed: 11/16/2022] Open
Abstract
Malarial pigment hemozoin (HZ) generates the lipoperoxidation product 4-hydroxynonenal (4-HNE), which is known to cause dysregulation of the immune response in malaria. The inhibition of granulocyte macrophage colony-stimulating factor (GM-CSF)-dependent differentiation of dendritic cells (DC) by HZ and 4-HNE was previously described in vitro, and the GM-CSF receptor (GM-CSF R) was hypothesised to be a primary target of 4-HNE in monocytes. In this study, we show the functional impact of HZ on GM-CSF R in monocytes and monocyte-derived DC by (i) impairing GM-CSF binding by 50 ± 9% and 65 ± 14%, respectively (n = 3 for both cell types); (ii) decreasing the expression of GM-CSF R functional subunit (CD116) on monocyte’s surface by 36 ± 11% (n = 6) and in cell lysate by 58 ± 16% (n = 3); and (iii) binding of 4-HNE to distinct amino acid residues on CD116. The data suggest that defective DC differentiation in malaria is caused by GM-CSF R dysregulation and GM-CSF R modification by lipoperoxidation product 4-HNE via direct interaction with its CD116 subunit.
Collapse
Affiliation(s)
- Oleksii Skorokhod
- Department of Life Sciences and Systems Biology, University of Torino, 10123 Torino, Italy
- Correspondence:
| | - Valentina Barrera
- Department of Oncology, University of Torino, 10126 Torino, Italy; (V.B.); (G.M.); (F.C.); (E.V.); (D.U.); (E.S.)
- National Health System Blood and Transplant, 14 Estuary Banks, Liverpool GB-L24 8RB, UK
| | - Giorgia Mandili
- Department of Oncology, University of Torino, 10126 Torino, Italy; (V.B.); (G.M.); (F.C.); (E.V.); (D.U.); (E.S.)
| | - Federica Costanza
- Department of Oncology, University of Torino, 10126 Torino, Italy; (V.B.); (G.M.); (F.C.); (E.V.); (D.U.); (E.S.)
| | - Elena Valente
- Department of Oncology, University of Torino, 10126 Torino, Italy; (V.B.); (G.M.); (F.C.); (E.V.); (D.U.); (E.S.)
| | - Daniela Ulliers
- Department of Oncology, University of Torino, 10126 Torino, Italy; (V.B.); (G.M.); (F.C.); (E.V.); (D.U.); (E.S.)
| | - Evelin Schwarzer
- Department of Oncology, University of Torino, 10126 Torino, Italy; (V.B.); (G.M.); (F.C.); (E.V.); (D.U.); (E.S.)
| |
Collapse
|
2
|
Shiomi A, Usui T, Mimori T. GM-CSF as a therapeutic target in autoimmune diseases. Inflamm Regen 2016; 36:8. [PMID: 29259681 PMCID: PMC5725926 DOI: 10.1186/s41232-016-0014-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 05/10/2016] [Indexed: 12/23/2022] Open
Abstract
Granulocyte-macrophage colony-stimulating factor (GM-CSF) has been known as a hematopoietic growth factor and immune modulator. Recent studies revealed that GM-CSF also had pro-inflammatory functions and contributed to the pathogenicity of Th17 cells in the development of Th17-mediated autoimmune diseases. GM-CSF inhibition in some animal models of autoimmune diseases showed significant beneficial effects. Therefore, several agents targeting GM-CSF are being developed and are expected to be a useful strategy for the treatment of autoimmune diseases. Particularly, in clinical trials for rheumatoid arthritis (RA) patients, GM-CSF inhibition showed rapid and significant efficacy with no serious side effects. This article summarizes recent findings of GM-CSF and information of clinical trials targeting GM-CSF in autoimmune diseases.
Collapse
Affiliation(s)
- Aoi Shiomi
- Department of Rheumatology and Clinical Immunology, Graduate School of Medicine, Kyoto University, 54-Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507 Japan
| | - Takashi Usui
- Department of Rheumatology and Clinical Immunology, Graduate School of Medicine, Kyoto University, 54-Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507 Japan
| | - Tsuneyo Mimori
- Department of Rheumatology and Clinical Immunology, Graduate School of Medicine, Kyoto University, 54-Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507 Japan
| |
Collapse
|
3
|
GM-CSF as a therapeutic target in inflammatory diseases. Mol Immunol 2013; 56:675-82. [PMID: 23933508 DOI: 10.1016/j.molimm.2013.05.002] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Revised: 04/29/2013] [Accepted: 05/04/2013] [Indexed: 11/22/2022]
Abstract
GM-CSF is a well-known haemopoietic growth factor that is used in the clinic to correct neutropaenia, usually as a result of chemotherapy. GM-CSF also has many pro-inflammatory functions and recent data implicates GM-CSF as a key factor in Th17 driven autoimmune inflammatory conditions. In this review we summarize the findings that have led to the development of GM-CSF antagonists for the treatment of autoimmune diseases like rheumatoid arthritis (RA) and discuss some results of recent clinical trials of these agents.
Collapse
|
4
|
Paracrine inhibition of GM-CSF signaling by human cytomegalovirus in monocytes differentiating to dendritic cells. Blood 2011; 118:6783-92. [PMID: 22031867 DOI: 10.1182/blood-2011-02-337956] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
A primary HCMV infection or virus reactivation may cause severe disease in hosts with a deficient immune system. The virus can disturb both innate and adaptive immunity by targeting dendritic cell (DC) functions. Monocytes, the precursors of DCs in vivo (MoDCs), are the primary targets of HCMV; they can also harbor latent virus. The DCs generated from infected monocytes (CMV-MoDCs) have an altered phenotype and functional defects. We have shown that CMV-MoDCs do not secrete IL-12 in response to lipopolysaccharide stimulation, cannot ingest dead cells, induce T(H)1 differentiation, or the proliferation of naive allogeneic CD4(+) T cells. We found that the GM-CSF signaling in an entire population of CMV-MoDCs was impaired, although only half of the cells were productively infected, and that IL-6 secretion and suppressors of cytokine signaling 3 induction contributed to this bystander effect. We also showed that MoDCs derived ex vivo from monocytes of viremic patients had the same altered phenotype as CMV-MoDCs, including decreased STAT5 phosphorylation, indicating defective GM-CSF signaling. We have thus described a new mechanism of HCMV-induced immunosupression, indicated how infection may disturb both GM-CSF-dependent physiologic processes and proposed GM-CSF-based therapeutic approaches.
Collapse
|
5
|
Wang B, Lau YY, Liang M, Vainshtein I, Zusmanovich M, Lu H, Magrini F, Sleeman M, Roskos L. Mechanistic modeling of antigen sink effect for mavrilimumab following intravenous administration in patients with rheumatoid arthritis. J Clin Pharmacol 2011; 52:1150-61. [PMID: 21947370 DOI: 10.1177/0091270011412964] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Mavrilimumab is a fully human monoclonal antibody that binds to granulocyte-macrophage colony stimulating factor receptor α (GM-CSFRα) with high affinity and specificity and has potential application in various inflammatory diseases. The objective of this investigation was to develop a mechanistic population model to characterize the pharmacokinetics of mavrilimumab, the GM-CSFRα-mediated clearance, and receptor occupancy following single intravenous dosing to patients with rheumatoid arthritis. The internalization rate of mavrilimumab-GM-CSFRα complex was fixed to a value determined from quantitative confocal fluorescent imaging. The estimated typical first-order clearance and the central and peripheral distribution volumes were 3.79 mL/kg/d, 39.6 mL/kg, and 50.3 mL/kg, respectively. The systemic GM-CSFRα expression level was estimated to be 0.0782 nM, and the equilibrium dissociation constant (0.103 nM) was in good agreement with the monovalent affinity determined by surface plasmon resonance. By fitting to the observed pharmacokinetic data, the mechanistic model predicted that systemically greater than 90% GM-CSFRα blockade by mavrilimumab was achieved and maintained up to 4, 7, and 11 weeks following single 1-, 3-, and 10-mg/kg administrations, respectively. Posterior visual predictive check and bootstrapping suggest that the mechanistic model is reasonably robust and can be used to predict mavrilimumab exposure under various scenarios for future clinical trial design.
Collapse
|
6
|
Urano S, Tazawa R, Nei T, Motoi N, Watanabe M, Igarashi T, Tomita M, Nakata K. A cell free assay system estimating the neutralizing capacity of GM-CSF antibody using recombinant soluble GM-CSF receptor. J Vis Exp 2011:2742. [PMID: 21730949 DOI: 10.3791/2742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
BACKGROUNDS Previously, we demonstrated that neutralizing capacity but not the concentration of GM-CSF autoantibody was correlated with the disease severity in patients with autoimmune pulmonary alveolar proteinosis (PAP)¹⁻³. As abrogation of GM-CSF bioactivity in the lung is the likely cause for autoimmune PAP⁴⁻⁵, it is promising to measure the neutralizing capacity of GM-CSF autoantibodies for evaluating the disease severity in each patient with PAP. Until now, neutralizing capacity of GM-CSF autoantibodies has been assessed by evaluating the growth inhibition of human bone marrow cells or TF-1 cells stimulated with GM-CSF⁶⁻⁸. In the bioassay system, however, it is often problematic to obtain reliable data as well as to compare the data from different laboratories, due to the technical difficulties in maintaining the cells in a constant condition. OBJECTIVE To mimic GM-CSF binding to GM-CSF receptor on the cell surface using cell-free receptor-binding-assay. METHODS Transgenic silkworm technology was applied for obtaining a large amount for recombinant soluble GM-CSF receptor alpha (sGMRα) with high purity⁹⁻¹³. The recombinant sGMRα was contained in the hydrophilic sericin layers of silk threads without being fused to the silk proteins, and thus, we can easily extract from the cocoons in good purity with neutral aqueous solutions¹⁴(,)¹⁵. Fortunately, the oligosaccharide structures, which are critical for binding with GM-CSF, are more similar to the structures of human sGMRα than those produced by other insects or yeasts. RESULTS The cell-free assay system using sGMRα yielded the data with high plasticity and reliability. GM-CSF binding to sGMRα was dose-dependently inhibited by polyclonal GM-CSF autoantibody in a similar manner to the bioassay using TF-1 cells, indicating that our new cell-free assay system using sGMRα is more useful for the measurement of neutralizing activity of GM-CSF autoantibodies than the bioassay system using TF-1 cell or human bone marrow cells. CONCLUSIONS We established a cell-free assay quantifying the neutralizing capacity of GM-CSF autoantibody.
Collapse
Affiliation(s)
- Shinya Urano
- Bioscience Medical Research Center, Niigata University Medical and Dental Hospital
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Hayashida K, Bartlett AH, Chen Y, Park PW. Molecular and cellular mechanisms of ectodomain shedding. Anat Rec (Hoboken) 2010; 293:925-37. [PMID: 20503387 DOI: 10.1002/ar.20757] [Citation(s) in RCA: 147] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The extracellular domain of several membrane-anchored proteins is released from the cell surface as soluble proteins through a regulated proteolytic mechanism called ectodomain shedding. Cells use ectodomain shedding to actively regulate the expression and function of surface molecules, and modulate a wide variety of cellular and physiological processes. Ectodomain shedding rapidly converts membrane-associated proteins into soluble effectors and, at the same time, rapidly reduces the level of cell surface expression. For some proteins, ectodomain shedding is also a prerequisite for intramembrane proteolysis, which liberates the cytoplasmic domain of the affected molecule and associated signaling factors to regulate transcription. Ectodomain shedding is a process that is highly regulated by specific agonists, antagonists, and intracellular signaling pathways. Moreover, only about 2% of cell surface proteins are released from the surface by ectodomain shedding, indicating that cells selectively shed their protein ectodomains. This review will describe the molecular and cellular mechanisms of ectodomain shedding, and discuss its major functions in lung development and disease.
Collapse
Affiliation(s)
- Kazutaka Hayashida
- Division of Respiratory Diseases, Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | |
Collapse
|
8
|
Vordenbäumen S, Braukmann A, Petermann K, Scharf A, Bleck E, von Mikecz A, Jose J, Schneider M. Casein α s1 is expressed by human monocytes and upregulates the production of GM-CSF via p38 MAPK. THE JOURNAL OF IMMUNOLOGY 2010; 186:592-601. [PMID: 21135174 DOI: 10.4049/jimmunol.1001461] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Caseins are major constituents of mammalian milks that are thought to be exclusively expressed in mammary glands and to function primarily as a protein source, as well as to ameliorate intestinal calcium uptake. In addition, proinflammatory and immunomodulatory properties have been reported for bovine caseins. Our aim was to investigate whether human casein α s1 (CSN1S1) is expressed outside the mammary gland and possesses immunomodulatory functions in humans as well. For this purpose, CSN1S1 mRNA was detected in primary human monocytes and CD4(+) and CD8(+) T cells, but not in CD19(+) B cells. CSN1S1 protein was traceable in supernatants of cultured primary human CD14(+) monocytes by ELISA. Similarly, CSN1S1 mRNA and protein were detected in the human monocytic cell lines HL60, U937, and THP1 but not in Mono Mac 6 cells. Moreover, permeabilized human monocytes and HL60 cells could be stained by immunofluorescence, indicating intracellular expression. Recombinant human CSN1S1 was bound to the surface of Mono Mac 6 cells and upregulated the expression of GM-CSF mRNA in primary human monocytes and Mono Mac 6 cells in a time- and concentration-dependent manner. A similar increase in GM-CSF protein was found in the culture supernatants. CSN1S1-dependent upregulation of GM-CSF was specifically blocked by the addition of the p38 MAPK inhibitor ML3403. Our results indicated that human CSN1S1 may possess an immunomodulatory role beyond its nutritional function in milk. It is expressed in human monocytes and stimulates the expression of the proinflammatory cytokine GM-CSF.
Collapse
Affiliation(s)
- Stefan Vordenbäumen
- Department of Endocrinology, Diabetology and Rheumatology, Institute of Pharmaceutical Chemistry, Heinrich Heine University, Düsseldorf, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Abstract
Granulocyte macrophage colony-stimulating factor (GM-CSF) is a cytokine that promotes myeloid cell development and maturation, and dendritic cell differentiation and survival in vitro. Growing evidence supports the notion that GM-CSF has a major role in some inflammatory and autoimmune reactions and in the host's response to pulmonary infection, but few studies have addressed its functions and importance in the GI tract. Recent studies demonstrated that administration of GM-CSF can result in clinical improvement in patients with Crohn's disease. Mice deficient in GM-CSF (GM-CSF(-/-) ) developed more severe intestinal and systemic infection after an enteric infection, and more severe colitis in response to enteric exposure to dextran sodium sulfate. Both the severity of infection and colitis were largely prevented by GM-CSF administration. Such studies indicate that GM-CSF has an important role in the regulation of intestinal immune and inflammatory responses.
Collapse
Affiliation(s)
- Laia Egea
- Department of Medicine and Laboratory of Mucosal Immunology, University of California, San Diego, 9500 Gilman Dr, La Jolla, CA 92093-0623, USA
| | - Yoshihiro Hirata
- Department of Medicine and Laboratory of Mucosal Immunology, University of California, San Diego, 9500 Gilman Dr, La Jolla, CA 92093-0623, USA
| | - Martin F Kagnoff
- Department of Medicine and Laboratory of Mucosal Immunology, University of California, San Diego, 9500 Gilman Dr, La Jolla, CA 92093-0623, USA
- Department of Pediatrics, University of California, San Diego, 9500 Gilman Dr, La Jolla, CA 92093-0623, USA
| |
Collapse
|
10
|
Urano S, Kaneko C, Nei T, Motoi N, Tazawa R, Watanabe M, Tomita M, Adachi T, Kanazawa H, Nakata K. A cell-free assay to estimate the neutralizing capacity of granulocyte–macrophage colony-stimulating factor autoantibodies. J Immunol Methods 2010; 360:141-8. [DOI: 10.1016/j.jim.2010.07.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2010] [Revised: 05/21/2010] [Accepted: 07/01/2010] [Indexed: 10/19/2022]
|
11
|
Pelley JL, Nicholls CD, Beattie TL, Brown CB. Discovery and characterization of a novel splice variant of the GM-CSF receptor α subunit. Exp Hematol 2007; 35:1483-94. [PMID: 17681666 DOI: 10.1016/j.exphem.2007.06.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2006] [Revised: 06/06/2007] [Accepted: 06/06/2007] [Indexed: 10/23/2022]
Abstract
OBJECTIVE To characterize a novel splice variant of the alpha subunit of the granulocyte-macrophage colony-stimulating factor (GM-CSF) receptor (GMRalpha), which we discovered in human neutrophils. METHODS We used reverse transcriptase polymerase chain reaction to identify, characterize, and examine the expression of a novel splice variant of the GMRalpha transcript. At the protein level, surface plasmon resonance was used to measure the affinity of a recombinant soluble form of the novel GMRalpha protein for GM-CSF ligand. The full-length novel GMRalpha protein was expressed in a recombinant cell culture system, and its expression and localization were examined using Western blotting, I(125) GM-CSF binding assays, flow cytometry, and a soluble GMRalpha enzyme-linked immunosorbent assay. RESULTS The novel GMRalpha transcript identified herein contains a previously undescribed exon of the GMRalpha gene; this exon derives from an Alu DNA repeat element, and is alternatively spliced in the novel GMRalpha transcript. Inclusion of this 102 nucleotide exon results in translation of a protein product, which we have named Alu-GMRalpha. Alu-GMRalpha is identical to cell surface GMRalpha, but additionally contains a 34 amino-acid insert in the juxtamembrane region of the extracellular domain of GMRalpha. Functionally, the Alu-GMRalpha-specific epitope does not modify the ability of the protein to bind GM-CSF, but rather appears to be preferentially targeted by ectodomain proteases to mediate the release of a third soluble GM-CSF receptor into the extracellular space. CONCLUSIONS This study provides the first example of a cytokine receptor system in which soluble receptors are produced by three distinct mechanisms. Our results highlight the importance of soluble GMRalpha proteins in regulation of GM-CSF signaling.
Collapse
Affiliation(s)
- Jennifer L Pelley
- Department of Biochemistry and Molecular Biology and Southern Alberta Cancer Research Institute, University of Calgary, Calgary, Alberta, Canada
| | | | | | | |
Collapse
|
12
|
Rosas M, Gordon S, Taylor PR. Characterisation of the expression and function of the GM-CSF receptor alpha-chain in mice. Eur J Immunol 2007; 37:2518-28. [PMID: 17694571 PMCID: PMC2699419 DOI: 10.1002/eji.200636892] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2006] [Revised: 05/22/2007] [Accepted: 07/18/2007] [Indexed: 11/09/2022]
Abstract
The granulocyte-macrophage colony-stimulating factor (GM-CSF) is a hematopoietic cytokine able to regulate a variety of cell functions including differentiation of macrophages and granulocytes, dendritic cell development and the maintenance of homeostasis. It binds specifically to its receptor, which is composed of a cytokine-specific alpha-chain (GM-CSF receptor alpha-chain, GMRalpha) and a beta-chain shared with the receptors for interleukin-3 and interleukin-5. In this report, we present a comprehensive study of GMRalpha in the mouse. We have found that the mouse GMRalpha is polymorphic and alternatively spliced. In the absence of specific antibodies, we generated a novel chimeric protein containing the Fc fragment of human IgG1 coupled to mouse GM-CSF, which was able to specifically bind to GMRalpha and induce proliferation of GMRalpha-transduced Ba/F3 cells. We used this reagent to perform the first detailed FACS study of the surface expression of mouse GMRalpha by leucocytes. Highest expression was found on monocytes and granulocytes, and variable expression on tissue macrophages. The GM-CSF receptor in mice is specifically expressed by myeloid cells and is useful for the detection of novel uncharacterised myeloid populations. The ability to detect GM-CSF receptor expression in experimental studies should greatly facilitate the analysis of its role in immune pathologies.
Collapse
Affiliation(s)
- Marcela Rosas
- Medical Biochemistry and Immunology, Cardiff University School of Medicine, Cardiff, UK
| | | | | |
Collapse
|
13
|
Cauwe B, Van den Steen PE, Opdenakker G. The biochemical, biological, and pathological kaleidoscope of cell surface substrates processed by matrix metalloproteinases. Crit Rev Biochem Mol Biol 2007; 42:113-85. [PMID: 17562450 DOI: 10.1080/10409230701340019] [Citation(s) in RCA: 279] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Matrix metalloproteinases (MMPs) constitute a family of more than 20 endopeptidases. Identification of specific matrix and non-matrix components as MMP substrates showed that, aside from their initial role as extracellular matrix modifiers, MMPs play significant roles in highly complex processes such as the regulation of cell behavior, cell-cell communication, and tumor progression. Thanks to the comprehensive examination of the expanded MMP action radius, the initial view of proteases acting in the soluble phase has evolved into a kaleidoscope of proteolytic reactions connected to the cell surface. Important classes of cell surface molecules include adhesion molecules, mediators of apoptosis, receptors, chemokines, cytokines, growth factors, proteases, intercellular junction proteins, and structural molecules. Proteolysis of cell surface proteins by MMPs may have extremely diverse biological implications, ranging from maturation and activation, to inactivation or degradation of substrates. In this way, modification of membrane-associated proteins by MMPs is crucial for communication between cells and the extracellular milieu, and determines cell fate and the integrity of tissues. Hence, insights into the processing of cell surface proteins by MMPs and the concomitant effects on physiological processes as well as on disease onset and evolution, leads the way to innovative therapeutic approaches for cancer, as well as degenerative and inflammatory diseases.
Collapse
Affiliation(s)
- Bénédicte Cauwe
- Rega Institute for Medical Research, Laboratory of Immunobiology, University of Leuven, Leuven, Belgium
| | | | | |
Collapse
|
14
|
Pangault C, Le Tulzo Y, Tattevin P, Guilloux V, Bescher N, Drénou B. Down-modulation of granulocyte macrophage-colony stimulating factor receptor on monocytes during human septic shock. Crit Care Med 2006; 34:1193-201. [PMID: 16484916 DOI: 10.1097/01.ccm.0000207339.11477.62] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Loss of surface human leukocyte antigen-DR (HLA-DR) on monocytes is a major factor of immunosuppression in sepsis. Granulocyte macrophage-colony stimulating factor (GM-CSF) up-regulates HLA-DR expression on monocytes via the GM-CSF receptor (GM-CSFr) through a transcriptional mechanism involving the class II transactivator factor (CIITA). We investigated monocyte GM-CSFr expression and its relationship with HLA-DR in septic patients. DESIGN Prospective clinical experimental study. SETTING University hospital intensive care unit and research facility. PATIENTS Septic patients with and without septic shock, control patients. INTERVENTIONS Flow cytometry and real-time quantitative reverse polymerase chain reaction were used to characterize GM-CSFr expression and transcription in septic patients and in ex vivo stimulated healthy monocytes. MEASUREMENTS AND MAIN RESULTS We showed an early GM-CSFr down-modulation in patients with septic shock compared with those without septic shock and controls. A persistent low GM-CSFr expression was observed in patients who acquired secondary infections or in those who died, and this persistent defect correlated with severity scores. We demonstrated that GM-CSFr down-modulation occurs at a posttranscriptional level since we observed no alteration in GM-CSFr transcription in monocytes isolated from septic patients. Furthermore, we demonstrated that GM-CSFr expression levels on monocytes correlated not only with HLA-DR expression and transcription levels but also with RNA levels of its main transcriptional factor CIITA. Because we previously showed in septic patients a relationship between high cortisol plasma level and low monocyte HLA-DR expression, we investigated the effects of glucocorticoids on monocyte GM-CSFr expression and observed a similar posttranscriptional down-modulation of GM-CSFr by steroids. However, the in vivo putative role of steroids in HLA-DR down-regulation via GM-CSFr down-modulation needs further investigation. CONCLUSION Monocyte GM-CSFr down-modulation occurred in septic shock, was associated with severity, and might be either another manifestation of monocyte deactivation linked to sepsis or an additional mechanism participating in immunosuppression.
Collapse
Affiliation(s)
- Céline Pangault
- Département d'Hématologie, Immunologie et Thérapie Cellulaire, Hôpital Pontchaillou, Centre Hospitalier Universitaire, Rennes, France.
| | | | | | | | | | | |
Collapse
|
15
|
Ping P, Vondriska TM, Creighton CJ, Gandhi TKB, Yang Z, Menon R, Kwon MS, Cho SY, Drwal G, Kellmann M, Peri S, Suresh S, Gronborg M, Molina H, Chaerkady R, Rekha B, Shet AS, Gerszten RE, Wu H, Raftery M, Wasinger V, Schulz-Knappe P, Hanash SM, Paik YK, Hancock WS, States DJ, Omenn GS, Pandey A. A functional annotation of subproteomes in human plasma. Proteomics 2005; 5:3506-19. [PMID: 16104058 DOI: 10.1002/pmic.200500140] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The data collected by Human Proteome Organization's Plasma Proteome Pilot project phase was analyzed by members of our working group. Accordingly, a functional annotation of the human plasma proteome was carried out. Here, we report the findings of our analyses. First, bioinformatic analyses were undertaken to determine the likely sources of plasma proteins and to develop a protein interaction network of proteins identified in this project. Second, annotation of these proteins was performed in the context of functional subproteomes involved in the coagulation pathway, the mononuclear phagocytic system, the inflammation pathway, the cardiovascular system, and the liver; as well as the subset of proteins associated with DNA binding activities. Our analyses contributed to the Plasma Proteome Database (http://www.plasmaproteomedatabase.org), an annotated database of plasma proteins identified by HPPP as well as from other published studies. In addition, we address several methodological considerations including the selective enrichment of post-translationally modified proteins by the use of multi-lectin chromatography as well as the use of peptidomic techniques to characterize the low molecular weight proteins in plasma. Furthermore, we have performed additional analyses of peptide identification data to annotate cleavage of signal peptides, sites of intra-membrane proteolysis and post-translational modifications. The HPPP-organized, multi-laboratory effort, as described herein, resulted in much synergy and was essential to the success of this project.
Collapse
Affiliation(s)
- Peipei Ping
- Department of Physiology and Medicine, Division of Cardiology, Cardiovascular Research Laboratories, University of California, Los Angeles, CA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Chaudhry MAS, Bowen BD, Eaves CJ, Piret JM. Empirical models of the proliferative response of cytokine-dependent hematopoietic cell lines. Biotechnol Bioeng 2004; 88:348-58. [PMID: 15486941 DOI: 10.1002/bit.20249] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
There is an expanding need for predictive mathematical models to accelerate the optimization of cell therapy culture processes. Here we demonstrate the ability of simple mathematical models to describe quantitatively the cytokine growth-rate dependence of two human hematopoietic cell lines, TF-1 and MO7e. These cells are immortal but depend on either interleukin-3 (IL-3) or granulocyte-macrophage colony stimulating factor (GM-CSF) for their continued survival and maximal proliferation. They are also responsive to interleukin-6 (IL-6) and exhibit saturation kinetics when these cytokines are limiting. A Monod-type relationship consistently failed to fit measured cytokine dose-proliferation response curves while a Hill-type relationship showed a good fit. Cytokine interactions were first modeled by modifying the Hill-function to include an interaction parameter, gamma. This model did not indicate either synergistic or even additive effects between IL-3 and GM-CSF. Based on the reported competition between IL-3 and GM-CSF for their common receptor (beta(c)) subunit, a competitive model was also developed. This model had no new parameters beyond those obtained from single cytokine cultures and provided improved prediction of the growth rates for both cell lines exposed to combinations of IL-3 and GM-CSF over a wide range of concentrations. As expected, the competitive model failed to fit the data for IL-6 in combination with either IL-3 or GM-CSF, since IL-6 signaling does not involve the beta(c) chain of the IL-3/GM-CSF receptors. Interestingly, the cell-specific rates of GM-CSF uptake and cell proliferation were found to be uncoupled processes. Taken together, these results illustrate the utility of appropriately designed empirical models to describe the proliferative responses of hematopoietic cells to cytokine stimulation.
Collapse
Affiliation(s)
- Muhammad A S Chaudhry
- Department of Chemical & Biological Engineering, University of British Columbia, 237-6174 University Boulevard, Vancouver, BC V6T 1Z4, Canada
| | | | | | | |
Collapse
|
17
|
Gogolák P, Réthi B, Hajas G, Rajnavölgyi E. Targeting dendritic cells for priming cellular immune responses. J Mol Recognit 2004; 16:299-317. [PMID: 14523943 DOI: 10.1002/jmr.650] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The cardinal role of dendritic cells (DC) in priming adaptive immunity and in orchestrating immune responses against all classes of pathogens and also against tumors is well established. Their unique potential both to maintain self-tolerance and to initiate protective immune responses against foreign and/or dangerous structures is based on the functional diversity and flexibility of these cells. Tissue DC lining antigenic portals such as mucosal surfaces and the skin are specialized to take up a wide array of compounds including proteins, lipids, carbohydrates, glycoproteins, glycolipids and oligonucleotides, particles carrying such structures and apoptotic or necrotic cells. This process is facilitated by specialized receptors with high endocytic capacity, which provides potential targets for delivering designed molecules. The best route for targeting B- and/or T cell epitopes, however, is still the subject of intense investigation. Immature DC, which reside in various tissues, can be activated by pathogens, stress and inflammation or modified metabolic products, which induce mobilization of cells to draining lymph nodes where they act as highly potent professional antigen presenting cells. This is brought about by the ability to present their accumulated intracellular content for both CD4+ helper (Th) and CD8+ cytotoxic/cytolytic T lymphocytes (Tc/CTL). Engulfed proteins are processed intracellularly and their peptide fragments are transported to the cell surface in the context of major histocompatibility complex encoded class I and II molecules for presentation to Th cells and CTLs, respectively. The T cell priming capacity of DC, however, depends not only on antigen presentation but also on other features of DC. Human monocyte-derived DC provide an excellent tool to study the internalizing, antigen-presenting and T cell-activating functions of DC at their immature and activated differentiation states. These biological activities of DC, however, are highly dependent on their migratory potential from the peripheral non-lymphoid tissues to the lymph nodes, on the expression of adhesion molecules, which support the interaction of DC with T lymphocytes, and the cytokines secreted by DC, which polarize immune responses to Th1-mediated cellular or Th2-mediated antibody responses. These results altogether demonstrate that monocyte-derived DC are useful candidates for in vitro or in vivo targeting of antigens to induce efficient adaptive immune responses against pathogens and also against tumors.
Collapse
Affiliation(s)
- Péter Gogolák
- Institute of Immunology, Faculty of Medicine, University of Debrecen, 98 Nagyerdei Blvd, Debrecen H-4012, Hungary
| | | | | | | |
Collapse
|
18
|
Mirski R, Reichert F, Klar A, Rotshenker S. Granulocyte macrophage colony stimulating factor (GM-CSF) activity is regulated by a GM-CSF binding molecule in Wallerian degeneration following injury to peripheral nerve axons. J Neuroimmunol 2003; 140:88-96. [PMID: 12864975 DOI: 10.1016/s0165-5728(03)00179-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The hematopoietic factor and inflammatory cytokine GM-CSF is involved in PNS and CNS injury and disease, and in macrophage and microglia function regulation. We presently document that injury to PNS axons induces in vivo production of GM-CSF-inhibitor and GM-CSF-augmenter activities. GM-CSF-inhibitor activity was detected in extract and conditioned medium (CM) of injured PNS but not in extract of intact PNS, and was removed from CM by GM-CSF affinity chromatography, suggesting it is carried by a secreted GM-CSF binding molecule. CM further displayed GM-CSF-augmenter activity along with GM-CSF-inhibitor activity but at contrasting concentrations; augmentation at lowest and inhibition at highest. GM-CSF activity is thus regulated during Wallerian degeneration (WD); augmenter activity characterizes the onset and inhibitor activity the later stages of WD.
Collapse
MESH Headings
- Animals
- Axons/metabolism
- Axons/pathology
- Axotomy
- Carrier Proteins/analysis
- Carrier Proteins/genetics
- Carrier Proteins/metabolism
- Carrier Proteins/physiology
- Cells, Cultured
- Culture Media, Conditioned/analysis
- Granulocyte-Macrophage Colony-Stimulating Factor/antagonists & inhibitors
- Granulocyte-Macrophage Colony-Stimulating Factor/deficiency
- Granulocyte-Macrophage Colony-Stimulating Factor/genetics
- Granulocyte-Macrophage Colony-Stimulating Factor/metabolism
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Knockout
- Protein Subunits/analysis
- Protein Subunits/genetics
- RNA, Messenger/analysis
- Receptors, Cell Surface/analysis
- Receptors, Cell Surface/deficiency
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/physiology
- Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/analysis
- Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/deficiency
- Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/genetics
- Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/metabolism
- Receptors, Interleukin-3/analysis
- Receptors, Interleukin-3/metabolism
- Receptors, Interleukin-3/physiology
- Sciatic Nerve/metabolism
- Sciatic Nerve/pathology
- Solubility
- Time Factors
- Up-Regulation/physiology
- Wallerian Degeneration/genetics
- Wallerian Degeneration/metabolism
- Wallerian Degeneration/pathology
Collapse
Affiliation(s)
- Roni Mirski
- Department of Anatomy and Cell Biology, Hebrew University-Hadassah Medical School, P.O.B. 12272, Jerusalem 91120, Israel
| | | | | | | |
Collapse
|